Конвективные поверхности нагрева котла. Расчет конвективных испарительных поверхностей

Подписаться
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:
Продольный и поперечный разрезы котла ТВГ-8.  

Конвективная поверхность нагрева размещена в газоходе и представляет змеевиковый экономайзер, состоящий из 16 секций. Секции набирают таким образом, чтобы змеевики располагались параллельно фронту котла в шахматном порядке. Для сжигания газа установлены четыре подовые горелки с прямой щелью, заканчивающейся вверху внезапным расширением. Горелки размещены между вертикальными топочными экранами.  

Конвективные поверхности нагрева должны иметь устройства для удаления осевшей после обдувки золы. Из мест обора зола должна удаляться свободно я без перегрузок. Все места, где скапливается осевшая зола, должны быть достаточных размеров и доступны для чистки. Глухие мешки, где может скапливаться зола, должны быть уменьшены до минимума.  

Z - схема соединения экранных поверхностей нагрева.  

Конвективная поверхность нагрева 2 котла состоит из 156 горизонтальных труб длиной 2 9 м, расположенных в 6 рядов по 26 труб в каждом и вваренных в коллекторы диаметром 108 X 4 мм.  

Парогенератор БКЗ 420 / 140.  

Конвективные поверхности нагрева, за исключением экономайзера, расположены в плоскости, перпендикулярной фронту, и опираются на подвесные трубы 6, являющиеся первой ступенью экономайзера.  

Конвективные поверхности нагрева в передвижных паровых котлах состоят из испарительных поверхностей котла, пароперегревателей и водяных экономайзеров.  

Конвективная поверхность нагрева, располагаемая в зоне температур, указанных в таблице или на 50 С меньших, должна быть фесто-нирована. В противном случае температуры газов, указанные в таблице, должны быть уменьшены на 50 С.  

Конвективные поверхности нагрева (испарительная и пароперегревателя) размещены в двух самостоятельных горизонтальных газоходах и выполнены в виде гладкотрубных змеевиков, расположенных вертикально. Пароперегреватель конвективного типа, двухступенчатый. Температура перегрева пара регулируется двухступенчатым пароохладителем, установленным в рассечку.  

Конвективные поверхности нагрева расположены в двух опускных газоходах с полностью экранированными стенами. Ограждающими поверхностями каждой конвективной шахты являются промежуточная стена котла, боковая стена котла, фронтовая и задняя стены конвективной шахты.  

Конвективные поверхности нагрева обычно выполняют в виде рядов труб с коридорным или шахматным расположением, омываемых продуктами сгорания топлива. Движение газов в трубном пучке продольное или поперечное, В этих поверхностях нагрева перенос теплоты от греющих газов к рабочей среде осуществляется преимущественно за счет конвекции. Радиационная составляющая в общем потоке теплоты, передаваемом рабочему телу, относительно невелика вследствие снижения температур потока газов по ходу их движения в газоходах котла и малой толщины излучающего слоя в межтрубном пространстве.  


Конвективные поверхности нагрева всех котлов выполнены одинаково, за исключением котла KB-TGB, у которого в конвективной шахте установлен един пакет.  

Конвективные поверхности нагрева паровых и водогрейных котлов играют важную роль в процессе получения пара или горячей воды, а также использования теплоты продуктов сгорания, покидающих топочную камеру. Эффективность работы конвективных поверхностей нагрева в значительной мере зависит от интенсивности передачи теплоты продуктами сгорания воде и пару.  

Расчет конвективных испарительных поверхностей нагрева рекомендуется выполнять в следующей последовательности.

1. По чертежу и по техническим характеристикам котлоагрегата (раздел 2, табл. 1.2-1.13) определяют конструктивные характеристики рассчитываемого газохода: площадь поверхности нагрева Н, диаметр труб в пучке d, поперечный шаг труб s 1 (в поперечном направлении по отношению к направлению потока рис. 6.1), продольный шаг труб s 2 (в продольном направлении по отношению к движению потока, ри. 6.1.), м; z 1 - число труб в ряду, z 2 - число рядов труб по ходу продуктов сгорания. Затем рассчитываются относительный поперечный шаг

и относительный продольный шаг

Площадь поверхности нагрева, расположенной в газоходе, м 2

где l – длина труб, расположенных в газоходе, м, n - общее количество труб, расположенных в газоходе.

Площадь поперечного сечения для прохода продуктов сгорания, м 2: при поперечном омывании гладких труб

при поперечном омывании гладких труб

, (6.5)

где и - размеры газохода в расчетных сечениях, м; - освещенная длина труб (длина проекции трубы), м; -число труб в пучке.

2. Предварительно принимаются два значения температуры продуктов сгорания на выходе из рассчитываемого газохода. В дальнейшем весь расчет ведется для для двух значений предварительно принятых температур .

3. Определяется тепловосприятие поверхности по уравнению теплового баланса, кДж/кг, кДж/м 3 ,

где определяется по формуле (4.11); - определяется по диаграмме при температуре и коэффициенте избытка воздуха на входе в поверхность нагрева ; - определяется по диаграмме при температуре и коэффициенте избытка воздуха на выходе из поверхности нагрева; величина присоса воздуха в рассчитываемом газоходе; принимается по таблице для температуры воздуха =30 о С.

4.Вычисляется средняя температура потока продуктов сгорания в газоходе, о С

где - температура продуктов сгорания на входе в поверхность и на выходе из нее.

5. Определяется температурный напор, о С

где к – температура воды на линии насыщения при давлении в барабане котла, о С, определяется по таблицам воды и водяного пара.

6. Подсчитывается средняя скорость продуктов сгорания в газоходе, м/с

(6.9)

где V г – объем продуктов сгорания на 1кг твердого или жидкого топлива или на 1м 3 газообразного топлива, принимается по табл. 3.3 для соответствующего газохода.

7. Определяется коэффициент теплоотдачи конвекцией от продуктов сгорания к поверхности нагрева:

при поперечном омывании коридорных и шахматных пучков и ширм

при продольном омывании

где - коэффициент теплоотдачи, определяемый по номограмме: при поперечном омывании коридорных пучков – по рис 6.1, при поперечном омывании шахматных пучков – по рис 6.2, при продольном омывании - по рис.6.3; с z - поправка на число рядов труб по ходу продуктов сгорания, определяется: при поперечном омывании коридорных пучков по рис.6.1, при поперечном омывании шахматных пучков по рис.6.2; с s – поправка на геометрическую компоновку пучка труб, определяется для коридорных и шахматных пучков при поперечном омывании по рис.6.1 и 6.2, соответственно; с ф – коэффициент, учитывающий влияние изменения физических параметров потока, определяется для коридорных и шахматных пучков при поперечном омывании по рис.6.1 и 6.2, соответственно; с l – поправка на относительную длину, вводится при и определяется в случае прямого входа в трубу, без закругления; при продольном омывании продуктами сгорания поправка вводится для котельных пучков и не вводится для ширм.


Рис.6.1. Коэффициент теплоотдачи конвекцией при поперечном омывании коридорных гладкотрубных пучков.


Рис.6.2. Коэффициент теплоотдачи при поперечном омывании шахматных гладкотрубных пучков

Рис.6.3. Коэффициент теплоотдачи конвекцией при поперечном омывании для воздуха и продуктов сгорания

При охлаждении продуктов сгорания и воздуха , Вт/(м 2 К), при нагревании воздуха , Вт/(м 2 К)


Рис.6.4. Коэффициент теплоотдачи излучением

8. Определяется степень черноты газового потока по номограмме рис.5.5. Для определения степени черноты по номограмме необходимо вычислить суммарную оптическую толщину ослабления лучей

где k г r п – коэффициент ослабления лучей трехатомными газами, k г определяется в соответствии с формулой (5.6) или по номограмме (рис.5.4), r п – из табл. 3.3; k зл - коэффициент ослабления лучей золовыми частицами, определяется по рис. 5.3 при сжигании твердого топлива в пылеугольных топках; при сжигании газа, жидкого топлива и твердого топлива в слоевых и факельно-слоевых топках k зл =0; - концентрация золовых частиц, принимается по таблице 3.3; p – давление в газоходе, для котлов, работающих без наддува, принимается равным 0,1 МПа.

Толщина излучающего слоя для гладкотрубных пучков труб, м

. (6.13)

9. Определяется коэффициент теплоотдачи излучением от продуктов сгорания к поверхности конвективных пучков, Вт/(м 2 К):

для запыленного потока (при сжигании твердых топлив)

для незапыленного потока (при сжигании жидкого и газообразного топлива)

где - коэффициент теплоотдачи излучением, определенный по номограмме рис.6.4; - степень черноты, определенная по рис.5.5; с г –коэффициент, определяемый по рис.6.4.

Для определения и коэффициента с г необходимо знать температуру загрязненной стенки, о С

где t средняя температура пароводяной смеси, принимается равной температуре насыщения при давлении в барабане котлоагрегата, о С; t при сжигании твердых и жидких топлив принимается равной 60 о С, при сжигании газа 25 о С.

10. Подсчитывается суммарный коэффициент теплоотдачи от продуктов сгорания к поверхности нагрева, Вт/(м 2 К):

(6.17)

где - коэффициент использования, учитывающий уменьшение тепловосприятия поверхности нагрева вследствие неравномерности омывания ее продуктами сгорания, образования застойных зон, для поперечно омываемых пучков принимается =1,0, для сложно омываемых =0,95.

11. Вычисляется коэффициент теплопередачи, Вт/(м 2 К):

где - коэффициент тепловой эффективности, определяется по таблицам 6.1 и 6.2.


Таблица 6.1.

Коэффициент тепловой эффективности для конвективных поверхностей нагрева* при сжигании различных твердых топлив

*Фестоны парогенераторов большой мощности, развитые котельные пучки котлов малой мощности, конвективные пароперегреватели и экономайзеры с коридорным расположением труб.

Для всех видов твердого топлива, кроме подмосковного угля, требуется очистка конвективных поверхностей нагрева.


Таблица 6.2.

Коэффициент тепловой эффективности для конвективных поверхностей при сжигании газа и мазута

Поверхность нагрева Скорость продуктов сгорания, м/с Значение коэффициента
При сжигании мазута
Первые и вторые ступени экономайзеров с очисткой поверхностей нагрева дробью 12-20 0,65-0,6
То же 4-12 0,7-0,65
Пароперегреватели, расположенные в конвективной шахте, при очистке дробью, а также коридорные пароперегреватели в горизонтальном газоходе, без очистки; котельные пучки котлов малой мощности, фестоны 12-20 0,6
То же 4-12 0,65-0,6
Экономайзеры котлов малой мощности (при температуре воды на входе 100 о С и меньше) 4-12 0,55-0,5
При сжигании газа
Первые ступени экономайзеров и одноступенчатые экономайзеры, в том числе плавниковые и ребристые, при температуре продуктов сгорания на входе в них - 0,9
Вторые ступени экономайзеров, пароперегреватели и другие конвективные поверхности нагрева, в том числе плавниковые и ребристые, при температуре продуктов сгорания на входе в них - 0,85

Примечание. 1. При сжигании газа после сжигания мазута коэффициент тепловой эффективности принимается средним между значениями для газа и мазута. 2.При сжигании газа после твердого топлива (без остановки котла) коэффициент тепловой эффективности принимается как для твердого топлива. 3. Больший коэффициент тепловой эффективности принимается для меньшей скорости.

Использование: в теплоэнергетике, в частности, при изготовлении парогенераторов. Сущность изобретения: повышение монтажной и ремонтной технологичности обеспечивается тем, что в конвективной поверхности нагрева, содержащей входной 1 и выходной 2 коллекторы, вертикально установленные обогреваемые трубы 3, дистанционирующие трубы 4, расположенные горизонтальными ярусами 5 на прямых вертикальных участках обогреваемых труб 4 и попарно жестко скреплены между собой по периферии конвективной поверхности, причем пара дистанционирующих труб 4 охватывает только один ряд обогреваемых труб 3. 4 ил.

Изобретение относится к теплоэнергетике и может быть использовано в парогенераторостроении. В процессе работы парогенератора, особенно на шлакующемся топливе или высокосернистом мазуте, на вертикальных поверхностях нагрева, размещенных, как правило, в горизонтальном газоходе, отлагается большое количество шлака. Очагами для интенсивной зашлаковки являются места, где уменьшены поперечные шаги между вертикальными трубами из-за выхода их из проектной плоскости (из ранжира). В этих местах резко уменьшается расход и скорость дымовых газов и это еще больше способствует зашлаковке поверхностей нагрева. Кроме того, наружные ранжировки труб, особенно в поперечном направлении движения греющих газов, ухудшают условия очистки обдувочными или другими устройствами. Применяемые в настоящее время различные неохлаждаемые устройства из жаростойких материалов быстро выгорают под воздействием высоких температур и агрессивных составляющих (серы, ванадия) греющих газов. Применение собственных, т.е. включенных параллельно с обогреваемыми трубами поверхности нагрева, дистанционирующих обогреваемых труб приводит к неравномерным условиям их работы, т.к. дистанционирующие трубы обязательно отличаются по длине и конфигурации от основных труб, что снижает надежность работы поверхности нагрева. Известна конструкция конвективной поверхности нагрева, в которой дистанционирование обогреваемых труб осуществляется неохлаждаемыми дистанционирующими планками из жаростойкого чугуна. Например, на котле ТГМП-204 Недостатком этой конструкции является недолговечность дистанционирующих планок, так как в условиях высоких температур газов и агрессивных составляющих продуктов горения топлива они быстро обгорают и разрушаются, что приводит к нарушению дистанций между обогреваемыми трубами поверхности нагрева, способствует заносу их золой и шлаком, ухудшению теплообмена и снижению надежности работы парогенератора. Наиболее близкой к заявленной является конструкция конвективной поверхности нагрева, содержащая входной и выходной коллекторы, вертикально расположенные обогреваемые трубы и горизонтальными ярусами установленные дистанционирующие трубы, охлаждаемые рабочей средой и снабженные шипами, образующими ячейки, в каждой из которых размещается по одной вертикальной трубе. В целом все дистанционирующие трубы, соединенные между собой шипами, образуют горизонтальную жесткую решетку, через которую пропускаются обогреваемые трубы поверхности нагрева Недостатком известной конструкции является сложность монтажа и низкая ремонтопригодность, состоящая в том, что при необходимости замены поврежденной обогреваемой трубы, размещенной в средней части вертикальной поверхности нагрева, совершенно невозможно раздвинуть обогреваемый вертикальные трубы для облегчения доступа к поврежденному месту. В равной мере это относится и к самим дистанционирующим трубам, снабженным шипами. Для доступа к поврежденному месту необходимо резать большое количество неповрежденных труб в доступных для этого местах с последующим восстановлением их. Опыт эксплуатации указанной поверхности на котлах ТГМП-204 подтверждает вышесказанное. Целью изобретения является устранение указанных недостатков, а также повышение монтажной и ремонтной технологичности. Поставленная цель достигается тем, что в конвективной поверхности нагрева, содержащей входной и выходной коллекторы, вертикально установленные обогреваемые трубы и дистанционирующие трубы, расположенные горизонтальными ярусами, дистанционирующие трубы в виде горизонтальных ярусов размещены на прямых вертикальных участках обогреваемых труб, попарно жестко соединенных между собой по периферии конвективной поверхности, причем каждая упомянутая пара охватывает только один ряд обогреваемых труб. Сущность изобретения поясняется чертежами, на которых изображено: на фиг. 1 общий вид конвективной поверхности нагрева, на фиг. 2 разрез по А-А фиг. 1, на фиг. 3 разрез по Б-Б на фиг. 2, на фиг. 4 разрез по В-В фиг. 2. Конвективная поверхность нагрева содержит входной 1 и выходной 2 коллекторы, вертикально установленные обогреваемые трубы 3, дистанционирующие трубы 4, выполненные в виде горизонтальных ярусов 5, размещенных на прямых участках труб 3 по высоте поверхности параллельно движению греющих газов и попарно охватывающих каждый ряд этих труб. Трубы 4 жестко соединены между собой сваркой 6 по периферии поверхности нагрева. Конвективная поверхность нагрева работает следующим образом. При изменении теплового состояния парогенератора дистанционирующие трубы 4 удерживают в одной плоскости каждый ряд обогреваемых труб 3, стремящихся из-за неравномерного обогрева выйти из ранжира. Сохранение ранжировки труб 3 обеспечивает равномерные скорости газов по всей ширине газохода, уменьшает возможность заноса золой его отдельных участков, а также улучшает условия очистки с помощью обдувочных или других приспособлений. Удержание обогреваемых труб 3 в ранжире значительно улучшает условия их осмотра и ремонта.,

Испарительные поверхности нагрева: конструкция, особенности теплообмена. Пароперегревательные поверхности нагрева: типы, конструкция, особенности теплообмена. Водяные экономайзеры: типы, конструкция, особенности теплообмена. Воздухоподогреватели: типы, конструкция, особенности теплообмена. Способы организации газовоздушного тракта котла.

Основные поверхности нагрева парового котла, назначение

Испарительные поверхности. Парогенерирующие (испарительные) поверхности нагрева отличаются друг от друга в котлах различных систем, но, как правило, располагаются в основном в топочной камере и воспринимают теплоту излучения. Это -- экранные трубы, а также устанавливаемый на выходе из топки небольших котлов конвективный пучок труб.

Экраны котлов с естественной циркуляцией, работающих под разрежением в топке, выполняются из гладких труб с внутренним диаметром 40--80 мм. Экраны представляют собой ряд параллельно включенных вертикальных подъемных труб, соединенных между собой коллекторами. Зазор между трубами обычно составляет 4--6 мм. Размеры топки и величину поверхности экранов рассчитывают таким образом, чтобы на выходе из топки температура продуктов сгорания не превышала температуру размягчения золы, иначе зола будет прилипать к деталям котла, расположенным за топкой, и забьет («зашлакует») путь для прохода газа.

Пароперегреватели. Пароперегреватель предназначен для повышения температуры пара, поступающего из испарительной системы котла. Его трубы (диаметром 22--54 мм) могут располагаться на стенах или потолке топки и воспринимать теплоту излучением -- радиационный пароперегреватель либо в основном конвекцией -- конвективный пароперегреватель. В этом случае трубы пароперегревателя располагаются в горизонтальном газоходе или в начале конвективной шахты

Водяные экономайзеры, предназначенные для подогрева пита-тельной воды, обычно выполняют из стальных труб диаметром 28--38 мм, согнутых в вертикальные змеевики и скомпонованных в пакеты. Трубы в пакетах располагаются в шахматном порядке довольно плотно: расстояние между осями соседних труб поперек потока дымовых газов составляют 2--2,5 диаметра трубы, а между рядами -- вдоль потока -- 1 -- 1,5. Крепление труб змеевиков и их дистанционирование осуществляются опорными стойками, закрепленными в большинстве случаев на полых (для воздушного охлаждения), изолированных со стороны горячих газов балках каркаса.

В экономайзере котлов высокого давления до 20 % воды может превращаться в пар.

Общее число параллельно работающих труб выбирается исходя из скорости воды не ниже 0,5--1 м/с. Эти скорости обусловлены необходимостью смывания со стенок труб пузырьков воздуха, спо-собствующих коррозии, и предотвращения расслоения пароводяной смеси, которое может привести к перегреву слабо охлаждаемой паром верхней стенки трубы и ее разрыву. Движение воды в экономайзере обязательно восходящее; в этом случае имеющийся в трубах после монтажа (ремонта) воздух легко вытесняется водой.

Число труб в пакете в горизонтальной плоскости выбирается исходя из скорости продуктов сгорания 6--9 м/с. Скорость эта определяется стремлением, с одной стороны, получить высокие коэффициенты теплоотдачи, а с другой -- не допустить чрезмерного эолового износа. Коэффициенты теплопередачи при этих условиях составляют обычно не-сколько десятков Вт/(м2-К). Для удобства ремонта и очистки труб от наружных загрязнений экономайзер разделяют на пакеты высотой 1 -- 1,5м с зазорами между ними до 800 мм.

Наружные загрязнения с поверхности змеевиков удаляются, например, путем периодического включения в работу системы дробеочистки, в которой поток металлической дроби пропускается (падает) сверху вниз через конвективные поверхности нагрева, сбивая налипшие на трубы отложения. Налипание золы может быть следствием выпадения рось! из дымовых газов на относительно холодной поверхности труб, особенно при сжигании сернистых топлив (пары H2SOs конденсируются при более высокой температуре, чем HsO). В теплоэнергетических установках питательная вода перед поступлением в котел обязательно подвергается регенеративному подогреву (см. §6.4), поэтому ни налипания золы, ни наружной коррозии (ржавления) труб вследствие выпадения росы в экономайзерах таких котлов не бывает.

Верхние ряды труб экономайзера при работе котла на твердом топливе даже при относительно невысоких скоростях газов подвержены заметному износу золой. Для его предотвращения на эти трубы крепятся различного рода защитные накладки (обычно сверху вдоль трубы приваривают уголок).

Воздухоподогреватели. Поскольку питательная вода перед эконо-майзером энергетических котлов имеет высокую температуру tn „ после регенеративного нагрева (при р= 10 МПа, например, tn B = 230 °С), глубоко охладить уходящие из котла газы с ее помощью нельзя. Для дальнейшего охлаждения газов после экономайзера ставят воздухо-подогреватель, в котором нагревают воздух, забираемый из атмосферы и идущий затем в топку на горение. При сжигании влажного угля нагретый воздух предварительно используется для его сушки в углеразмольном устройстве и транспортировки полученной пыли в горелку.

По принципу действия воздухоподогреватели разделяются на рекуперативные и регенеративные. Рекуперативные -- это, как правило, стальные трубчатые воздухоподогреватели (диаметр трубок 30--40мм). Схема такого подогревателя приведена на рис. 18.5. Трубки в нем расположены обычно вертикально, внутри них движутся продукты сгорания; воздух омывает их поперечным потоком в несколько ходов, организуемых за счет перепускных воздуховодов (коробов) и промежуточных перегородок.

Газ в трубках движется со скоростью 9--13м/с, воздух между трубками-- вдвое медленнее. Это позволяет иметь примерно равные коэффициенты теплоотдачи с обеих сторон стенки трубы.

Температуру стенок труб воздухоподогревателя во избежание конденсации на них водяных паров из уходящих газов желательно поддерживать выше точки росы. Этого можно достичь предвари-тельным подогревом воздуха в паровом калорифере либо рециркуляцией части горячего воздуха.

Регенеративный воздухоподогреватель котла (рис. 18.6) представляет собой медленно вращающийся (3--5 об/мин) барабан (ротор) с набив-кой (насадкой) из гофрированных тонких стальных листов, заключенный в неподвижный корпус. Секторными плитами корпус разделен на две части -- воздушную и газовую. При вращении ротора набивка попеременно пересекает то газовый, то воздушный поток. Несмотря на то что набивка работает в нестационарном режиме, подогрев идущего сплошным потоком воздуха осуществляется непрерывно без колебаний температуры. Движение газов и воздуха -- противоточное.

Регенеративный воздухоподогреватель отличается компактностью (до 250 м2 поверхности нагрева в 1 м3 набивки); он широко распространен на мощных энергетических котлоагрегатах. Недостатком его являются большие (до 10 %) перетоки воздуха в тракт газов, что ведет к перегрузкам дутьевых вентиляторов и дымососов и увеличению потерь теплоты с уходящими газами.

Все описанные тепловоспринимаю-щие элементы котла (поверхности нагрева) являются типичными теплообменниками, и расчет их ведется по формулам, приведенным в гл. 14. Поверхность нагрева рассчитывается по уравнению теплопередачи

Особенность расчета котлов состоит в том, что его принято осуществлять для 1 кг твердого и жидкого и 1 м3 газообразного топлива. В этом случае Q -- теплота, отданная продуктами сгорания 1 кг (м3) топлива и равна разности энтальпий продуктов сгорания до (Н") и после (Н") рассматриваемой конвективной поверхности, т. е.

Под Вр понимается расчетный расход топлива, т. е. его количество, действительно сгоревшее в топке. Это же количество теплоты передается в данной поверхности рабочему телу (воде, пару, воздуху):

BpQ=D(hвых-hвх)

В этой формуле D -- расход рабочего тела; hвх и hвых -- энтальпии рабочего тела на входе в поверхность нагрева и выходе из нее, рассчитанные, как обычно, на 1 кг рабочего тела.

Для обеспечения потребностей бурного роста промышленного и жилищного строительства в 60-е годы в ВТИ совместно с Оргэнергостроем (г. Москва) была разработана серия водотрубных водогрейных котлов типа ПТВМ тепловой мощностью от 34,9 до 209,4 МВт (30…180 Гкал/ч). Они были спроектированы для сжигания природного газа и мазута. Несмотря на выявленные в первые же годы эксплуатации недостатки, эти котлы получили широкое распространение, так как экономические условия того времени позволяли мириться с их низкой эксплуатационной надежностью и экономичностью.

Разработанные позже аналогичные котлы типа КВГМ, устранив ряд выявленных недостатков, сохранили основной из них – конструкцию конвективной поверхности нагрева. В эту конструкцию была заложена идея малой загрязняемости поверхности нагрева за счет эффекта самообдувки, вызванной малым диаметром труб (28 мм) и их плотной компоновкой (зазоры в свету между трубами составляют всего лишь 4 мм). Эта идея получила к тому времени подтверждение в лабораторных условиях и на практике при сжигании в энергетических котлах твердого топлива, особенно дающего на трубах поверхностей нагрева сыпучие отложения. На рассматриваемые водогрейные котлы она была распространена поспешно, без достаточного изучения характера золовых отложений мазута.

Практика показала, что при сжигании мазута предполагавшийся эффект самообдувки полностью отсутствует, а вместо него в низкотемпературной части конвективной поверхности нагрева часто наблюдается занос межтрубного пространства золовыми отложениями мазута. В высокотемпературной части поверхности примененная конструкция трубного пучка привела к другому существенному недостатку. Из-за высоких тепловых потоков, особенно внутри первых рядов труб по ходу продуктов сгорания, часто возникает пристенное кипение воды. Это приводит к интенсивному образованию внутренних отложений, уменьшению проходного сечения и протока воды в трубках. Результат известный – пережог труб. Чем хуже качество воды, тем интенсивнее идет этот процесс и меньше ресурс секций поверхности нагрева.

К настоящему времени общепризнано, что конвективная поверхность нагрева в водогрейных котлах ПТВМ и КВГМ является наиболее слабым звеном. Многие котлостроительные заводы, ряд проектных организаций и ремонтных предприятий имеют свои проекты ее модернизации. Наиболее совершенной следует признать разработку ОАО «Машиностроительный завод «ЗИО-Подольск». Разработчики подошли к решению проблемы комплексно. Кроме увеличения диаметра труб с 28 мм до 38 мм и их поперечного шага в два раза, традиционные гладкостенные трубы заменены на оребренные. Применено мембранное и поперечно-спиральное оребрение. По оценке разработчиков замена в котлах ПТВМ-100 старой конструкции на новую позволит получить экономию топлива до 2,4%, а самое главное – увеличить эксплуатационную надежность и ресурс работы конвективной поверхности в 3 раза.

Ниже приводятся результаты дальнейшего совершенствования конвективной поверхности, направленные на возможность отказа от мембранного оребрения в высокотемпературной части поверхности с целью уменьшения ее металлоемкости. Вместо мембран между трубами вварены короткие дистанционирующие вставки. Они образуют по длине секций три пояса жесткости и поэтому дистанционирующие стойки не требуются. Точно такие же короткие дистанционирующие вставки применены и в низкотемпературной части поверхности из труб с поперечным спиральным оребрением. Они заменили громозкие штампованные стойки. Ранжирование поперечного шага труб и соответственно секций между собой осуществляется гребенками в области поясов жесткости. Гребенки фиксируют только крайние ряды труб каждой секции. Внутри собранной из секций поверхности нагрева ранжирование труб по перечному шагу происходит за счет жесткой конструкции секций.

Вваренные между трубами змеевиков дистанционирующие вставки вместо традиционных стоек применяются более 20 лет. Результат положительный. Дистанционирующие вставки надежно охлаждаются и не вызывают деформации труб. Случаев возникновения на трубах свищей по причине применения вставок за всю многолетнюю практику не зафиксировано.

Отказ от мембранного оребрения труб в высокотемпературной части поверхности нагрева и возврат к гладкотрубной конструкции позволил уменьшить ее металлоемкость практически без изменения тепловосприятия. В первых проектах шаг между поперечно-спиральными ребрами в низкотемпературной части принят 6,5 мм, а в более поздних он сокращен до 5 мм. Практика показывает, что при сжигании в водогрейных котлах только природного газа этот шаг можно еще уменьшить и получить дополнительную экономию топлива.

Представленное здесь техническое решение защищено патентом на полезную модель. Проекты выполняются совместно сотрудниками НПФ «Градиент-С» СГТУ и ОП «Свердловэнергоремонт». Изготовление осуществляется на производственной базе ОП «Свердловэнергоремонт». В период с 2002 по 2010 годы модернизированные конвективные поверхности нагрева для котлов ПТВМ-100 внедрены на Гурзуфской районной котельной (г. Екатеринбург) – 4 котла; ТЭЦ Нижнетагильского металлургического комбината (г. Нижний Тагил) -3 котла; Свердловская ТЭЦ (ОАО «Уралмаш», г. Екатеринбург) – 2 котла; для ПТВМ-180: Саратовская ТЭЦ-5 (г. Саратов) – 2 котла; КВГМ-100 (Ростовская область) – 2 котла.

Замечания со стороны эксплуатации по вновь разработанным и установленным в водогрейных котлах поверхностям нагрева отсутствуют. Подтверждено значительное уменьшение гидравлических и аэродинамических сопротивлений. Котлы легко выходят на номинальную нагрузку и устойчиво работают в этом режиме. Примененные дистанционирующие вставки надежно охлаждаются. Деформаций труб и самих секций в модернизированных поверхностях нагрева не наблюдается. Температура уходящих газов при номинальной заводской теплопроизводительности снизилась на 15 о С у котлов с шагом между поперечно-спиральными ребрами 6,5 мм и на 18 о С у котлов с шагом между ребрами 5 мм.

← Вернуться

×
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:
Я уже подписан на сообщество «sinkovskoe.ru»