Большие дробные примеры. Как решать дроби

Подписаться
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:

Чтобы выразить часть в долях целого, нужно часть разделить на целое.

Задача 1. В классе 30 учащихся, отсутствуют четверо. Какая часть учащихся отсутствует?

Решение:

Ответ: в классе отсутствует учащихся.

Нахождение дроби от числа

Для решения задач, в которых требуется найти часть целого справедливо следующее правило:

Если часть целого выражена дробью, то чтобы найти эту часть, можно целое разделить на знаменатель дроби и результат умножить на её числитель.

Задача 1. Было 600 рублей, этой суммы истратили. Сколько денег истратили?

Решение: чтобы найти от 600 рублей, надо эту сумму разделить на 4 части, тем самым мы узнаем, сколько денег составляет одна четвёртая часть:

600: 4 = 150 (р.)

Ответ: истратили 150 рублей.

Задача 2. Было 1000 рублей, этой суммы истратили. Сколько денег было истрачено?

Решение: из условия задачи мы знаем, что 1000 рублей состоит из пяти равных частей. Сначала найдём сколько рублей составляет одна пятая часть от 1000, а затем узнаем сколько рублей составляют две пятых:

1) 1000: 5 = 200 (р.) - одна пятая часть.

2) 200 · 2 = 400 (р.) - две пятых части.

Эти два действия можно объединить: 1000: 5 · 2 = 400 (р.).

Ответ: было истрачено 400 рублей.

Второй способ нахождения части целого:

Чтобы найти часть целого, можно умножить целое на дробь, выражающую эту часть целого.

Задача 3. По уставу кооператива, для правомочности отчётного собрания на нём должно присутствовать не менее членов организации. В кооперативе 120 членов. При каком составе может состояться отчётное собрание?

Решение:

Ответ: отчётное собрание может состояться при наличии 80 членов организации.

Нахождение числа по его дроби

Для решения задач, в которых требуется найти целое по его части справедливо следующее правило:

Если часть искомого целого выражена дробью, то чтобы найти это целое, можно данную часть разделить на числитель дроби и результат умножить на её знаменатель.

Задача 1. Потратили 50 рублей, это составило от первоначальной суммы. Найдите первоначальную сумму денег.

Решение: из описания задачи мы видим, что 50 рублей в 6 раз меньше первоначальной суммы, т. е. первоначальная сумма в 6 раз больше, чем 50 рублей. Чтобы найти эту сумму, надо 50 умножить на 6:

50 · 6 = 300 (р.)

Ответ: первоначальная сумма - 300 рублей.

Задача 2. Потратили 600 рублей, это составило от первоначальной суммы денег. Найдите первоначальную сумму.

Решение: будем считать, что искомое число состоит из трёх третьих долей. По условию две трети числа равны 600 рублей. Сначала найдём одну треть от первоначальной суммы, а затем сколько рублей составляют три третьих (первоначальная сумма):

1) 600: 2 · 3 = 900 (р.)

Ответ: первоначальная сумма - 900 рублей.

Второй способ нахождения целого по его части:

Чтобы найти целое по величине выражающей его часть, можно разделить эту величину на дробь, выражающую данную часть.

Задача 3. Отрезок AB , равный 42 см, составляет длины отрезка CD . Найти длину отрезка CD .

Решение:

Ответ: длина отрезка CD 70 см.

Задача 4. В магазин привезли арбузы. До обеда магазин продал , после обеда - привезённых арбузов, и осталось продать 80 арбузов. Сколько всего арбузов привезли в магазин?

Решение: сначала узнаем, какую часть от привезённых арбузов составляет число 80. Для этого примем за единицу общее количество привезённых арбузов и вычтем из неё то количество арбузов, которое получилось реализовать (продать):

И так, мы узнали, что 80 арбузов составляет от общего количества привезённых арбузов. Теперь узнаем сколько арбузов от общего количества составляет , а затем сколько арбузов составляют (количество привезённых арбузов):

2) 80: 4 · 15 = 300 (арбузов)

Ответ: всего в магазин привезли 300 арбузов.

Действия с дробями. В этой статье разберём примеры, всё подробно с пояснениями. Рассматривать будем обыкновенные дроби. В дальнейшем разберём и десятичные. Рекомендую посмотреть весь и изучать последовательно.

1. Сумма дробей, разность дробей.

Правило: при сложении дробей с равными знаменателями, в результате получаем дробь – знаменатель которой остаётся тот же, а числитель её будет равен сумме числителей дробей.

Правило: при вычислении разности дробей с одинаковыми знаменателями получаем дробь – знаменатель остаётся тот же, а из числителя первой дроби вычитается числитель второй.

Формальная запись суммы и разности дробей с равными знаменателями:


Примеры (1):


Понятно, что когда даны обыкновенные дроби, то всё просто, а если смешанные? Ничего сложного…

Вариант 1 – можно перевести их в обыкновенные и далее вычислять.

Вариант 2 – можно отдельно «работать» с целой и дробной частью.

Примеры (2):


Ещё:

А если будет дана разность двух смешанных дробей и числитель первой дроби будет меньше числителя второй? Тоже можно действовать двумя способами.

Примеры (3):

*Перевели в обыкновенные дроби, вычислили разность, перевели полученную неправильную дробь в смешанную.


*Разбили на целые и дробные части, получили тройку, далее представили 3 как сумму 2 и 1, при чём единицу представили как 11/11, далее нашли разность 11/11 и 7/11 и вычислили результат. Смысл изложенных преобразований заключается в том, чтобы взять (выделить) единицу и представить её в виде дроби с нужным нам знаменателем, далее от этой дроби мы уже можем вычесть другую.

Ещё пример:


Вывод: имеется универсальный подход – для того, чтобы вычислить сумму (разность) смешанных дробей с равными знаменателями их всегда можно перевести в неправильные, далее выполнить необходимое действие. После этого если в результате получаем неправильную дробь переводим её в смешанную.

Выше мы рассмотрели примеры с дробями, у которых равные знаменатели. А если знаменатели будут отличаться? В этом случае дроби приводятся к одному знаменателю и выполняется указанное действие. Для изменения (преобразования) дроби используется основное свойство дроби.

Рассмотрим простые примеры:


В данных примерах мы сразу видим каким образом можно преобразовать одну из дробей, чтобы получить равные знаменатели.

Если обозначить способы приведения дробей к одному знаменателю, то этот назовём СПОСОБ ПЕРВЫЙ .

То есть, сразу при «оценке» дроби нужно прикинуть сработает ли такой подход – проверяем делится ли больший знаменатель на меньший. И если делится, то выполняем преобразование — домножаем числитель и знаменатель так чтобы у обеих дробей знаменатели стали равными.

Теперь посмотрите на эти примеры:

К ним указанный подход не применим. Существуют ещё способы приведения дробей к общему знаменателю, рассмотрим их.

Способ ВТОРОЙ .

Умножаем числитель и знаменатель первой дроби на знаменатель второй, а числитель и знаменатель второй дроби на знаменатель первой:

*Фактически мы приводим дроби к виду, когда знаменатели становятся равными. Далее используем правило сложения робей с равными знаменателями.

Пример:

*Данный способ можно назвать универсальным, и он работает всегда. Единственный минус в том, что после вычислений может получится дробь которую необходимо будет ещё сократить.

Рассмотрим пример:

Видно что числитель и знаменатель делится на 5:

Способ ТРЕТИЙ.

Необходимо найти наименьшее общее кратное (НОК) знаменателей. Это и будет общий знаменатель. Что это за число такое? Это наименьшее натуральное число, которое делится на каждое из чисел.

Посмотрите, вот два числа: 3 и 4, есть множество чисел, которые делятся на них – это 12, 24, 36, … Наименьшее из них 12. Или 6 и 15, на них делятся 30, 60, 90 …. Наименьшее 30. Вопрос – а как определить это самое наименьшее общее кратное?

Имеется чёткий алгоритм, но часто это можно сделать и сразу без вычислений. Например, по указанным выше примерам (3 и 4, 6 и 15) никакого алгоритма не надо, мы взяли большие числа (4 и 15) увеличили их в два раза и увидели, что они делятся на второе число, но пары чисел могут быть и другими, например 51 и 119.

Алгоритм. Для того, чтобы определить наименьшее общее кратное нескольких чисел, необходимо:

— разложить каждое из чисел на ПРОСТЫЕ множители

— выписать разложение БОЛЬШЕГО из них

— умножить его на НЕДОСТАЮЩИЕ множители других чисел

Рассмотрим примеры:

50 и 60 => 50 = 2∙5∙5 60 = 2∙2∙3∙5

в разложении большего числа не хватает одной пятёрки

=> НОК(50,60) = 2∙2∙3∙5∙5 = 300

48 и 72 => 48 = 2∙2∙2∙2∙3 72 = 2∙2∙2∙3∙3

в разложении большего числа не хватает двойки и тройки

=> НОК(48,72) = 2∙2∙2∙2∙3∙3 = 144

* Наименьшее общее кратное двух простых чисел равно их произведению

Вопрос! А чем полезно нахождение наименьшего общего кратного, ведь можно пользоваться вторым способом и полученную дробь просто сократить? Да, можно, но это не всегда удобно. Посмотрите, какой получится знаменатель для чисел 48 и 72, если их просто перемножить 48∙72 = 3456. Согласитесь, что приятнее работать с меньшими числами.

Рассмотрим примеры:

*51 = 3∙17 119 = 7∙17

в разложении большего числа не хватает тройки

=> НОК(51,119) = 3∙7∙17

А теперь применим первый способ:

*Посмотрите какая разница в вычислениях, в первом случае их минимум, а во втором нужно потрудиться отдельно на листочке, да ещё и дробь которую получили сократить необходимо. Нахождение НОК упрощает работу значительно.

Ещё примеры:


*Во втором примере и так видно, что наименьшее число, которое делится на 40 и 60 равно 120.

ИТОГ! ОБЩИЙ АЛГОРИТМ ВЫЧИСЛЕНИЙ!

— приводим дроби к обыкновенным, если есть целая часть.

— приводим дроби к общему знаменателю (сначала смотрим делится ли один знаменатель на другой, если делится то умножаем числитель и знаменатель этой другой дроби; если не делится действуем посредством других указанных выше способов).

— получив дроби с равными знаменателями, выполняем действия (сложение, вычитание).

— если необходимо, то результат сокращаем.

— если необходимо, то выделяем целую часть.

2. Произведение дробей.

Правило простое. При умножении дробей умножаются их числители и знаменатели:

Примеры:

С дробями ученики знакомятся еще в 5 классе. Раньше людей, которые умели производить действия с дробями, считали очень умными. Первой дробью была 1/2, то есть половина, дальше появились 1/3 и т.д. Несколько веков примеры считались слишком сложными. Сейчас же разработаны подробные правила по преобразованию дробей, сложению, умножению и другим действиям. Достаточно немного разобраться в материале, и решение будет даваться легко.

Обыкновенная дробь, которую называют простой дробью, записывается как деление двух чисел: m и n.

M - это делимое, то есть числитель дроби, а делитель n называют знаменателем.

Выделяют правильные дроби (m < n) а также неправильные (m > n).

Правильная дробь меньше единицы (к примеру 5/6 — это значит, что от единицы взято 5 частей; 2/8 — от единицы взято 2 части). Неправильная дробь равна или больше 1 (8/7 — единицей будет 7/7 и плюсом взята еще одна часть).

Так, единица, это когда числитель и знаменатель совпали (3/3, 12/12, 100/100 и другие).

Действия с обыкновенными дробями 6 класс

С простыми дробями можно производить следующие действия:

  • Расширять дробь. Если умножить верхнюю и нижнюю часть дроби на какое-либо одинаковое число (только не на ноль), то значение дроби не поменяется (3/5 = 6/10 (просто умножили на 2).
  • Сокращение дробей — схоже расширению, но тут делят на какое-либо число.
  • Сравнивать. Если у двух дробей числители одинаковыми, то большей окажется дробь с меньшим знаменателем. Если одинаковые знаменатели, то больше будет дробь с наибольшим числителем.
  • Выполнять сложение и вычитание. При одинаковых знаменателях это сделать просто (суммируем верхние части, а нижняя не меняется). При разных придется найти общий знаменатель и дополнительные множители.
  • Умножить и разделить дроби.

Примеры действий с дробями рассмотрим ниже.

Сокращенные дроби 6 класс

Сократить — значит поделить верхнюю и нижнюю часть дроби на какое-либо одинаковое число.

На рисунке представлены просты примеры сокращения. В первом варианте можно сразу догадаться, что числитель и знаменатель делятся на 2.

На заметку! Если число четное, то оно по-любому делится на 2. Четные числа — это 2, 4, 6…328 (заканчивается на четное) и т. д.

Во втором случае при делении 6 на 18 сразу видно, что числа делятся на 2. Разделив, получаем 3/9. Эта дробь делится еще на 3. Тогда в ответе получается 1/3. Если перемножить оба делителя: 2 на 3, то выйдет 6. Получается, что дробь была разделена на шестерку. Такое постепенное деление называется последовательным сокращением дроби на общие делители.

Кто-то сразу поделит на 6, кому-то понадобится деление частями. Главное, чтобы в конце осталась дробь, которую уже никак не сократить.

Отметим, что если число состоит из цифр, при сложении которых получится число, делящееся на 3, то и первоначальное также можно сократить на 3. Пример: число 341. Складываем цифры: 3 + 4 + 1 = 8 (8 на 3 не делится, значит, число 341 нельзя сократить на 3 без остатка). Другой пример: 264. Складываем: 2 + 6 + 4 = 12 (делится на 3). Получаем: 264: 3 = 88. Это упростит сокращение больших чисел.

Помимо метода последовательного сокращения дроби на общие делители есть и другие способы.

НОД — это самый большой делитель для числа. Найдя НОД для знаменателя и числителя, можно сразу сократить дробь на нужное число. Поиск осуществляется путем постепенного деления каждого числа. Далее смотрят, какие делители совпадают, если их несколько (как на картинке ниже), то нужно перемножить.

Смешанные дроби 6 класс

Все неправильные дроби можно превратить в смешанные, выделив в них целую часть. Целое число пишется слева.

Часто приходится из неправильной дроби делать смешанное число. Процесс преобразования на примере ниже: 22/4 = 22 делим на 4, получаем 5 целых (5 * 4 = 20). 22 — 20 = 2. Получаем 5 целых и 2/4 (знаменатель не меняется). Поскольку дробь можно сократить, то делим верхнюю и нижнюю часть на 2.

Смешанное число легко превратить в неправильную дробь (это необходимо при делении и умножении дробей). Для этого: целое число умножим на нижнюю часть дроби и прибавим к этому числитель. Готово. Знаменатель не меняется.

Вычисления с дробями 6 класс

Смешанные числа можно складывать. Если знаменатели одинаковые, то сделать это просто: складываем целые части и числители, знаменатель остается на месте.

При сложении чисел с разными знаменателями процесс сложнее. Сначала приводим числа к одному самому маленькому знаменателю (НОЗ).

В примере ниже для чисел 9 и 6 знаменателем будет 18. После этого нужны дополнительные множители. Чтобы их найти, следует 18 разделить на 9, так находится дополнительное число — 2. Его умножаем на числитель 4 получилась дробь 8/18). То же самое делают и со второй дробью. Преобразованные дроби уже складываем (целые числа и числители отдельно, знаменатель не меняем). В примере ответ пришлось преобразовать в правильную дробь (изначально числитель оказался больше знаменателя).

Обратите внимание, что при разности дробей алгоритм действий такой же.

При умножении дробей важно поместить обе под одну черту. Если число смешанное, то превращаем его в простую дробь. Далее умножаем верхнюю и нижнюю части и записываем ответ. Если видно, что дроби можно сократить, то сокращаем сразу.

В указанном примере сокращать ничего не пришлось, просто записали ответ и выделили целую часть.

В этом примере пришлось сократить числа под одной чертой. Хотя сокращать можно и готовый ответ.

При делении алгоритм почти такой же. Сначала превращаем смешанную дробь в неправильную, затем записываем числа под одной чертой, заменив деление умножением. Не забываем верхнюю и нижнюю часть второй дроби поменять местами (это правило деления дробей).

При необходимости сокращаем числа (в примере ниже сократили на пятерку и двойку). Неправильную дробь преобразуем, выделив целую часть.

Основные задачи на дроби 6 класс

На видео показано еще несколько задач. Для наглядности использованы графические изображения решений, которые помогут наглядно представить дроби.

Примеры умножения дроби 6 класс с пояснениями

Перемножающиеся дроби записываются под одной линией. После этого их сокращают путем деления на одни и те же числа (например, 15 в знаменателе и 5 в числителе можно разделить на пятерку).

Сравнение дробей 6 класс

Чтобы сравнить дроби, нужно запомнить два простых правила.

Правило 1. Если знаменатели разные

Правило 2. Когда знаменатели одинаковые

Например, сравним дроби 7/12 и 2/3.

  1. Смотрим на знаменатели, они не совпадают. Значит нужно найти общий.
  2. Для дробей общим знаменателем будет 12.
  3. Делим 12 сначала на нижнюю часть первой дроби: 12: 12 = 1 (это доп. множитель для 1-й дроби).
  4. Теперь 12 делим на 3, получаем 4 — доп. множитель 2-й дроби.
  5. Умножаем полученные цифры на числители, чтобы преобразовать дроби: 1 х 7 = 7 (первая дробь: 7/12); 4 х 2 = 8 (вторая дробь: 8/12).
  6. Теперь можем сравнивать: 7/12 и 8/12. Получилось: 7/12 < 8/12.

Чтобы представлять дроби лучше, можно для наглядности использовать рисунки, где предмет делится на части (к примеру, торт). Если требуется сравнить 4/7 и 2/3, то в первом случае торт делят на 7 частей и выбирают 4 из них. Во втором — делят на 3 части и берут 2. Невооруженным взглядом будет понятно, что 2/3 будет больше 4/7.

Примеры с дробями 6 класс для тренировки

В качестве тренировки можно выполнить следующие задания.

  • Сравнить дроби

  • выполнить умножение

Совет: если сложно найти наименьший общий знаменатель у дробей (особенно, если значения их небольшие), то можно перемножить знаменатель первой и второй дроби. Пример: 2/8 и 5/9. Найти их знаменатель просто: 8 умножаем на 9, получится 72.

Решение уравнений с дробями 6 класс

В решении уравнений требуется вспомнить действия с дробями: умножение, деление, вычитание и сложение. Если неизвестен один из множителей, то произведение (итог) делится на известный множитель, то есть дроби перемножаются (вторая переворачивается).

Если неизвестно делимое, то знаменатель умножается на делитель, а для поиска делителя нужно делимое разделить на частное.

Представим простые примеры решения уравнений:

Здесь требуется лишь произвести разность дробей, не приводя к общему знаменателю.

  • Деление на 1/2 заменили умножением на 2 (перевернули дробь).
  • Складывая 1/2 и 3/4, пришли к общему знаменателю 4. При этом для первой дроби понадобился дополнительный множитель 2, из 1/2 вышло 2/4.
  • Сложили 2/4 и 3/4 — получили 5/4.
  • Не забыли про умножение 5/4 на 2. Путем сокращения 2 и 4 получили 5/2.
  • Ответ получился в виде неправильной дроби. Ее можно преобразовать в 1 целую и 3/5.

    Во втором способе числитель и знаменатель умножили на 4, чтобы сократить нижнюю часть, а не переворачивать знаменатель.

    Теперь, когда мы научились складывать и умножать отдельные дроби, можно рассматривать более сложные конструкции. Например, что, если в одной задаче встречается и сложение, и вычитание, и умножение дробей?

    В первую очередь, надо перевести все дроби в неправильные. Затем последовательно выполняем требуемые действия - в том же порядке, как и для обычных чисел. А именно:

    1. Сначала выполняется возведение в степень - избавьтесь от всех выражений, содержащих показатели;
    2. Затем - деление и умножение;
    3. Последним шагом выполняется сложение и вычитание.

    Разумеется, если в выражении присутствуют скобки, порядок действий изменяется - все, что стоит внутри скобок, надо считать в первую очередь. И помните о неправильных дробях: выделять целую часть надо лишь тогда, когда все остальные действия уже выполнены.

    Переведем все дроби из первого выражения в неправильные, а затем выполним действия:


    Теперь найдем значение второго выражения. Тут дробей с целой частью нет, но есть скобки, поэтому сначала выполняем сложение, и лишь затем - деление. Заметим, что 14 = 7 · 2 . Тогда:

    Наконец, считаем третий пример. Здесь есть скобки и степень - их лучше считать отдельно. Учитывая, что 9 = 3 · 3 , имеем:

    Обратите внимание на последний пример. Чтобы возвести дробь в степень, надо отдельно возвести в эту степень числитель, и отдельно - знаменатель.

    Можно решать по-другому. Если вспомнить определение степени, задача сведется к обычному умножению дробей:

    Многоэтажные дроби

    До сих пор мы рассматривали лишь «чистые» дроби, когда числитель и знаменатель представляют собой обыкновенные числа. Это вполне соответствует определению числовой дроби, данному в самом первом уроке.

    Но что, если в числителе или знаменателе разместить более сложный объект? Например, другую числовую дробь? Такие конструкции возникают довольно часто, особенно при работе с длинными выражениями. Вот пара примеров:

    Правило работы с многоэтажными дробями всего одно: от них надо немедленно избавляться. Удалить «лишние» этажи довольно просто, если вспомнить, что дробная черта означает стандартную операцию деления. Поэтому любую дробь можно переписать следующим образом:

    Пользуясь этим фактом и соблюдая порядок действий, мы легко сведем любую многоэтажную дробь к обычной. Взгляните на примеры:

    Задача. Переведите многоэтажные дроби в обычные:

    В каждом случае перепишем основную дробь, заменив разделительную черту знаком деления. Также вспомним, что любое целое число представимо в виде дроби со знаменателем 1. Т.е. 12 = 12/1; 3 = 3/1. Получаем:

    В последнем примере перед окончательным умножением дроби были сокращены.

    Специфика работы с многоэтажными дробями

    В многоэтажных дробях есть одна тонкость, которую всегда надо помнить, иначе можно получить неверный ответ, даже если все вычисления были правильными. Взгляните:

    1. В числителе стоит отдельное число 7, а в знаменателе - дробь 12/5;
    2. В числителе стоит дробь 7/12, а в знаменателе - отдельное число 5.

    Итак, для одной записи получили две совершенно разных интерпретации. Если подсчитать, ответы тоже будут разными:

    Чтобы запись всегда читалась однозначно, используйте простое правило: разделяющая черта основной дроби должна быть длиннее, чем черта вложенной. Желательно - в несколько раз.

    Если следовать этому правилу, то приведенные выше дроби надо записать так:

    Да, возможно, это некрасиво и занимает слишком много места. Зато вы будете считать правильно. Напоследок - пара примеров, где действительно возникают многоэтажные дроби:

    Задача. Найдите значения выражений:

    Итак, работаем с первым примером. Переведем все дроби в неправильные, а затем выполним операции сложения и деления:

    Аналогично поступим со вторым примером. Переведем все дроби в неправильные и выполним требуемые операции. Чтобы не утомлять читателя, я опущу некоторые очевидные выкладки. Имеем:


    Благодаря тому, что в числителе и знаменателе основных дробей стоят суммы, правило записи многоэтажных дробей соблюдается автоматически. Кроме того, в последнем примере мы намеренно оставили число 46/1 в форме дроби, чтобы выполнить деление.

    Также отмечу, что в обоих примерах дробная черта фактически заменяет скобки: первым делом мы находили сумму, и лишь затем - частное.

    Кто-то скажет, что переход к неправильным дробям во втором примере был явно избыточным. Возможно, так оно и есть. Но этим мы страхуем себя от ошибок, ведь в следующий раз пример может оказаться намного сложнее. Выбирайте сами, что важнее: скорость или надежность.

    Умножение и деление дробей.

    Внимание!
    К этой теме имеются дополнительные
    материалы в Особом разделе 555.
    Для тех, кто сильно "не очень..."
    И для тех, кто "очень даже...")

    Эта операция гораздо приятнее сложения-вычитания ! Потому что проще. Напоминаю: чтобы умножить дробь на дробь, нужно перемножить числители (это будет числитель результата) и знаменатели (это будет знаменатель). То есть:

    Например:

    Всё предельно просто . И, пожалуйста, не ищите общий знаменатель! Не надо его здесь…

    Чтобы разделить дробь на дробь, нужно перевернуть вторую (это важно!) дробь и их перемножить, т.е.:

    Например:

    Если попалось умножение или деление с целыми числами и дробями - ничего страшного. Как и при сложении, делаем из целого числа дробь с единицей в знаменателе - и вперёд! Например:

    В старших классах часто приходится иметь дело с трехэтажными (а то и четырехэтажными!) дробями. Например:

    Как эту дробь привести к приличному виду? Да очень просто! Использовать деление через две точки:

    Но не забывайте о порядке деления! В отличие от умножения, здесь это очень важно! Конечно, 4:2, или 2:4 мы не спутаем. А вот в трёхэтажной дроби легко ошибиться. Обратите внимание, например:

    В первом случае (выражение слева):

    Во втором (выражение справа):

    Чувствуете разницу? 4 и 1/9!

    А чем задается порядок деления? Или скобками, или (как здесь) длиной горизонтальных черточек. Развивайте глазомер. А если нет ни скобок, ни черточек, типа:

    то делим-умножаем по порядочку, слева направо !

    И еще очень простой и важный приём. В действиях со степенями он вам ох как пригодится! Поделим единицу на любую дробь, например, на 13/15:

    Дробь перевернулась! И так бывает всегда. При делении 1 на любую дробь, в результате получаем ту же дробь, только перевернутую.

    Вот и все действия с дробями. Вещь достаточно простая, но ошибок даёт более, чем достаточно. Примите к сведению практические советы, и их (ошибок) будет меньше!

    Практические советы:

    1. Самое главное при работе с дробными выражениями - аккуратность и внимательность! Это не общие слова, не благие пожелания! Это суровая необходимость! Все вычисления на ЕГЭ делайте как полноценное задание, сосредоточенно и чётко. Лучше написать две лишние строчки в черновике, чем накосячить при расчёте в уме.

    2. В примерах с разными видами дробей - переходим к обыкновенным дробям.

    3. Все дроби сокращаем до упора.

    4. Многоэтажные дробные выражения сводим к обыкновенным, используя деление через две точки (следим за порядком деления!).

    5. Единицу на дробь делим в уме, просто переворачивая дробь.

    Вот вам задания, которые нужно обязательно прорешать. Ответы даны после всех заданий. Используйте материалы этой темы и практические советы. Прикиньте, сколько примеров вы смогли решить правильно. С первого раза! Без калькулятора! И сделайте верные выводы...

    Помните – правильный ответ, полученный со второго (тем более – третьего) раза – не считается! Такова суровая жизнь.

    Итак, решаем в режиме экзамена ! Это уже подготовка к ЕГЭ, между прочим. Решаем пример, проверяем, решаем следующий. Решили все - проверили снова с первого по последний. И только потом смотрим ответы.

    Вычислить:

    Порешали?

    Ищем ответы, которые совпадают с вашими. Я специально их в беспорядке записал, подальше от соблазна, так сказать... Вот они, ответы, через точку с запятой записаны.

    0; 17/22; 3/4; 2/5; 1; 25.

    А теперь делаем выводы. Если всё получилось - рад за вас! Элементарные вычисления с дробями - не ваша проблема! Можно заняться более серьёзными вещами. Если нет...

    Значит, у вас одна из двух проблем. Или обе сразу.) Нехватка знаний и (или) невнимательность. Но... Это решаемые проблемы.

    Если Вам нравится этот сайт...

    Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

    Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

    можно познакомиться с функциями и производными.

    ← Вернуться

    ×
    Вступай в сообщество «sinkovskoe.ru»!
    ВКонтакте:
    Я уже подписан на сообщество «sinkovskoe.ru»