Что такое диффузия в физике. Диффузия

Подписаться
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:

Вследствие ничтожно малых размеров молекул, их содержание в веществе составляет огромное количество. Движение молекул любого вещества носит непрерывный и беспорядочный характер. Сталкиваясь с молекулами газов, входящих в состав воздуха молекулы вещества много раз меняют направление своего движения. И беспорядочно перемещаясь, разлетаются по всей комнате. Происходит самопроизвольное перемешивание веществ. Это процесс диффузии. Явление, при котором происходит взаимное проникновение молекул одного вещества между молекулами другого, называется .Диффузия может происходить в любых веществах: и в газах, и в жидкостях и в твердых телах. Наиболее быстро этот процесс произойдет в газах, потому что расстояние между молекулами достаточно большие, а силы притяжения между ними . В жидкостях диффузия произойдет медленнее, чем в газах. Это объясняется тем, что молекулы расположены гуще, и поэтому « » через них достаточно труднее. Медленнее всего диффузия протекает в твердых телах, объяснимо это плотным расположением молекул. Если гладко отшлифованные пластины и золота положить друг на друга и грузом, то через пять лет можно наблюдать диффузию глубиной в один миллиметр.Явление диффузии ускоряется с повышением температуры. Это происходит потому, что при повышении температуры вещества, его молекулы движутся быстрее. И взаимное перемешивание произойдет быстрее. Поэтому сахар растворяется быстрее горячем чае, нежели в холодном.Диффузия играет большую роль . Так, например, диффузия растворов различных солей в почве способствует нормальному питанию растений. Для человека данное явление жизненно важно, например, благодаря диффузии кислород из легких проникает в кровь человека, а из крови – в ткани.

Видео по теме

Источники:

  • диффузия печени

Диффузия (от лат. diffusio – распространение, рассеивание, растекание) – это явление, при котором наблюдается взаимное проникновение молекул разных веществ между собой, т.е. молекулы одного вещества проникают между молекулами другого, и наоборот.

Диффузия в повседневной жизни

Явление диффузии часто можно наблюдать в повседневной жизни человека. Так, если внести в комнату источник какого-либо запаха – например, кофе или духи – этот запах вскоре распространится по всему помещению. Рассеивание пахучих веществ происходит из-за постоянного движения молекул. На своем пути они сталкиваются с молекулами газов, входящих в состав воздуха, меняют направление и, беспорядочно перемещаясь, разлетаются по всей комнате. Такое распространение запаха – доказательство хаотичного и непрерывного движения молекул.

Как доказать, что тела состоят из непрерывно движущихся молекул

Для доказательства того, что все тела состоят из молекул, находящихся в постоянном движении, можно проделать следующий физический опыт.

Налейте в скатан или мензурку темно-голубой раствор медного купороса. Сверху осторожно прилейте чистую воду. Вначале между жидкостями будет видна резкая граница, но через несколько дней она станет размытой. Через пару недель граница, воду от раствора медного купороса, исчезнет совсем, и в сосуде образуется однородная жидкость бледно-голубого оттенка. Это скажет вам о том, что жидкости перемешались.

Чтобы объяснить наблюдаемое явление, можно предположить, что молекулы медного купороса и воды, расположенные возле поверхности раздела, меняются местами. Граница между жидкостями становится расплывчатой, поскольку молекулы медного купороса перемещаются в нижний слой воды, а молекулы воды – в верхний слой синего раствора. Постепенно молекулы всех этих веществ путем беспорядочного и непрерывного движения распространяются по всему объему, делая жидкость однородной. Это явление и названо

Диффузия

Примером диффузии может служить перемешивание газов (например, распространение запахов) или жидкостей (если в воду капнуть чернил, то жидкость через некоторое время станет равномерно окрашенной). Другой пример связан с твёрдым телом: атомы соприкасающихся металлов перемешиваются на границе соприкосновения. Важную роль диффузия частиц играет в физике плазмы .

Обычно под диффузией понимают процессы, сопровождающиеся переносом материи , однако иногда диффузионными называют также другие процессы переноса: теплопроводность , вязкое трение и т. п.

Скорость протекания диффузии зависит от многих факторов. Так, в случае металлического стержня тепловая диффузия проходит очень быстро. Если же стержень изготовлен из синтетического материала, тепловая диффузия протекает медленно. Диффузия молекул в общем случае протекает ещё медленнее. Например, если кусочек сахара опустить на дно стакана с водой и воду не перемешивать, то пройдёт несколько недель, прежде чем раствор станет однородным. Ещё медленнее происходит диффузия одного твёрдого вещества в другое. Например, если медь покрыть золотом , то будет происходить диффузия золота в медь, но при нормальных условиях (комнатная температура и атмосферное давление) золотосодержащий слой достигнет толщины в несколько микронов только через несколько тысяч лет.

Количественно описание процессов диффузии было дано немецким физиологом А. Фиком (англ. ) в 1855 г.

Общее описание

Все виды диффузии подчиняются одинаковым законам. Скорость диффузии пропорциональна площади поперечного сечения образца, а также разности концентраций , температур или зарядов (в случае относительно небольших величин этих параметров). Так, тепло будет в четыре раза быстрее распространяться через стержень диаметром в два сантиметра, чем через стержень диаметром в один сантиметр. Это тепло будет распространяться быстрее, если перепад температур на одном сантиметре будет 10 °C вместо 5 °C. Скорость диффузии пропорциональна также параметру, характеризующему конкретный материал. В случае тепловой диффузии этот параметр называется теплопроводность , в случае потока электрических зарядов - электропроводность . Количество вещества, которое диффундирует в течение определённого времени, и расстояние, проходимое диффундирующим веществом, пропорциональны квадратному корню времени диффузии.

Диффузия представляет собой процесс на молекулярном уровне и определяется случайным характером движения отдельных молекул. Скорость диффузии в связи с этим пропорциональна средней скорости молекул. В случае газов средняя скорость малых молекул больше, а именно она обратно пропорциональна квадратному корню из массы молекулы и растёт с повышением температуры. Диффузионные процессы в твёрдых телах при высоких температурах часто находят практическое применение. Например, в определённых типах электронно-лучевых трубок (ЭЛТ) применяется металлический торий , продиффундировавший через металлический вольфрам при 2000 °C.

Если в смеси газов масса одной молекулы в четыре раза больше другой, то такая молекула передвигается в два раза медленнее по сравнению с её движением в чистом газе. Соответственно, скорость диффузии её также ниже. Эта разница в скорости диффузии лёгких и тяжёлых молекул применяется, чтобы разделять субстанции с различными молекулярными весами. В качестве примера можно привести разделение изотопов . Если газ, содержащий два изотопа, пропускать через пористую мембрану, более лёгкие изотопы проникают через мембрану быстрее, чем тяжёлые. Для лучшего разделения процесс производится в несколько этапов. Этот процесс широко применялся для разделения изотопов урана (отделение 235 U от основной массы 238 U). Поскольку такой способ разделения требует больших энергетических затрат, были развиты другие, более экономичные способы разделения. Например, широко развито применение термодиффузии в газовой среде. Газ, содержащий смесь изотопов, помещается в камеру, в которой поддерживается пространственный перепад (градиент) температур. При этом тяжёлые изотопы со временем концентрируются в холодной области.

Уравнения Фика

С точки зрения термодинамики движущим потенциалом любого выравнивающего процесса является рост энтропии . При постоянных давлении и температуре в роли такого потенциала выступает химический потенциал µ , обуславливающий поддержание потоков вещества. Поток частиц вещества пропорционален при этом градиенту потенциала

~

В большинстве практических случаев вместо химического потенциала применяется концентрация C . Прямая замена µ на C становится некорректной в случае больших концентраций, так как химический потенциал перестаёт быть связан с концентрацией по логарифмическому закону. Если не рассматривать такие случаи, то вышеприведённую формулу можно заменить на следующую:

которая показывает, что плотность потока вещества J пропорциональна коэффициенту диффузии D [()] и градиенту концентрации. Это уравнение выражает первый закон Фика. Второй закон Фика связывает пространственное и временное изменения концентрации (уравнение диффузии):

Коэффициент диффузии D зависит от температуры. В ряде случаев в широком интервале температур эта зависимость представляет собой уравнение Аррениуса .

Дополнительное поле, наложенное параллельно градиенту химического потенциала, нарушает стационарное состояние. В этом случае диффузионные процессы описываются нелинейным уравнением Фоккера-Планка . Процессы диффузии имеют большое значение в природе:

  • Питание, дыхание животных и растений;
  • Проникновение кислорода из крови в ткани человека.

Геометрическое описание уравнения Фика

Во втором уравнении Фика в левой части стоит скорость изменения концентрации во времени, а в правой части уравнения - вторая частная производная, которая выражает пространственное распределение концентрации, в частности, выпуклость функции распределения температур, проецируемую на ось х.

См. также

  • Поверхностная диффузия - процесс, связанный с перемещением частиц, происходящий на поверхности конденсированного тела в пределах первого поверхностного слоя атомов (молекул) или поверх этого слоя.

Примечания

Литература

  • Бокштейн Б. С. Атомы блуждают по кристаллу. - М .: Наука, 1984. - 208 с. - (Библиотечка «Квант» . Вып. 28). - 150 000 экз.

Ссылки

  • Диффузия (видеоурок, программа 7 класса)
  • Диффузия примесных атомов на поверхности монокристалла

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Диффузия" в других словарях:

    - [лат. diffusio распространение, растекание] физ., хим. проникновение молекул одного вещества (газа, жидкости, твердого тела) в другое при их непосредственном соприкосновении или через пористую перегородку. Словарь иностранных слов. Комлев Н.Г.,… … Словарь иностранных слов русского языка

    Диффузия - – проникновение в среду частиц одного вещества частиц другого вещества, происхо дящее вследствие теплового движения в направлении уменьшения концентрации другого вещества. [Блюм Э. Э. Словарь основных металловедческих терминов. Екатеринбург … Энциклопедия терминов, определений и пояснений строительных материалов

    Современная энциклопедия

    - (от лат. diffusio распространение растекание, рассеивание), движение частиц среды, приводящее к переносу вещества и выравниванию концентраций или к установлению равновесного распределения концентраций частиц данного сорта в среде. В отсутствие… … Большой Энциклопедический словарь

    ДИФФУЗИЯ, перемещение вещества в смеси из область с высокой концентрацией в области с низкой концентрацией, вызванное случайным перемещением отдельных атомов или молекул. Диффузия прекращается, когда исчезает градиент концентрации. Скорость… … Научно-технический энциклопедический словарь

    диффузия - и, ж. diffusion f., нем. Diffusion <лат. diffusio растекание, распространение. Взаимное проникновение соприкасающихся веществ друг в друга вследствие теплового движения молекул и атомов. Диффузия газов, жидкостей. БАС 2. || перен. Они… … Исторический словарь галлицизмов русского языка

    Диффузия - (от латинского diffusio распространение, растекание, рассеивание), движение частиц среды, приводящее к переносу вещества и выравниванию концентраций или установлению их равновесного распределения. Обычно диффузия определяется тепловым движением… … Иллюстрированный энциклопедический словарь

    Перемещение частиц в направлении убывания их концентрации, обусловленное тепловым движением. Д. приводит к выравниванию концентраций диффундирующего вещества и равномерному заполнению частицами объема.… … Геологическая энциклопедия

    - (от лат. diffusio распространение, растекание), взаимное проникновение соприкасающихся в в друг в друга вследствие теплового движения ч ц в ва. Д. происходит в направлении уменьшения концентрации в ва и ведёт к его равномерному распределению по… … Физическая энциклопедия

    Растекание, проникновение, рассеивание, распространение Словарь русских синонимов. диффузия сущ., кол во синонимов: 9 бародиффузия (1) … Словарь синонимов

    ДИФФУЗИЯ, и, жен. (спец.). Взаимное проникновение частиц одного вещества в другое при их соприкосновении. Д. газов. | прил. диффузионный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

Введение

Человек живет в тесной связи с природной средой. Он воздействует на нее, изменяя и приспосабливая к своим потребностям, создавая в своей практической деятельности как бы «вторую» природу, микросреду. И естественно, используя чисто утилитарные предметы материальной культуры, достижения науки и техники, человек испытывает к ним определенное отношение. И это отношение к различным физическим явлениям, происходящим вокруг человека, в мире.

Физическое понимание процессов, происходящих в природе, постоянно развивается. Большинство новых открытий вскоре получают применение в технике и промышленности. Однако новые исследования постоянно поднимают новые загадки и обнаруживают явления, для объяснения которых требуются новые физические теории. Несмотря на огромный объём накопленных знаний, современная физика ещё очень далека от того, чтобы объяснить все явления природы.

В этой работе будет рассмотрено конкретное физическое явление - диффузия. Одно из самых значимых явлений в физике, имеющий так много в себе того, что мы встречаем повседневно и используем во свое благо.

В работе будут рассмотрены 4 вопроса касающихся диффузии:

  • история открытия;
  • описание как физического явления;
  • физический смысл данного явления;
  • практическое применение в жизни человека.

1. История открытия физического явления диффузия

При наблюдении в микроскопе взвеси цветочной пыльцы в воде Роберт Броун наблюдал хаотичное движение частиц, возникающее «не от движения жидкости и не от ее испарения». Видимые только под микроскопом взвешенные частицы размером 1 мкм и менее совершали неупорядоченные независимые движения, описывая сложные зигзагообразные траектории. Броуновское движение не ослабевает со временем и не зависит от химических свойств среды; его интенсивность увеличивается с ростом температуры среды и с уменьшением ее вязкости и размеров частиц. Даже качественно объяснить причины броуновского движения удалось только через 50 лет, когда причину броуновского движения стали связывать с ударами молекул жидкости о поверхность взвешенной в ней частицы.

Первая количественная теория броуновского движения была дана А. Эйнштейном и М. Смолуховским в 1905-06 гг. на основе молекулярно-кинетической теории. Было показано, что случайные блуждания броуновских частиц связаны с их участием в тепловом движении наравне с молекулами той среды, в которой они взвешены. Частицы обладают в среднем такой же кинетической энергией, но из-за большей массы имеют меньшую скорость. Теория броуновского движения объясняет случайные движения частицы действием случайных сил со стороны молекул и сил трения. Согласно этой теории, молекулы жидкости или газа находятся в постоянном тепловом движении, причем импульсы различных молекул не одинаковы по величине и направлению. Если поверхность частицы, помещенной в такую среду, мала, как это имеет место для броуновской частицы, то удары, испытываемые частицей со стороны окружающих ее молекул, не будут точно компенсироваться. Поэтому в результате «бомбардировки» молекулами броуновская частица приходит в беспорядочное движение, меняя величину и направление своей скорости примерно 1014 раз в сек. Из этой теории следовало, что, измерив смещение частицы за определенное время и зная ее радиус и вязкость жидкости можно вычислить число Авогадро.

Выводы теории броуновского движения были подтверждены измерениями Ж. Перрена и Т. Сведберга в 1906 г. На основе этих соотношений были экспериментально определены постоянная Больцмана и постоянная Авогадро. (Постоянная Авогадро обозначается NА, число молекул или атомов в 1 моле вещества, NА=6,022.1023 моль-1; название в честь А. Авогадро. Постоянная Больцмана, физическая постоянная k, равная отношению универсальной газовой постоянной R к числу Авогадро NA: k=R/NA= 1,3807.10-23 Дж/К. Названа по имени Л. Больцмана.)

При наблюдении броуновского движения фиксируется положение частицы через равные промежутки времени. Чем короче промежутки времени, тем более изломанной будет выглядеть траектория движения частицы.

Закономерности броуновского движения служат наглядным подтверждением фундаментальных положений молекулярно-кинетической теории. Было окончательно установлено, что тепловая форма движения материи обусловлена хаотическим движением атомов или молекул, из которых состоят макроскопические тела.

Теория броуновского движения сыграла важную роль в обосновании статистической механики, на ней основана кинетическая теория коагуляции (перемешивания) водных растворов. Помимо этого, она имеет и практическое значение в метрологии, так как броуновское движение рассматривают как основной фактор, ограничивающий точность измерительных приборов. Например, предел точности показаний зеркального гальванометра определяется дрожанием зеркальца, подобно броуновской частице бомбардируемого молекулами воздуха. Законами броуновского движения определяется случайное движение электронов, вызывающее шумы в электрических цепях. Диэлектрические потери в диэлектриках объясняются случайными движениями молекул-диполей, составляющих диэлектрик. Случайные движения ионов в растворах электролитов увеличивают их электрическое сопротивление.

Рисунок 1 - Траектории броуновских частиц (схема опыта Перрена); точками отмечены положения частиц через одинаковые промежутки времени

Таким образом, диффузия, или броуновское движение - это беспорядочное движение мельчайших частиц, взвешенных в жидкости или газе, происходящее под действием ударов молекул окружающей среды открытое Р. Броуном в 1827 г.

2. Описание физического явления диффузия

Диффузия (лат. diffusio - распространение, растекание, рассеивание, взаимодействие) - процесс взаимного проникновения молекул одного вещества между молекулами другого, приводящий к самопроизвольному выравниванию их концентраций по всему занимаемому объёму. В некоторых ситуациях одно из веществ уже имеет выравненную концентрацию и говорят о диффузии одного вещества в другом. При этом перенос вещества происходит из области с высокой концентрацией в область с низкой концентрацией (против градиента концентрации)

Примером диффузии может служить перемешивание газов (например, распространение запахов) или жидкостей (если в воду капнуть чернил, то жидкость через некоторое время станет равномерно окрашенной). Другой пример связан с твёрдым телом: атомы соприкасающихся металлов диффузия частиц играет в физике плазмы.

Обычно под диффузией понимают процессы, сопровождающиеся переносом материи, однако иногда диффузионными называют также другие процессы переноса: теплопроводность, вязкое трение и т.п.


Скорость протекания диффузии зависит от многих факторов. Так, в случае металлического стержня тепловая диффузия проходит очень быстро. Если же стержень изготовлен из синтетического материала, тепловая диффузия протекает медленно. Диффузия молекул в общем случае протекает ещё медленнее. Например, если кусочек сахара опустить на дно стакана с водой и воду не перемешивать, то пройдёт несколько недель, прежде чем раствор станет однородным. Ещё медленнее происходит диффузия одного твёрдого вещества в другое. Например, если медь покрыть золотом, то будет происходить диффузия золота в медь, но при нормальных условиях (комнатная температура и атмосферное давление) золотосодержащий слой достигнет толщины в несколько микронов только через несколько тысяч лет.

3. Физический смысл явления диффузия

Все виды диффузии подчиняются одинаковым законам. Скорость диффузии пропорциональна площади поперечного сечения образца, а также разности концентраций, температур или зарядов (в случае относительно небольших величин этих параметров). Так, тепло будет в четыре раза быстрее распространяться через стержень диаметром в два сантиметра, чем через стержень диаметром в один сантиметр. Это тепло будет распространяться быстрее, если перепад температур на одном сантиметре будет 10°C вместо 5°C. Скорость диффузии пропорциональна также параметру, характеризующему конкретный материал. В случае тепловой диффузии этот параметр называется теплопроводность, в случае потока электрических зарядов - электропроводность. Количество вещества, которое диффундирует в течение определённого времени, и расстояние, проходимое диффундирующим веществом, пропорциональны квадратному корню времени диффузии.

Диффузия представляет собой процесс на молекулярном уровне и определяется случайным характером движения отдельных молекул. Скорость диффузии в связи с этим пропорциональна средней скорости молекул. В случае газов средняя скорость малых молекул больше, а именно она обратно пропорциональна квадратному корню из массы молекулы и растёт с повышением температуры. Диффузионные процессы в твёрдых телах при высоких температурах часто находят практическое применение. Например, в определённых типах электронно-лучевых трубок (ЭЛТ) применяется металлический торий, продиффундировавший через металлический вольфрам при 2000°C.

Если в смеси газов масса одной молекулы в четыре раза больше другой, то такая молекула передвигается в два раза медленнее по сравнению с её движением в чистом газе. Соответственно, скорость диффузии её также ниже. Эта разница в скорости диффузии лёгких и тяжёлых молекул применяется, чтобы разделять субстанции с различными молекулярными весами. В качестве примера можно привести разделение изотопов. Если газ, содержащий два изотопа, пропускать через пористую мембрану, более лёгкие изотопы проникают через мембрану быстрее, чем тяжёлые. Для лучшего разделения процесс производится в несколько этапов. Этот процесс широко применялся для разделения изотопов урана (отделение 235U от основной массы 238U). Поскольку такой способ разделения требует больших энергетических затрат, были развиты другие, более экономичные способы разделения. Например, широко развито применение термодиффузии в газовой среде. Газ, содержащий смесь изотопов, помещается в камеру, в которой поддерживается пространственный перепад (градиент) температур. При этом тяжёлые изотопы со временем концентрируются в холодной области.

Уравнение Фика.

С точки зрения термодинамики движущим потенциалом любого выравнивающего процесса является рост энтропии. При постоянных давлении и температуре в роли такого потенциала выступает химический потенциал µ, обуславливающий поддержание потоков вещества. Поток частиц вещества пропорционален при этом градиенту потенциала:

~

В большинстве практических случаев вместо химического потенциала применяется концентрация C. Прямая замена µ на C становится некорректной в случае больших концентраций, так как химический потенциал связан с концентрацией по логарифмическому закону. Если не рассматривать такие случаи, то вышеприведённую формулу можно заменить на следующую:

которая показывает, что плотность потока вещества J [] пропорциональна коэффициенту диффузии D [()] и градиенту концентрации. Это уравнение выражает первый закон Фика (Адольф Фик - немецкий физиолог, установивший законы диффузии в 1855 г.). Второй закон Фика связывает пространственное и временное изменения концентрации (уравнение диффузии):

Коэффициент диффузии D зависит от температуры. В ряде случаев в широком интервале температур эта зависимость представляет собой уравнение Аррениуса.

Дополнительное поле, наложенное параллельно градиенту химического потенциала, нарушает стационарное состояние. В этом случае диффузионные процессы описываются нелинейным уравнением Фоккера-Планка. Процессы диффузии имеют большое значение в природе:

питание, дыхание животных и растений;

проникновение кислорода из крови в ткани человека.

Геометрическое описание уравнения Фика.

Во втором уравнении Фика в левой части стоит скорость изменения температуры во времени, а в правой части уравнения - вторая частная производная, которая выражает пространственное распределение температур, в частности, выпуклость функции распределения температур, проецируемую на ось х.

4. Практическое применение физического явления диффузия в жизни человека

диффузия броуновский мембрана авогадро

Для извлечения растворимых веществ из твердого измельченного материала применяют диффузионный аппарат. Такие аппараты распространены главным образом в свеклосахарном производстве, где их используют для получения сахарного сока из свекловичной стружки, нагреваемой вместе с водой.

Существенную роль в работе ядерных реакторов играет диффузия нейтронов, то есть распространение нейтронов в веществе, сопровождающееся многократным изменением направления и скорости их движения в результате столкновения с ядрами атомов. Диффузия нейтронов в среде аналогична диффузии атомов и молекул в газах и подчиняется тем же закономерностям.

В результате диффузии носителей в полупроводниках возникает электрический ток, Перемещение носителей заряда в полупроводниках обусловлено неоднородностью их концентрации. Для создания, например, полупроводникового диода в одну из поверхностей германия вплавляют индий. Вследствие диффузии атомов индия в глубь монокристалла германия в нем образовывается р-n - переход, по которому может идти значительный ток при минимальном сопротивлении.

На явлении диффузии основан процесс металлизации - покрытия поверхности изделия слоем металла или сплава для сообщения ей физических, химических и механических свойств, отличных от свойств металлизируемого материала. Применяется для защиты изделий от коррозии, износа, повышения контактной электрической проводимости, в декоративных целях, так, для повышения твердости и жаростойкости стальных деталей применяют цементацию. Она заключается в том, что стальные детали помещают в ящик с графитовым порошком, который устанавливают в термической печи. Атомы углерода вследствие диффузии проникают в поверхностный слой деталей. Глубина проникновения зависит от температуры и времени выдержки деталей в термической печи.

Диффузия также широко распространена в легкой промышлености.

Заключение

Диффузия, или броуновское движение - это беспорядочное движение мельчайших частиц, взвешенных в жидкости или газе, происходящее под действием ударов молекул окружающей среды открытое Р. Броуном в 1827 г.

С точки зрения как физическое явление диффузия это, процесс взаимного проникновения молекул одного вещества между молекулами другого, приводящий к самопроизвольному выравниванию их концентраций по всему занимаемому объёму. В некоторых ситуациях одно из веществ уже имеет выравненную концентрацию, и говорят о диффузии одного вещества в другом. При этом перенос вещества происходит из области с высокой концентрацией в область с низкой концентрацией (против градиента концентрации).

Диффузия представляет собой процесс на молекулярном уровне и определяется случайным характером движения отдельных молекул. Скорость диффузии в связи с этим пропорциональна средней скорости молекул. В случае газов средняя скорость малых молекул больше, а именно она обратно пропорциональна квадратному корню из массы молекулы и растёт с повышением температуры.

Диффузия имеет широкое применение в повседневной жизни, используется практические во всех отраслях промышлености - от легкой до тяжелой.

Список литературы

1. Кошкин И.И, Ширкевич М.Г. Справочник по элементарной физике. - М.: Наука, 1980.

2.Трофимова Т.И Курс физики. - М.: Высшая школа, 1990.

3.Яворский Б.М, Детлаф А.А Справочник по физике. - М.: Наука, 1985.

Все указанные виды диффузии описываются одними и теми же феноменологич. соотношениями.
Основные понятия. Главной характеристикой диффузии служит плотность диффузионного потока J - кол-во в-ва, переносимого в единицу времени через единицу площади пов-сти, перпендикулярной направлению переноса. Если в среде, где отсутствуют градиенты т-ры, электрич. потенциала и др., имеется градиент с (х, t), характеризующий ее изменение на единицу длины в направлении х (одномерный случай) в момент времени t, то в изотропной покоящейся среде

J = - D(дс/дх), (1)

где D - коэффициент диффузии (м 2 /с); знак "минус" указывает на направление потока от больших к меньшим. Пространственно-временное распределение :

Ур-ния (1) и (2) наз. первым и вторым законами Фика. Трехмерная диффузия [с (х, у, z; t)] описывается ур-ниями:

J = - D grad c (3)


где J - плотности диффузионного потока, grad - градиент поля . Перенос частиц в среде осуществляется как последовательность их случайных перемещений, причем абс. величина и направление каждого из них не зависят от предыдущих. Диффузионное движение в среде каждой частицы обычно характеризуют среднеквадратичным смещением L 2 от исходного положения за время t. Для трехмерного пространства справедливо первое соотношение Эйнштейна: L 2 = GDt. Т. обр., параметр D характеризует эффективность воздействия среды на частицы. В случае диффузии в многокомпонентных смесях в отсутствие градиентов и т-ры (изобарно-изотермич. диффузия) для упрощения описания взаимного проникновения компонентов при наличии градиентов их вводят т. наз. коэффициенты взаимной диффузии. Напр., при одномерной диффузии в двухкомпонентной системе выражение для диффузионного потока одного из компонентов принимает вид:

где c 1 + с 2 = const, D 12 = D 21 - коэф. взаимной диффузии обоих компонентов. В результате неравномерного нагревания среды под влиянием градиента т-ры происходит перенос компонентов газовых или - термодиффузия (в р-рах - эффект Соре). Если между отдельными частями системы поддерживается постоянная разность т-р, то вследствие термодиффузии в объеме смеси появляются градиенты компонентов, что инициирует обычную диффузию. Последняя в стационарном состоянии (при отсутствии потока в-ва) уравновешивает термодиффузию, и в системе возникает разность компонентов. Это влияние лежит в основе одного из , а также нефтяных фракций. При внеш. воздействии на систему градиента или гравитац. поля возникает бародиффузия. Примеры: диффузионное мелких взвешенных частиц при столкновении их с (см. ); баромембранные процессы - , микро- и (см. , ). Действие на систему внеш. электрич. поля вызывает направленный перенос заряженных частиц - . Примеры: электромембранные процессы, напр., - разделение под действием электрич. тока ионизированных соед. вследствие избират. переноса через ; диффузия заряда - перемещение проводимости и дырок, обусловленное неоднородностями их в . Математически законы Фика аналогичны ур-ниям Фурье. В основе такой аналогии лежат общие закономерности необратимых процессов перераспределения состояния ( , т-ры, и др.) между разл. частями к.-л. системы при стремлении ее к термодинамич. . При малых отклонениях системы от него эти закономерности описываются линейными соотношениями между потоками физ. величин и термодинамич. силами, т. е. градиентами параметров, вызывающими указанные отклонения. В частности, диффузионный поток частиц данного типа, помимо градиентов частиц каждого типа, может при соответствующих условиях в большей степени определяться градиентами др. и внеш. силами. В общем виде связь между потоками и силами описывается феноменологич. ур-ниями . Напр., в случае электронейтральной бинарной газовой системы при наличии градиента т-ры дТ/дх, градиента др/дх и градиента электрич. потенциала д j /дx выражение для диффузионного потока частиц с зарядом q i в одномерном случае принимает вид:

где с - общее число частиц смеси в единице объема; n i = c i /c -относит. доля частиц i-гo компонента (i = 1, 2); D p , D T - коэф. баро- и термодиффузии; m i = q i D/kТ (соотношение Нернста - Эйнштейна) - подвижность частиц 1-го компонента в электрич. поле; k - ; T - абс. т-ра. Напр., в бинарной газовой смеси при постоянном и отсутствии внеш. сил полный диффузионный поток

При отсутствии потока (J = 0) распределение находят по ф-ле:

где k T = D T /D 12 . Коэф. D T в значит. степени зависит от межмолекулярного взаимод., поэтому его изучение позволяет исследовать межмолекулярные силы в разл. средах. Одновременно с диффузионным переносом частиц посторонних в-в (примесей), неравномерно распределенных в к.-л. среде, происходит самодиффузия - случайное перемещение частиц самой среды, хим. состав к-рой при этом не изменяется. Данный процесс, наблюдаемый даже в отсутствие в системе термодинамич. сил, описывается ур-ниями Фика, в к-рых D заменен параметром D c , называемым коэф. самодиффузии. Эффекты самодиффузии могут приводить к сращиванию двух пришлифованных образцов одного и того же в-ва, при пропускании через них электрич. тока, к растягиванию тел под действием подвешенного к ним груза (диффузионная ползучесть материалов) и т. д. При взаимной диффузии в поток одного может превосходить идущий в обратном направлении поток др. , если для нескомпенсир. вакансий (а возможно, и для нескомпенсир. ) имеются стоки. При этом в появляются поры, приводящие к нарушению устойчивости кристаллич. решетки как мех. системы и, вследствие этого, к смещению кристаллич. плоскостей как целого (эффект Киркиндаля). В частности, при взаимной диффузии в бинарных металлич. системах наблюдается перемещение "инертных" меток, напр., тонких тугоплавких проволочек из Мо или W диаметром неск. мкм, внесенных в зону диффузии. Скорость диффузионного массопереноса в разл. в-вах или материалах иногда удобно характеризовать их проницаемости П = D g , где g - Генри, определяющая равновесную р-римость переносимого компонента. В частности, выражение для стационарного потока , диффундирующих через разделит. перегородку () толщиной d , имеет вид: J = П gD р/ d , где D р - разность парциальных разделяемых компонентов газовой смеси по обе стороны перегородки. Коэф. диффузии существенно различаются для в газовых и конденсированных (жидких и твердых) средах: наиб. быстро перенос частиц происходит в (D порядка 10 - 4 м 2 /с при нормальных т-ре и ), медленнее - в (порядка 10 - 9), еще медленнее - в (порядка 10 - 12). Проиллюстрируем указанные выводы на примерах молекулярной диффузии.
Диффузия в газовых средах. Для оценки D в качестве характерного (среднего) смещения частиц принимают длину своб. пробега l = u t , где и и t - средние скорость движения частиц и время между их столкновениями. В соответствии с первым соотношением Эйнштейна D ~ l 2 t -1 ; более точно D = 1/3 lu. Коэф. диффузии обратно пропорционален р , поскольку l ~ 1/р; с повышением т-ры Т (при постоянном объеме) D возрастает пропорционально T 1/2 , т. к. ; с увеличением мол. массы D снижается. Согласно кинетич. теории , коэф. взаимной диффузии А и В в бинарной смеси (табл. 1)

где р - полное в системе, т A и т B - массы , s A и s B - параметры (см., напр., ).


Большой практич. интерес представляет перенос через сквозные поры в . При относительно малых или размерах пор (r 0), когда частота столкновений со стенками пор превышает частоту взаимных столкновений , т. е. средняя длина их своб. пробега l >> r 0 (для нормального при r 0 < 10 - 7 м), наблюдается т. наз. кнудсеновская диффузия. При этом газовый поток через пористую перегородку пропорционален средней скорости и определяется из ур-ния:

где N s - поверхностная плотность пор в перегородке. Поскольку средняя скорость обратно пропорциональна квадратному корню из их масс , компоненты разделяемой газовой смеси проникают через поры с разл. скоростями; в результате прошедшая через перегородку смесь обогащается более легкими компонентами. С увеличением в таких пористых системах возрастает поверхностная , адсорбированных на стенках пор. Образовавшийся адсорбц. слой может оказаться подвижным и перемещаться вдоль пов-сти поры, вследствие чего параллельно с объемным диффузионным переносом в ней возможна поверхностная диффузия . Последняя оказывает иногда существ. влияние на кинетику хим. превращений, обусловливая неравновесное распределение в системе взаимод. .
Диффузия в конденсированных средах. В и диффузия осуществляется перескоками частиц из одного устойчивого положения в другое, расстояние между ними имеет порядок межмолекулярного. Для таких перескоков необходимы локальная перестройка ближнего окружения каждой частицы (вероятность перестройки характеризуется D S) и случайное накопление в этой области нек-рого кол-ва тепловой энергии E D ( диффузии). После перескока каждая частица оказывается в новом энергетически выгодном положении, а выделяющаяся энергия рассеивается в среде. При этом D = D 0 exp(- E D /RT), где D 0 = n exp (D S/R) - энтропийный фактор, зависящий от частоты "тепловых ударов" среды (n ~ 10 12 с - 1), R - . Диффузионное движение частиц в определяется ее вязкостными св-вами, размерами частиц и характеризуется их т. наз. подвижностью ( ~ D/kT откуда D ~ (kT (второе соотношение Эйнштейна). Параметр (- коэф. пропорциональности между скоростью частицы и и движущей силой F при стационарном движении с (и = (F). Напр., в случае сферически симметричных частиц радиусом г. для к-рых ( = 1/6 p r h (T), справедливо ур-ние Стокса-Эйнштейна: D = kT/6 p r h (T), где h (T) - коэф. динамич. среды в функции от т-ры. Повышение D с увеличением т-ры в объясняется уменьшением плотности упаковки их ("разрыхлением структуры") при нагр. и, как следствие, возрастанием числа перескоков частиц в единицу времени. Коэф. диффузии разных в-в в приведены в табл. 2 и 3; характерные значения E D ~ 20-40 кДж/ .

Коэф. диффузии в твердых орг. телах имеют значит. разброс, достигая в ряде случаев значений, сравнимых с соответствующими параметрами в . Наиб. интерес представляет диффузия в . Коэф. диффузии в них (табл. 4) зависят от размеров диффундирующих , особенностей взаимод. их с фрагментами , подвижности полимерных цепей, своб. объема (разность между реальным объемом и суммарным объемом плотно упакованных ) и неоднородностью его структуры.


Высокие значения D при т-рах выше т-ры обусловлены большой подвижностью в данных условиях фрагментов , что приводит к перераспределению своб. объема и соотв. к возрастанию D S и уменьшению E D . При т-рах ниже т-ры стеклования коэф. диффузии имеют, как правило, меньшие значения. При диффузии в значения D могут зависеть от растворенных компонентов вследствие их пластифицирующего действия. Коэф. диффузии в в значит. степени определяются их влагосодержанием (среднее число п , приходящееся на одну ионогенную группу). При высоком влагосодержании (п > 15) коэф. диффузии сопоставимы с соответствующими D для в (см. табл. 5 и 3). При п < 10 коэф. диффузии экспоненциально снижаются с уменьшением п.


В твердых неорг. телах, где доля своб. объема и амплитуды колебаний кристаллич. решетки незначительны, диффузия обусловлена наличием нарушений в их структуре (см. в ), возникающих при изготовлении, нагревании, и др. воздействиях. При этом м. б. реализованы неск. механизмов диффузии: обмен местами и обмен местами двух соседних , одновременное циклич. перемещение неск. , передвижение их по междоузлиям и др. Первый механизм преобладает, напр., при образовании твердых р-ров замещения, последний - твердых р-ров внедрения.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Диффузия играет огромную роль в природе, в быту человека и в технике . Диффузионные процессы могут оказывать как положительное, так и отрицательное влияние на жизнедеятельность человека и животных. Примером положительного воздействия является поддержание однородного состава атмосферного воздуха вблизи поверхности Земли. Диффузия играет важную роль в различных областях науки и техники, в процессах, происходящих в живой и неживой природе. Она оказывает влияние на течение химических реакций.

С участием диффузии или при нарушении и изменении этого процесса могут протекать отрицательные явления в природе и жизни человека, такие как обширное загрязнение окружающей среды продуктами технического прогресса человека.

Актуальность: Диффузия доказывает, что тела состоят из молекул, которые находятся в беспорядочном движении; диффузия имеет большое значение в жизни человека, животных и растений, а также в технике.

Цель:

    доказать, что диффузия зависит от температуры;

    рассмотреть примеры диффузии в домашних опытах;

    убедиться, что диффузия в разных веществах происходит по-разному.

    Рассмотреть тепловую диффузию веществ.

Задачи исследования:

    Изучить научную литературу по теме «Диффузия».

    Доказать зависимость скорости диффузии от рода вещества, температуры.

    Изучить влияние явления диффузии на окружающую среду и человека.

    Описать и спроектировать наиболее интересные опыты по диффузии.

Методы исследования:

    Анализ литературы и материалов интернета.

    Проведение опытов по изучению зависимости диффузии от рода вещества и температуры.

    Анализ результатов.

Предмет исследования: явление диффузии, зависимость протекания диффузии от различных факторов, проявление диффузии в природе, технике, быту.

Гипотеза: диффузия имеет большое значение для человека и природы.

1.Теоретическая часть

1.1.Что такое диффузия

Диффузия - это самопроизвольное перемешивание соприкасающихся веществ, происходящее вследствие хаотического (беспорядочного) движения молекул.

Еще одно определение: диффузия (лат. diffusio — распространение, растекание, рассеивание) — процесс переноса материи или энергии из области с высокой концентрацией в область с низкой концентрацией .

Самым известным примером диффузии является перемешивание газов или жидкостей (если в воду капнуть чернил, то жидкость через некоторое время станет равномерно окрашенной).

Диффузия происходит в жидкостях, твердых телах и газах. Наиболее быстро диффузия происходит в газах, медленнее в жидкостях, ещё медленнее в твёрдых телах, что обусловлено характером теплового движения частиц в этих средах. Траектория движения каждой частицы газа представляет собой ломаную линию, т.к. при столкновениях частицы меняют направление и скорость своего движения. Столетиями рабочие сваривали металлы и получали сталь нагреванием твердого железа в атмосфере углерода, не имея ни малейшего представления о происходящих при этом диффузионных процессах. Лишь в 1896г. началось изучение проблемы.

Диффузия молекул протекает очень медленно. Например, если кусочек сахара опустить на дно стакана с водой и воду не перемешивать, то пройдёт несколько недель, прежде чем раствор станет однородным.

1.2. Роль диффузии в природе

С помощью диффузии происходит распространение различных газообразных веществ в воздухе: например, дым костра распространяется на большие расстояния . Если посмотреть на дымовые трубы предприятий и выхлопные трубы автомобилей, во многих случаях вблизи труб виден дым. А потом он куда-то исчезает. Дым растворяется в воздухе за счет диффузии. Если же дым плотный, то его шлейф тянется довольно далеко.

Результатом диффузии может быть выравнивание температуры в помещении при проветривании. Таким же образом происходит загрязнение воздуха вредными продуктами промышленного производства и выхлопными газами автомобилей. Природный горючий газ, которым мы пользуемся дома, не имеет ни цвета, ни запаха. При утечке заметить его невозможно, поэтому на распределительных станциях газ смешивают с особым веществом, обладающим резким, неприятным запахом, который легко ощущается человеком даже при весьма малой его концентрации . Такая мера предосторожности позволяет быстро заметить накопление газа в помещении, если образовалась утечка (рис 1).

Благодаря явлению диффузии нижний слой атмосферы - тропосфера - состоит из смеси газов: азота, кислорода, углекислого газа и паров воды . При отсутствии диффузии произошло бы расслоение под действием силы тяжести: внизу оказался бы слой тяжёлого углекислого газа, над ним - кислород, выше - азот, инертные газы (рис 2).

В небе мы тоже наблюдаем это явление. Рассеивающиеся облака - тоже пример диффузии и как точно об этом сказано у Ф.Тютчева: «В небе тают облака…» (рис 3)

На принципе диффузии основано перемешивание пресной волы с солёной при впадении рек в моря. Диффузия растворов различных солей в почве способствует нормальному питанию растений.

Диффузия играет большую роль в жизни растений и животных. Муравьи помечают свой путь капельками пахучей жидкости и узнают дорогу домой (рис 4)

Благодаря диффузии, насекомые находят себе пищу. Бабочки, порхая меж растений, всегда находят дорогу к красивому цветку. Пчёлы, обнаружив сладкий объект, штурмуют его своим роем. А растение растет, цветет для них тоже благодаря диффузии. Ведь мы говорим, что растение дышит и выдыхает воздух, пьёт воду, получает из почвы различные микродобавки .

Плотоядные животные находят своих жертв тоже благодаря диффузии. Акулы чувствуют запах крови на расстоянии нескольких километров, также как и рыбы пираньи (рис 5).

Большую роль играют диффузионные процессы в снабжении кислородом природных водоёмов и аквариумов. Кислород попадает в более глубокие слои воды в стоячих водах за счёт диффузии через их свободную поверхность. Так, например, листья или ряска, покрывающие поверхность воды, могут совсем прекратить доступ кислорода к воде и привести к гибели её обитателей. По этой же причине сосуды с узким горлом непригодны для использования в качестве аквариума (рис 6).

Уже было отмечено, что есть много общего в значении явления диффузии для жизнедеятельности растений и животных. Прежде всего, следует отметить роль диффузионного обмена через поверхность растений в выполнении функции дыхания. Для деревьев, например, наблюдается особенно большое развитие поверхности(листовая крона), так как диффузионный обмен сквозь поверхность листьев выполняет функцию дыхания. К.А. Тимирязев говорил: «Будем ли мы говорить о питании корня за счёт веществ, находящихся в почве, будем ли говорить о воздушном питании листьев за счет атмосферы или питании одного органа за счёт другого, соседнего, - везде для объяснения мы будем прибегать к тем же причинам: диффузия» (рис 7).

Благодаря диффузии кислород из легких пpoникaeт в кровь человека, а из крови - в ткани.

В научной литературе я изучила процесс односторонней диффузии - осмос, т.е. диффузия веществ через полупроницаемые мембраны. Процесс осмоса отличается от свободной диффузии тем, что на границе двух соприкасающихся жидкостей расположено препятствие в виде перегородки (мембраны), которая проницаема только для растворителя и вовсе не проницаема для молекул растворенного вещества (рис 8).

В почвенных растворах содержатся минеральные соли и органические соединения. Вода из почвы попадает в растение путем осмоса через полупроницаемые мембраны корневых волосков. Концентрация воды в почве оказывается выше, чем внутри корневых волосков, поэтому вода проникает в зерно и дает жизнь растению.

1.3. Роль диффузии в быту и технике

Диффузия используется во многих технологических процессах: засолка, получение сахара (стружка сахарной свёклы промывается водой, молекулы сахара диффундируют из стружки в раствор), варка варенья, окрашивание тканей, стирка вещей, цементация, сварка и пайка металлов, в том числе диффузионная сварка в вакууме (свариваются металлы, которые другими методами соединить невозможно, - сталь с чугуном, серебро с нержавеющей сталью и т.д.) и диффузионная металлизация изделий(поверхностное насыщение стальных изделий алюминием, хромом, кремнием), азотирование - насыщение поверхности стали азотом (сталь становится твёрдой, износоустойчивой), цементация - насыщение стальных изделий углеродом, цианирование -насыщение поверхности стали углеродом и азотом .

Распространение запахов в воздухе - наиболее часто встречающийся пример диффузии в газах. Почему же запах распространяется не мгновенно, а спустя некоторое время? Дело в том, что во время движения в определенном направлении молекулы пахучего вещества сталкиваются с молекулами воздуха. Траектория движения каждой частицы газа представляет собой ломаную линию, т.к. при столкновениях частицы меняют направление и скорость своего движения.

2. Практическая часть

Как много удивительного и интересного происходит вокруг нас! Многое хочется узнать, попытаться объяснить самостоятельно. Именно для этого я решила провести ряд экспериментов, в ходе которых попыталась выяснить, действительно ли теория диффузии справедлива, находит ли она свое подтверждение на практике. Любую теорию можно считать достоверной лишь в том случае, если она многократно подтверждается экспериментально.

Опыт №1 Наблюдение явления диффузии в жидкостях

Цель : изучить диффузию в жидкости. Пронаблюдать растворение кусочков перманганата калия в воде, при неизменной температуре (при t = 20°С)

Приборы и материалы :стакан с водой, термометр, перманганат калия.

Я взяла кусочек перманганата калия и два стакана с чистой водой при температуре 20 °С. Положила в стаканы кусочки перманганата калия и начала наблюдать за происходящим. Через 1 минуту вода в стаканах начинает окрашиваться.

Вода является хорошим растворителем. Под действием молекул воды происходит разрушение связей между молекулами твердых веществ марганцовки.

В первом стакане я не перемешивала раствор, а во втором перемешала. Перемешивая воду (взбалтывая), я убедилась, что процесс диффузии происходит гораздо быстрее (2 минуты)

Цвет воды в первом стакане становится более интенсивным по истечении времени. Молекулы воды проникают между молекулами перманганата калия, нарушая силы притяжения. Одновременно с силами притяжения между молекулами начинают действовать силы отталкивания и, как следствие, происходит разрушение кристаллической решетки твердого вещества. Процесс растворения марганцовки закончился. Время прохождения эксперимента 3 часа 15 минут. Вода полностью окрасилась в малиновый цвет (рис 9-12).

Можно сделать вывод, что явление диффузии в жидкости - это длительный процесс, в результате которого происходит растворение твердых тел.

Я захотела выяснить, от чего еще зависит скорость протекания диффузии.

Опыт №2 Изучение зависимости скорости протекания диффузии от температуры

Цель: изучить, как температура воды влияет на скорость протекания диффузии.

Приборы и материалы: термометры - 1 шт, секундомер - 1 шт, стаканы - 4 шт, чай, перманганат калия.

(опыт приготовления чая при начальной температуре 20°С и при температуре 100° С в двух стаканах).

Взяли два стакана с водой при t=20 °С и t=100 °С. На рисунках показано протекание эксперимента через определенное время от начала: в начале эксперимента - рис.1, через 30 с. - рис.2, через 1 мин. - рис.3, через 2 мин. - рис.4, через 5 мин. - рис 5, через 15 мин. - рис.6. Из этого опыта можно сделать вывод о том, что на скорость протекания диффузии влияет температура: чем больше температура, тем выше скорость протекания диффузии (рис 13-17).

Те же результаты я получила, когда вместо чая взяла 2 стакана с водой. В одном из них была вода комнатной температуры, во втором кипяток.

Я опустила в каждый стакан одинаковое количество перманганата калия. В том стакане, где температура воды была выше, процесс диффузии протекал значительно быстрее (рис.18-23.)

Следовательно скорость диффузии зависит от температуры - чем выше температура, тем интенсивнее происходит диффузия.

Опыт № 3 Наблюдение диффузии с применением химических реактивов

Цель: Наблюдение явления диффузии на расстоянии.

Оборудование: вата, нашатырный спирт, фенолфталеин, пробирка.

Описание опыта: Нальём в пробирку нашатырный спирт. Смочим кусочек ваты фенолфталеином и положим сверху в пробирку. Через некоторое время наблюдаем окрашивание ватки (рис 24-26).

Нашатырный спирт испаряется; молекулы нашатырного спирта проникли к ватке, смоченной фенолфталеином, и та окрасилась, хотя ватка в соприкосновение со спиртом не приводилась. Молекулы спирта перемешались с молекулами воздуха и достигли ватки. Данный опыт демонстрирует явление диффузии на расстоянии.

Опыт №4. Наблюдение явления диффузии в газах

Цель: изучение изменения диффузии газа в воздухе в зависимости от изменения температуры в помещении.

Приборы и материалы : секундомер, духи, термометр

Описание опыта и полученные результаты :я исследовала время распространения запаха духов в кабинете V=120м 3 при температуре t = +20 0 . Засекалось время от начала распространения запаха в комнате, до получения явной чувствительности у людей, стоящих на расстоянии 10 м. от исследуемого объекта (духи). (рис 27-29)

Опыт №5 Растворения кусочков гуаши в воде, при неизменной температуре

Цель:

Приборы и материалы: три стакана, вода, гуашь трех цветов.

Описание опыта и полученные результаты:

Взяли три стакана, набрали воды t =25 0 С, бросили одинаковые кусочки гуаши в стаканы.

Начали наблюдать за растворением гуаши.

Фотографии сделаны через 1 минуту, 5 минут, 10 минут, 20 минут, растворение закончилось через 4 часа 19 минут (рис 30-34)

Опыт №6 Наблюдение явления диффузии в твердых телах

Цель: наблюдение диффузии в твердых телах.

Приборы и материалы: яблоко, картофель, морковь, раствор «зеленки», пипетка.

Описание опыта и полученные результаты:

Разрезаем яблоко, морковь, картофель «капаем зеленкой» на одну из половинок.

Наблюдаем, как пятно расплывается по поверхности

Разрезаем по месту соприкосновения с зеленкой, чтобы посмотреть насколько глубоко она проникла внутрь (рис 35-37)

Как провести опыт, чтобы подтвердить гипотезу о возможности протекания диффузии в твердых телах? Возможно ли перемешивание веществ в таком агрегатном состоянии? Скорей всего, ответ «Да». Но наблюдать диффузию в твердых телах (очень вязких) удобно с использованием густых гелей. Таким является плотный раствор желатина. Его можно приготовить следующим образом: 4-5 г сухого пищевого желатина растворить в холодной воде. Желатин сначала должен несколько часов набухать, а затем его полностью растворяют при помешивании в воде объемом 100 мл, опустив в сосуд с горячей водой. После охлаждения получается 4-5 % раствор желатина.

Опыт № 7 Наблюдение диффузии с применением густых гелей

Цель: Наблюдение явления диффузии в твердых телах (с применением густого раствора желатина).

Оборудование: 4%-ный раствор желатина, пробирка, небольшой кристаллик марганцовки, пинцет.

Описание и результат опыта: Раствор желатина поместить в пробирку, в центр пробирки быстро, одним движением ввести пинцетом кристаллик марганцовки.

Кристаллик марганцовки в начале опыта

Расположение кристаллика в пузырьке с раствором желатина через 1,5 часа

Уже через несколько минут вокруг кристаллика начнет расти окрашенный в фиолетовый шарик, со временем он становится все больше и больше. Это означает, что вещество кристаллика распространяется во всех направлениях с одинаковой скоростью (рис 38-39)

В твердых телах диффузия происходит, но значительно медленнее чем, в жидкостях и газах.

Опыт № 8 Разница температур в жидкости - тепловая диффузия

Цель: Наблюдение явления тепловой диффузии.

Оборудование: 4 одинаковых стеклянных сосуда, 2 цвета краски, горячая и холодная вода, 2 пластиковые карточки.

Описание и результат опыта:

1. Добавляем немного красной краски в сосуд 1 и 2, синюю краску в сосуды 3 и 4.

2. Наливаем горячую воду в сосуды 1 и 2.

3. Наливаем холодную воду в сосуды 3 и 4.

4. Сосуд 1 накрываем пластиковой картой, переворачиваем вниз горлышком и ставим на сосуд 4.

5. Сосуд 3 накрываем пластиковой картой, переворачиваем вниз горлышком и ставим на сосуд 2.

6. Удаляем обе карты.

Этот опыт демонстрирует эффект тепловой диффузии. В первом случае горячая вода оказывается поверх холодной и диффузия не происходит до тех пор, пока температуры не сравняются. А во втором случае наоборот, внизу горячая, а вверху холодная. И во втором случае молекулы горячей вода начинают стремиться вверх, а молекулы холодной - вниз (рис 41-44).

Заключение

В ходе данной исследовательской работы можно сделать вывод о том, что диффузия играет огромную роль в жизни человека и животных.

В ходе данной исследовательской работы можно сделать вывод о том, что продолжительность диффузии зависит от температуры: чем выше температура, тем быстрее протекает диффузия.

Я изучила явление диффузии на примере различных веществ.

Скорость протекания зависит от рода вещества: в газах она протекает быстрее, чем в жидкостях; в твердых телах диффузия протекает значительно медленнее.Это утверждение можно объяснить так: молекулы газов свободны, находятся на расстояниях много больше размеров молекул, двигаются с большими скоростями. Молекулы жидкостей расположены также беспорядочно, как и в газах, но значительно плотнее. Каждая молекула, находясь в окружении соседних молекул, медленно перемещается внутри жидкости. Молекулы твердых веществ совершают колебания около положения равновесия.

Существует тепловая диффузия.

Список используемой литературы

    Генденштейн, Л.Э. Физика. 7 класс. Часть 1 / Л.Э. Генденштейн, А.Б, Кайдалов. - М: Мнемозина, 2009.-255 с.;

    Кириллова, И.Г. Книга для чтения по физике для учащихся 7 классов средней школы / И.Г. Кириллова.- М.,1986.-207 с.;

    Ольгин, О. Опыты без взрывов / О. Ольгин.- М.: Химик, 1986.-192 с.;

    Перышкин, А.В. Учебник по физике 7 класс / А.В. Перышкин.- М., 2010.-189 с.;

    Разумовский, В.Г. Творческие задачи по физике / В.Г. Разумовский.- М.,1966.-159 с.;

    Рыженков, А.П. Физика. Человек. Окружающая среда: Приложение к учебнику физики для 7-го класса общеобразовательных учреждений / А.П. Рыженков.- М.,1996.- 120 с.;

    Чуянов, В.А. Энциклопедический словарь юного физика / В.А. Чуянов.- М., 1984.- 352 с.;

    Шабловский, В. Занимательная физика / В. Шабловский. С.-П., Тригон, 1997.-416 с.

Приложение

рисунок 1

рисунок 2

рисунок 3

рисунок 4

рисунок 5

рисунок 6

рисунок 7

Частицы растворителя (синие) способны пересекать мембрану,

частицы растворённого вещества (красные) — нет.

рисунок 8

рисунок 9

рисунок 10

рисунок 11

рисунок 12

рисунок 13

рисунок 14

рисунок 15

рисунок 16

рисунок 17

рисунок 18

рисунок 19

рисунок 20

рисунок 21

рисунок 22

рисунок 23

рисунок 24

рисунок 25

рисунок 26

рисунок 27

рисунок 28

рисунок 29

рисунок 30

рисунок 31

рисунок 32

рисунок 33

рисунок 34

рисунок 35

рисунок 36

← Вернуться

×
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:
Я уже подписан на сообщество «sinkovskoe.ru»