Ассоциативная часть головного мозга. Три основных функциональных блока мозга (лурия а.р.)

Подписаться
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:

Московский гуманитарно-экономический институт

Тверской филиал

Кафедра прикладной психологии

Реферат по дисциплине

«Физиология высшей нервной деятельности и сенсорных систем»

Тема: «Функциональная организация мозга».


Введение

1.2 Блок модуляции, активации нервной системы

1.3 Блок программирования, запуска и контроля поведенческих актов

2. Взаимодействие трех основных функциональных блоков мозга

Заключение

Список литературы


Введение

Открытие И.П. Павловым анализаторов и создание учения об условных рефлексах, в основе которого лежал объективный анализ динамики нервных процессов, послужило основой для развития современных материалистических представлений о динамической локализации мозговых функций - целостном и одновременно дифференцированном вовлечении мозга в любую из форм его активности.

Предложенный И.П. Павловым объективный условно рефлекторный метод исследования позволил наиболее адекватно подойти к экспериментальному решению проблемы функциональной организации мозга. И.П. Павлов развил и экспериментально обосновал представления об анализаторных системах, где каждый анализатор есть определенная анатомически локализованная структура от периферических рецепторных образований до проекционных зон коры головного мозга. Он предположил, что кроме локальных проекционных зон коры, выступающих в качестве «ядра коркового конца анализатора» (или проекционных зон коры), существуют периферические зоны представительства каждого анализатора, так называемые «зоны рассеянных элементов». В силу такой структурной организации все анализаторы, включая и двигательный анализатор, своими периферическими (корковыми) зонами перекрываются и образуют вторичные проекционные зоны коры, которые И.П. Павлов уже тогда рассматривал как «ассоциативный центры» мозга, составляющие основу для динамического взаимодействия всех анализаторных систем.

С позиций системной организации функций в деятельности мозга выделяют различные функциональные системы и подсистемы. Классический вариант интегративной деятельности мозга может быть представлен в виде взаимодействия трех основных функциональных блоков:

1) блок приема и переработки сенсорной информации - сенсорные системы (анализаторы);

2) блок модуляции, активации нервной системы - модулирующие системы (лимбико-ретикулярные системы) мозга;

3) блок программирования, запуска и контроля поведенческих актов - моторные системы (двигательный анализатор).


1. Три основных функциональных блока мозга

1.1 Блок приема и переработки сенсорной информации

Первый функциональный блок составляют анализаторы, или сенсорные системы. Анализаторы выполняют функцию приема и переработки сигналов внешней и внутренней среды организма. Каждый анализатор настроен на определенную модальность сигнала и обеспечивает описание всей совокупности признаков воспринимаемых раздражителей.

Анализатор - это многоуровневая система с иерархическим принципом ее конструкции. Основанием анализатора служит рецепторная поверхность, а вершиной - проекционные зоны коры. Каждый уровень этой морфологически упорядоченно организованной конструкции представляет собой совокупность клеток, аксоны которых идут на следующий уровень (исключение составляет верхний уровень, аксоны которого выходят за пределы данного анализатора). Взаимоотношения между последовательными уровнями анализаторов построены по принципу «дивергенции - конвергенции». Чем выше нейронный уровень анализаторной системы, тем большее число нейронов он включает. На всех уровнях анализатора сохраняется принцип топической проекции рецепторов. Принцип многократной рецептотопической проекции способствует осуществлению множественной и параллельной переработки (анализу и синтезу) рецепторных потенциалов («узоров возбуждений»), возникающих под действием раздражителей.

Нейрон, стоящий на выходе рецептивного поля, может выделять один признак раздражителя (простые детекторы) или комплекс его свойств (сложные детекторы). Детекторные свойства нейрона обусловливаются структурной организацией его рецептивного поля. Нейроны-детекторы более высокого порядка образуются в результате конвергенции нейронов-детекторов низшего (более элементарного) уровня. Нейроны-детекторы сложных свойств формируют детекторы «сверхсложных» комплексов. Высший уровень иерархической организации детекторов достигается в проекционных зонах и ассоциативных областях коры мозга.

Проекционные зоны анализаторных систем занимают наружную (конвекситальную) поверхность новой коры задних отделов мозга. Сюда входят зрительная (затылочная), слуховая (височная) и общечувствительная (теменная) области коры. В корковый отдел этого функционального блока включается также представительство вкусовой, обонятельной, висцеральной чувствительности.

Первичные проекционные зоны коры состоят главным образом из нейронов 4-го афферентного слоя, для которых характерна четкая топическая организация. Значительная часть этих нейронов обладает высочайшей специфичностью. Нейроны зрительных аппаратов коры реагируют только на узкоспециальные свойства зрительных раздражителей (оттенки цвета, характер линий, направление движения). Однако следует отметить, что в первичные зоны отдельных областей коры включены также нейроны мультимодального типа, реагирующие на несколько видов раздражителей.

Вторичные проекционные зоны коры располагаются вокруг первичных зон, как бы надстраиваясь над ними. В этих зонах 4-й афферентный слой уступает ведущее место 2-му и 3-му слоям клеток. Для этих нейронов характерно детектирование сложных признаков раздражителей, однако при этом сохраняется модальная специфичность, соответствующая нейронам первичных зон. Поэтому предполагается, что усложнение детекторных селективных свойств нейронов вторичных зон может происходить путем конвергенции на них нейронов первичных зон. В первичной зрительной коре (17-е поле Бродмана) содержатся в основном нейроны-детекторы простых признаков предметного зрения (детекторы ориентации линий, полосы, контраста и т. п.), а во вторичных зонах (18-е и 19-е поля Бродмана) появляются детекторы более сложных элементов контура: края, ограниченной длины линий, углов с различной ориентацией и др. Первичные (проекционные) зоны слуховой (височной) коры представлены 41-м полем Бродмана (рис. 1), нейроны которого модально специфичны и реагируют на различные свойства звуковых раздражителей. Как и первичное зрительное поле, эти первичные отделы слуховой коры имеют четкую рецептотопию. Над аппаратами первичной слуховой коры надстроены вторичные зоны слуховой коры, расположенные во внешних отделах височной области (22-е и частично 21-е поля Бродмана). Они также состоят преимущественно из мощно развитого 2-го и 3-го слоя клеток, реагирующих избирательно одновременно на несколько частот и интенсивностей: звукового раздражителя.

Рис. 1. Карта цитоархитектонических полей коры головного мозга. Конвекситальная поверхность коры больших полушарий: а - первичные поля; б - вторичные поля; в - третичные поля

Наконец, тот же принцип функциональной организации сохраняется и в общечувствительной (теменной) коре. Основой и здесь являются первичные или проекционные зоны (3-, 1- и 2-е поля Бродмана), толща которых также преимущественно состоит из обладающих модальной специфичностью нейронов 4-го слоя, а топография отличается четкой соматотопической проекцией отдельных сегментов тела. Вследствие чего раздражение верхних участков этой зоны вызывает появление кожных ощущений в нижних конечностях, средних участков - в верхних конечностях контрлатеральной стороны, а раздражение пунктов нижнего пояса этой зоны - соответствующие ощущения в контрлатеральных отделах лица, губ и языка. Над первичными зонами располагаются вторичные зоны общечувствительной (теменной) коры (5-е и частично 40-е поле Бродмана), состоящие преимущественно тоже из нейронов 2-го и 3-го слоев, и их раздражение приводит к возникновению более комплексных форм кожной и кинестетической чувствительности (см. рис. 1).

Таким образом, основные, модально-специфические зоны анализаторов мозга построены по единому принципу иерархической структурной и функциональной организации. Первичные и вторичные зоны, согласно И.П. Павлову, составляют центральную часть, или ядро, анализатора в коре, нейроны которого характеризуются избирательной настройкой на определенный набор параметров раздражителя и обеспечивают механизмы тонкого анализа и дифференцировки раздражителей. Взаимодействие первичных и вторичных зон носит сложный, неоднозначный характер и в условиях нормальной деятельности обусловливает согласованное содружество процессов возбуждения и торможения, которое закрепляет макро- и микроструктуру нервной сети, занятой анализом афферентного потока в первичных проекционных сенсорных полях. Это создает основу для динамического межанализаторного взаимодействия, осуществляемого в ассоциативных зонах коры.

Ассоциативные области (третичные зоны) коры являются новым уровнем интеграции: они занимают 2-й и 3-й клеточные (ассоциативные) слои коры, на которых протекает встреча мощных афферентных потоков, как одномодальных, разномодальных, так и неспецифических. Подавляющее большинство ассоциативных нейронов отвечает на обобщенные признаки стимулов - на количество элементов, пространственное положение, отношения между элементами и пр.

Конвергенция разномодальной информации необходима для целостного восприятия, для формирования «сенсорной модели мира», которая возникает в результате сенсорного обучения.

ОСНОВЫ НЕЙРОПСИХОЛОГИИ

Тема 1. Функциональная организация мозга и психическая деятельность........1

Тема 2. Локальные системы мозга........................................................................9

Тема 3. Психические процессы и их мозговая организация ………………......17

ТЕМА 1 Функциональная организация мозга и психическая деятельность

1. Каковы основные принципы эволюции и строения мозга как органа психики? Основными принципами эволюции и строения мозгаявляются:

1) На различных этапах эволюции отношения организма животного со средой и его поведение регулировались различными аппаратами нервной системы, и, следовательно, головной мозг (ГМ) человека является продуктом длительного исторического развития .

На элементарных уровнях развития животного мира (напр., у гидроидных полипов) прием сигналов и организация движений осуществляются сетевидной нервной системой; на этом этапе эволюции единый центр, перерабатывающий информацию и регулирующий поведение животного, отсутствует. Поток возбуждения определяется теми временными доминирующими очагами , которые создаются в том или ином участке нервного аппарата животного. В процессе эволюции сетевидная нервная система, сохранившаяся в организме животных, уступила ведущее место новым образованиям. В передних отделах ГМ животного концентрировались сложные рецепторные приборы, и сигналы, получаемые ими, стали направляться в передний ганглий, который перерабатывал получаемую информацию и переключал возбуждение на эфферентные пути, идущие к двигательному аппарату животного.

Далее эволюция мозга пошла по двум стратегическим направлениям. Первое направление заключается в максимальной предуготованности организма к будущим условиям существования (напр. насекомые). Передний ганглий насекомых становится идеальным органом реализации врожденного инстинктивного поведения, которое может пускаться в ход элементарными стимулами и, тем не менее, иметь удивительную по своей сложности программу. Нервные аппараты переднего ганглия, хорошо приспособленные для реализации врожденных программ поведения, не могут, однако, обеспечить приспособления к резко меняющимся условиям среды. Сохранение вида оказывается возможным благодаря избыточному производству индивидуальных особей, из которых выживают лишь очень немногие.

Второе направление: у млекопитающих врожденные, инстинктивные формы реагирования «обрастают» индивидуальными реакциями, основанными на личном опыте. Поведение млекопитающего в разнообразных ситуациях гораздо менее определенно, чем поведение насекомых, шаблонов поведения становится все меньше, а исследовательские, ориентировочные реакции занимают все больше места. Для гибкой формы жизнедеятельности требуется гораздо больше мозгового вещества. Таким задачам отвечает ГМ.


Мозг насекомого – это многопрограммный исполнительный автомат, тогда как мозг млекопитающего – автомат самообучающийся, способный к вероятностному прогнозированию. Однако главное не в количестве, а в качестве структур мозгового вещества. В рамках второго направления эволюции происходит неуклонное увеличение размеров коры больших полушарий мозга. Этот отдел является наименее специализированным и наиболее важным для фиксации личного опыта, что предполагает возможность непрерывного совершенствования.

2) Прежние нервные аппараты сохраняются в ГМ, уступая ведущее место новым образованиям и приобретая иную роль. Они становятся аппаратами, обеспечивающими фон поведения, принимающими активное участие в регуляции состояний организма, передавая функции получения, переработки, хранения информации, создания новых программ поведения и регуляции и контроля сознательной деятельности высшим аппаратам КГМ.

Разные по сложности формы поведения у человека могут осуществляться с помощью различных уровней нервной системы:

– простейшие элементы поведения (коленный рефлекс) осуществляются лишь механизмами спинного мозга;

– сложная врожденная форма поведения – регуляция гомеостаза, обеспечиваемая дыханием, пищеварением и терморегуляцией, осуществляется посредством механизмов, заложенных в стволе ГМ (продолговатом мозге, гипоталамусе);

– еще более сложные формы поведения, предполагающие обеспечение тонуса, синергии и координацию, тесно связаны с работой промежуточного мозга и подкорковых двигательных узлов; поражение их, не вызывая нарушения сложных познавательных процессов, приводит к грубому нарушению «фонового» поведения, напр. паркинсонизм – синдром при поражении экстрапирамидной системы;

– наиболее сложные формы деятельности не могут быть обеспечены без участия КГМ, являющейся органом высших форм поведения животных и сознательного поведения человека.

3) Принцип вертикального строения функциональных систем мозга . Все высшие психические функции имеют не только горизонтальную (корковую), но и вертикальную (подкорковую) мозговую организацию. Разобщение отдельных зон коры путем круговой изоляции может не влечь за собой существенных изменений в поведении животных, в то время как подрезка коры, изолирующая её от нижележащих образований, неизбежно приводит к значительным нарушениям ее регулирующих функций. Все это означает, что отдельные участки КГМ соединяются между собой не только с помощью горизонтальных (транскортикальных) связей, но и через нижележащие образования посредством системы вертикальных связей. Восходящие и нисходящие связи превращают мозг в саморегулирующуюся систему. Сложные формы поведения могут осуществляться разными уровнями нервной системы, каждый из которых вносит в функциональную организацию поведения свой вклад. Низшие уровни нервного аппарата участвуют в организации работы КГМ, регулируя и обеспечивая ее тонус. Но низшие уровни нервного аппараты не работают в полной изоляции от КГМ и сами испытывают ее регулирующее влияние.

2. Какова структурная и функциональная организация КГМ? Мозг и его кора обладают неоднородным строением. Различают серое вещество, составляющее мозговую кору и подкорковые серые образования и белое вещество, состоящее из проводящих волокон, связывающих отдельные участки КГМ между собой и с периферией. КГМ состоит из 6 слоев клеток. Только IV и V слои непосредственно связывают КГМ с периферией.

К полям коры, отличающимся развитым IV слоем мелкозернистых нервных клеток подходят чувствительные волокна, начинающиеся в рецепторах; эти зоны названы первичными сенсорными областями КГМ. Выделяются общечувствительная (теменная), зрительная (затылочная) и слуховая (височная) чувствительные области.

Гигантские пирамидные клетки Беца, составляющие V слой коры, оказались источниками двигательных импульсов, идущих от коры к периферической мускулатуре, а передняя центральная извилина, в которой они сосредоточены – названа первичной моторной областью КГМ. Волокна, начинающиеся в передней центральной извилине и подходящие к ряду ядер черепно-мозговых нервов (ЧМН) и передним рогам спинного мозга (СП), составляют двигательный (пирамидный) проводящий путь.

Над каждой первичной зоной коры с преобладающим развитием IV – афферентного или V – эфферентного слоев клеток надстраивается система вторичных зон, в которых преобладающее место занимают более сложные по своему строению II и III слои. Эти слои состоят из клеток с короткими аксонами, большая часть которых не имеет прямой связи с периферией и получает свои импульсы из лежащих в глубине мозга подкорковых образований, осуществляющих первичную переработку приходящих с периферии импульсов.

В КГМ человека можно выделить области, которые целиком состоят из верхних слоев клеток и не имеют прямой связи с периферией. Эти области получили название третичных зон коры . В КГМ можно выделить две группы третичных областей. Первая из них – задняя – расположена на стыке затылочной, теменной и височной областей; её обозначают как задний ассоциативный центр или зону перекрытия корковых отделов экстероцептивных анализаторов. Эта зона обеспечивает совместную работу корковых звеньев отдельных анализаторов. Вторая – передняя – расположена в лобной доле спереди от двигательной зоны коры и надстраивается над её двигательными отделами. Она связана со всеми остальными отделами коры и, играет существенную роль в построении наиболее сложных программ поведения человека.

Иерархическое строение КГМ является продуктом длительного исторического развития. У человека первичные участки коры занимают совсем небольшое место, будучи оттесненными хорошо развитыми вторичными участками, а третичные зоны коры становятся наиболее развитыми системами и занимают подавляющую часть КГМ. Это показывает, что процесс усложнения психической деятельности, предполагающий сознательный характер программирования деятельности, связан с развитием высших слоев коры.

Другой функциональной характеристикой строения КГМ животного является отношение между массой клеточных тел и массой клеточного вещества. В осуществлении сложных нервных процессов решающую роль играет не только тело нервной клетки, но и ее многочисленные отростки и окружающие нейроны глиальные клетки. Увеличение отношения глиальной ткани к массе нервных клеток (их тел) на каждой новой ступени эволюции указывает на повышение управляемости функций отдельных мозговых зон .

Существенной характеристикой является степень миелинизации соответствующих нервных образований. Процесс миелинизации – по завершении которого нервные элементы становятся готовыми к нормальному функционированию – протекает в разных зонах коры неравномерно: миелинизация элементов первичных зон заканчивается довольно рано; процесс миелинизации во вторичных и третичных зонах коры иногда продолжается до 7-12-летнего возраста. Аппараты, соответствующие наиболее сложным, комплексным формам психической деятельности созревают на относительно поздних этапах развития и, следовательно, формирование психической деятельности человека идет от более простых к сложным, опосредствованным формам.

3. Что такое синдромный анализ и какова системная организация психических процессов? При локальных поражениях ГМ (преимущественно коры) нарушается не одна какая-либо психическая функция, а целая совокупность функций, составляющих единый нейропсихологический синдром, в основе которого лежит нарушение определенного фактора. Синдромный анализ – основной путь нейропсихологического исследования.

Синдромный анализ основан на трех основных положениях. Первое – он предполагает тщательную качественную квалификацию нарушений психических функций, а не просто констатацию того, что функция нарушена. Под качественным анализом понимается определение формы нарушения психической функции. Напр. при обнаружении у больного мнестического дефекта необходимо выяснить, носят эти нарушения модально-неспецифический характер или связаны лишь с определенной модальностью, страдает преимущественно звено непосредственного или отсроченного воспроизведения материала и т.д.

Второе положение: нарушений высших психических функций заключается в анализе и сопоставлении первичных нарушений, непосредственно связанных с нарушенным фактором, и вторичных расстройств, которые возникают по законам системной организации функций. Любая психическая деятельность человека является сложной функциональной системой, реализация которой обеспечивается целым комплексом совместно работающих зон мозга. Каждая зона мозга, участвующая в обеспечении функциональной системы, ответственна за свой фактор (свою функцию), и его устранение приводит к тому, что нормальное осуществление общей функции (которая складывается из многих факторов) становится невозможным, т.е. функциональная система в целом может нарушаться при поражении большого числа зон, причем при различных по локализации поражениях она нарушается по-разному.

Третье положение заключается в необходимости изучения состава не только нарушенных, но и сохранных высших психических функций. Любой ограниченный корковый очаг поражения нарушает протекание одних психических процессов, оставляя другие процессы в сохранности – принцип двойной диссоциации функций .

Таким образом, качественная квалификация нарушений психических процессов, выделение основного дефекта (т.е. первичных нарушений) и вторичных системных нарушений, анализ состава не только нарушенных, но и сохранных психических функций и составляет сущность синдромного анализа, направленного на топическую диагностику локальных поражений ГМ.

Тщательный нейропсихологический анализ синдрома и двойной диссоциации, которая возникает при локальных поражениях мозга, позволяет приблизиться к структурному анализу (внутреннему составу) психических процессов. Для непредвзятого наблюдателя музыкальный и речевой слух могут казаться двумя вариантами одного и того же психологического процесса. Но разрушение определенных участков левой височной области приводит к выраженному нарушению речевого слуха (делая различение близких звуков речи совершенно недоступным), но сохраняет музыкальный слух неповрежденным. Есть описание одного выдающегося композитора, который после кровоизлияния в левую височную область перестал различать звуки речи и понимать обращенную к нему речь, но продолжал создавать блестящие музыкальные произведения. Это означает, что столь близкие, казалось бы, психические процессы, как музыкальный и речевой слух, не только включают в свой состав разные факторы, но и опираются на работу различных мозговых зон.

Столь различные психологические процессы, как ориентировка в пространстве, счет и понимание сложных логико-грамматических структур, казалось бы, не имеют принципиально общих звеньев, которые позволяют объединить их в одну группу. Однако поражение теменно-затылочных (нижнетеменных) отделов левого полушария неизбежно приводит к нарушению всех этих процессов, и больной с подобной локализацией очага не только испытывает заметные трудности в пространственной ориентировке, но и обнаруживает грубейшие дефекты в счете и в понимании сложных логико-грамматических структур. Это показывает, что все указанные, казалось бы, столь различные функции включают общий фактор, и выделение этих общих факторов способствует гораздо более глубокому анализу структуры психологических процессов.

4. Какие выделяют основные функциональные блоки мозга? Психическая деятельность – это идеальная субъективно осознаваемая деятельность организма, осуществляемая с помощью нейрофизиологических процессов. Психическая деятельность осуществляется с помощью ВНД. Психическая деятельность протекает только в период бодрствования и осознается, а ВНД – и в период сна как неосознаваемая переработка информации, и в период бодрствования как осознаваемая и подсознательная переработка. Отдельные проявления психической деятельности человека, условно выделяемые в качестве самостоятельных объектов исследования называются психическими процессами (ощущение, восприятие, представление, мышление, внимание, эмоции, воля). Основное значение психических процессов состоит в приспособлении индивида к внешней среде.

Выделяют 3 основных функциональных блока (3 основных аппарата мозга), участие которых необходимо для осуществления любого вида психической деятельности: 1) блок регуляции тонуса и бодрствования; 2) блок приема, переработки и хранения информации; 3) блок программирования, регуляции и контроля сложных форм деятельности.

Каждый из этих основных блоков имеет иерархическое строение и состоит из надстроенных друг над другом корковых зон трех типов: первичных (проекционных), куда поступают импульсы с периферии или откуда направляются импульсы на периферию, вторичных (проекционно-ассоциативных), где происходит переработка получаемой информации или подготовка соответствующих программ, и третичных (зон перекрытия), которые являются наиболее поздно развивающимися аппаратами больших полушарий, и которые у человека обеспечивают наиболее сложные формы психической деятельности, требующие совместного участия многих зон мозговой коры.

Головной мозг – высший орган нервной системы – как анатомо-функциональное образование может быть условно подразделен на несколько уровней, каждый из которых осуществляет собственные функции.

I уровень кора головного мозга –осуществляет высшее управление чувствительными и двигательными функциями, преимущественное управление сложными когнитивными процессами.

II уровень базальные ядра больших полушарий –осуществляет управление непроизвольными движениями и регуляцию мышечного тонуса.

III уровень гиппокамп, гипофиз, гипоталамус, поясная извилина, миндалевидное ядро – осуществляет преимущественное управление эмоциональными реакциями и состояниями, а также эндокринную регуляцию.

IV уровень (низший) – ретикулярная формация и другие структуры ствола мозга –осуществляет управление вегетативными процессами.

Анатомически головной мозг подразделяется на ствол, мозжечок и большие полушария (правое и левое). В каждом полушарии имеется 4 доли: лобная, теменная, затылочная, височная.

У человека по сравнению с животными существенно больше развита кора больших полушарий (кора головного мозга) – наиболее высокодифференцированный раздел нервной системы. Топографически различают конвекситальную (относящаяся к своду черепа), базальную (относящаяся к основанию черепа), медиальную (между полушариями) кору головного мозга.

5. Что такое блок регуляции тонуса и бодрствования? Для того чтобы обеспечивалось полноценное протекание психических процессов, человек должен находиться в состоянии бодрствования. Только в оптимальных условиях бодрствования человек может принимать и перерабатывать информацию, вызывать в памяти нужные избирательные системы связей, программировать свою деятельность и осуществлять контроль за протеканием своих психических процессов, исправляя ошибки и сохраняя направленность своей деятельности. В состоянии сна четкая регуляция психических процессов невозможна, всплывающие воспоминания и ассоциации приобретают неорганизованный характер, и направленное избирательное (селективное) выполнение психической деятельности становится невозможным.

Для осуществления организованной, целенаправленной деятельности необходимо поддерживать оптимальный тонус коры . Аппараты, обеспечивающие и регулирующие тонус коры, находятся не в самой коре, а в лежащих ниже стволовых и подкорковых отделах мозга; эти аппараты находятся в двойных отношениях с корой, тонизируя её и в то же время сами испытывая её регулирующее влияние. В стволе ГМ находится особое нервное образование, которое по своему строению и по своим функциональным свойствам приспособлено к тому, чтобы осуществлять роль механизма, регулирующего состояния КГМ, т.е. способно изменять её тонус и обеспечивать её бодрствование. Это ретикулярная формация – образование, построенное по типу нервной сети, в которую вкраплены тела нервных клеток, соединяющиеся друг с другом короткими отростками. По её сети возбуждение распространяется не отдельными, изолированными импульсами, не по закону «все или ничего», а градуально, постепенно меняя свой уровень и, т.о., модулируя (активируя и тормозя) состояние всего нервного аппарата .

Одни из волокон ретикулярной формации направляются вверх, оканчиваясь в расположенных выше нервных образованиях – таламусе, хвостатом теле, коре. Эти образования были названы восходящей ретикулярной системой , которая играет решающую роль в регуляции активности коры. Другие волокна ретикулярной формации имеют обратное направление: они начинаются от более высоко расположенных нервных образований – коры, хвостатого тела и ядер таламуса – и направляются к расположенным ниже структурам среднего мозга, гипоталамуса и мозгового ствола. Эти образования получили название нисходящей ретикулярной системы. Они ставят нижележащие образования под контроль тех программ, которые возникают в КГМ и для выполнения которых требуется модификация (изменение) и модуляция состояний бодрствования.

Оба отдела ретикулярной формации составляют единую саморегулирующуюся вертикально расположенную функциональную систему, построенную по принципу рефлекторного круга, которая может обеспечивать изменение тонуса коры, но которая вместе с тем сама находится под регулирующим влиянием тех изменений, которые наступают в КГМ. Это система пластичного приспособления к условиям среды в процессе активной деятельности. Каждый из отделов включают активационные и тормозные пути (разделы).

Выделяется 3 основных источника активации нервного аппарата. Первым источником активации являются обменные процессы организма ,лежащие в основе гомеостаза и инстинктивных процессов. Второй источник активации связан с поступлением в организм раздражений из внешнего мира и приводит к возникновению иных форм активации, проявляющихся в виде ориентировочного рефлекса. В гиппокампе значительное место занимают нейроны производящие как бы сличение (компарацию) старых и новых раздражителей и обеспечивающие реакцию на новые сигналы или их свойства с угасанием реакции (прекращением активности) на старые, уже привычные раздражители. Эти первые 2 источника связаны с восходящими связями ретикулярной формации.

Третий источник активации связан с тем, что значительная часть активности человека обусловлена намерениями и планами, перспективами и программами , которые формируются в процессе его сознательной жизни, являются социальными по своему заказу и осуществляются при ближайшем участии сначала внешней, а потом и его внутренней речи. Всякий сформулированный в речи замысел преследует некоторую цель и вызывает целую программу действий, направленных на достижение этой цели. Достижение цели прекращает активность. Но возникновение намерений и формулировка целей это не чисто интеллектуальный акт. Осуществление замысла или достижение цели требует определенной энергии и может быть обеспечено лишь при наличии некоторого уровня активности.

Этот источник активации связан с нисходящими связями коры . Именно эти связи и осуществляют регулирующее влияние мозговой коры на нижележащие стволовые образования и являются механизмом, с помощью которого возникшие в коре функциональные узоры возбуждения вовлекают аппараты ретикулярной формации древнего мозга и получают энергетический заряд.

Таким образом наряду со специфическими сенсорными и двигательными функциями, КГМ имеет и неспецифические модулирующие функции; раздражение определенных участков коры может оказывать как активирующие, так и тормозящие влияния на нижележащие нервные образования . Нисходящие волокна исходят, прежде всего, из лобных префронтальных отделов коры и являются тем аппаратом, посредством которого высшие отделы мозговой коры, непосредственно участвующие в формировании намерений и планов, управляют работой нижележащих аппаратов ретикулярной формации, таламуса и ствола, тем самым модулируя их работу и обеспечивая наиболее сложные формы сознательной деятельности.

Все это показывает, во-первых, что аппараты первого блока не только тонизируют кору, но и сами испытывают ее дифференцирующее влияние, и, во-вторых, что первый функциональный блок мозга работает в тесной связи с высшими отделами коры.

ВЫВОД: 1-ый блок построен по типу неспецифической нервной сети, которая осуществляет свою функцию путем постепенного, градуального изменения состояний. Первый блок воспринимает и перерабатывает различную информацию и регулирует состояние внутренней среды организма с помощью нейрогуморальных и биохимических механизмов. Первый блок участвует в осуществлении любой психической деятельности и, особенно в процессах внимания, памяти, эмоциональных состояниях и сознании в целом.

6. Что такое блок приема, переработки и хранения информации? Этот блок расположен в конвекситальных отделах коры и занимает ее задние отделы, включая в свой состав аппараты зрительной (затылочной), слуховой (височной) и общечувствительной (теменной) областей. Нейроны 2 блока работают по закону «все или ничего», принимая отдельные импульсы и передавая их на другие группы нейронов.

По своим функциональным особенностям аппараты этого блока приспособлены к приему экстероцептивных раздражений, приходящих в ГМ от периферических рецепторов, к анализу их на мельчайшие составляющие детали и к синтезу их в целые функциональные системы.

Основу этого блока составляют первичные проекционные зоны коры с высоким развитием нейронов IV афферентного слоя, обладающих высочайшей специфичностью. Эти зоны коры представляют собой корковый аппарат того или иного модально-специфического анализатора, построены по единому принципу иерархической организации .

Над первичными зонами коры 2-ого функционального блока мозга надстроены аппараты вторичных (гностических) зон коры, в которых IV слой уступает ведущее место II и III слоям, не имеющим столь выраженной модальной специфичности и включающим в свой состав значительное число ассоциативных нейронов с короткими аксонами, что позволяет комбинировать поступающие возбуждения в нужные «функциональные узоры» и осуществлять синтетическую функцию.

Но познавательная деятельность человека никогда не протекает, опираясь лишь на одну изолированную модальность (зрение, слух, осязание); любое предметное восприятие и тем более представление является результатом полимодальной деятельности. Поэтому познавательная деятельность должна опираться на совместную работу целой системы зон КГМ. Функцию обеспечения такой совместной работы целой группы анализаторов несут третичные зоны 2-ого блока (зоны перекрытия корковых отделов различных анализаторов). Эти зоны расположены на границе затылочного, височного и заднецентрального отделов коры («задний ассоциативный центр»). Функция их почти полностью сводится к интеграции возбуждений, приходящих из разных анализаторов. Подавляющая часть нейронов этих зон имеет мультимодальный характер и реагирует на комплексные признаки среды (напр., на признаки пространственного расположения, кол-во элементов), на которые не реагируют нейроны первичных и вторичных зон.

Деятельность третичных зон задних отделов коры необходима не только для успешного синтеза наглядной информации, но и для перехода от уровня непосредственного наглядного синтеза к уровню символических процессов, для оперирования значениями слов, сложными грамматическими и логическими структурами, системами чисел и отвлеченными соотношениями. Т.е. третичные зоны задних отделов коры являются аппаратами, участие которых необходимо для превращения наглядного восприятия в отвлеченное мышление, опосредствованное всегда внутренними схемами, и для сохранения в памяти организованного опыта.

Законы построения коры, входящей в состав 2-го и 3-го блоков мозга. Первый закон закон иерархического строения корковых зон. Иерархия между первичными, вторичными и третичными зонами коры не остаётся одинаковой в процессе онтогенеза: у маленького ребенка для успешного формирования вторичных зон необходима сохранность первичных зон, а для формирования третичных зон – достаточная сформированность вторичных зон коры. Поэтому нарушение в раннем возрасте низших зон коры соответствующих типов неизбежно приводит к недоразвитию более высоких зон коры; т.о., как это было сформулировано Л.С. Выго тским, основная линия взаимодействия зон коры в детском возрасте направлена «снизу вверх».

Наоборот, у взрослого человека с полностью сложившимися психологическими функциями ведущее место переходит к высшим зонам коры. Воспринимая окружающий мир, взрослый человек организует свои впечатления в логические системы: наиболее высокие, третичные, зоны коры у него управляют работой подчиненных им вторичных зон, а при поражении последних оказывают на их работу компенсирующее влияние. Такой характер взаимоотношений иерархически построенных зон коры в зрелом возрасте позволил Л.С. Выго тскому заключить, что на позднем этапе онтогенеза зоны коры взаимодействуют «сверху вниз».

Второй закон: закон убывающей специфичности иерархически построенных зон коры . Первичные зоны коры каждой из частей, входящих в состав 2-го блока, обладают максимальной модальной специфичностью. Вторичные зоны коры, где преобладают II и III слои, обладают модальной специфичностью в значительно меньшей степени. Будучи тесно связанными с корковыми отделами соответствующих анализаторов, эти зоны характеризуются модально-специфическими гностическими функциями. Здесь интегрируется в одних случаях зрительная (вторичные затылочные зоны), в других – слуховая (вторичные височные зоны), в третьих – тактильная информация (вторичные теменные зоны). Еще в меньшей степени модальная специфичность характеризует третичные зоны 2-ого блока: функция третичных зон приобретает надмодальный характер.

Вторичные и третичные зоны коры, в которых преобладают мультимодальные и ассоциативные нейроны и которые не имеют прямой связи с периферией, несмотря на убывающую специфичность, а может быть, как раз в силу такой убывающей специфичности, приобретают способность играть организующую, интегрирующую роль в работе более специфических зон, становятся ответственными за организацию функциональных систем, необходимых для осуществления сложных познавательных процессов. Ко вторичным полям афферентные импульсы поступают не из релейных (переключательных) ядер таламуса, а из ассоциативных, т.е. вторичные поля получают более сложную переработанную информацию с периферии, чем первичные.

Третий закон: закон прогрессивной латерализации функций , т.е. связи функций с определенным полушарием мозга по мере перехода от первичных зон коры к вторичным и затем третичным зонам.

Первичные зоны обоих полушарий мозга равноценны. Иначе обстоит дело при переходе к вторичным, а затем третичным зонам. С возникновением праворукости (её появление связано с трудом и относится к очень ранним этапам истории человека), а затем и связанной с ней речи, возникает известная латерализация функций, которая отсутствует у животных, но которая у человека становится важным принципом функциональной организации мозга.

Левое полушарие у правшей становится доминантным; оно начинает осуществлять речевые функции, в то время как правое полушарие, не связанное с деятельностью правой руки и речью, остается субдоминантным.

Доминантное полушарие играет существенную роль не только в мозговой организации самих речевых процессов, но и в мозговой организации всех связанных с речью высших форм психической деятельности – категориального восприятия, активной речевой памяти, логического мышления и др., в то время как субдоминантное полушарие в меньшей степени участвует в их протекании. У взрослого человека функции вторичных и третичных зон доминантного полушария начинают коренным образом отличаться от функций вторичных и третичных зон субдоминантного полушария.

ВЫВОД: 2-ой блок мозга расположен в задних отделах полушарий и включает в свой состав зрительные (затылочные), слуховые (височные) и общечувствительные (теменные) отделы КГМ и соответствующие подкорковые структуры. Аппараты 2-ого блока имеют иерархическое строение, распадаясь на первичные (проекционные) зоны, которые принимают информацию и дробят ее на мельчайшие составные части, вторичные (проекционно-ассоциативные) зоны, которые обеспечивают кодирование (синтез) этих составных частей и превращают соматотопическую проекцию в функциональную организацию, и третичные зоны (зоны перекрытия), обеспечивающие совместную работу различных анализаторов и выработку надмодальных (символических) схем, лежащих в основе комплексных форм познавательной деятельности.

Указанные иерархически построенные зоны коры 2-ого блока работают по законам убывающей модальной специфичности и возрастающей функциональной латерализации. Оба эти закона и обеспечивают возможность наиболее сложных форм работы мозга, лежащих в основе наиболее высоких видов познавательной деятельности человека, генетически связанных с трудом, а структурно – с участием речи в организации психических процессов.

7. Что такое блок программирования, регуляции и контроля сложных форм деятельности? Прием, переработка и хранение внешней информации составляют только одну сторону психической жизни человека. Её другую сторону составляет организация активной сознательной психической деятельности. С этой задачей и связан третий блок мозга – блок программирования, регуляции и контроля сложных формдеятельностью.

Человек не пассивно реагирует на поступающие сигналы. Он формирует планы и программы своих действий, следит за их выполнением и регулирует свое поведение, приводя его в соответствие с этими планами и программами; он контролирует свою сознательную деятельность, сличая эффект своих действий с исходными намерениями и корригируя допущенные им ошибки. Все эти процессы активной сознательной деятельности требуют иных мозговых аппаратов, чем аппараты 1-ого и 2-ого блока. Этим задачам и служат аппараты 3-его функционального блока, которые расположены в передних отделах больших полушарий, спереди от передней центральной извилины. «Выходными воротами» этого блока является двигательная зона коры , V слой которой содержит клетки Беца, волокна от которых идут к двигательным ядрам СМ, а оттуда к мышцам, составляя пирамидный путь.Передняя центральная извилина (занимает заднюю часть прецентральной области, 4 поле Бродмана) является первичной проекционной зоной , исполнительным аппаратом мозговой коры. Первичная двигательная кора не может работать изолированно; все движения человека в той или иной степени нуждаются в тоническом пластическом фоне ,который обеспечивается базальными ядрами и их волокнами (экстрапирамидный путь) .

Двигательный состав тех импульсов, которые первичная двигательная кора посылает на периферию, должен быть хорошо подготовлен, включен в определенные программы. Без такой подготовки импульсы, не могут обеспечить целесообразные движения. Решающее значение в подготовке двигательных импульсов имеют надстроенные над ней вторичные и третичные зоны, подчиняющиеся тем же принципам иерархического строения и убывающей специфичности. Основным отличием здесь является тот факт, что если во втором, афферентном, блоке мозга процессы идут от первичных к вторичным и третичным зонам, то в третьем, эфферентном, блоке процессы идут в нисходящем направлении, начинаясь в наиболее высоких – третичных и вторичных зонах, где формируются двигательные планы и программы, переходя затем к аппаратам первичной двигательной зоны, которая посылает подготовленные двигательные импульсы на периферию.

Другое отличие 3-его блока от 2-ого заключается в том, что 3-ий блок не содержит модально-специфических зон, представляющих собой отдельные анализаторы, а состоит из аппаратов эфферентного, двигательного типа, находящихся под постоянным влиянием аппаратов афферентного блока.

Роль основной вторичной зоны 3-его блока играют премоторные отделы лобной области (занимают подавляющую часть прецентральной области, 6 и 8 поле Бродмана). Раздражение этих отделов коры вызывает не сокращения отдельных мышц, а целые комплексы движений, имеющих системно организованный характер (повороты глаз, головы и всего тела и хватающие движения руки), что указывает на интегративную роль этих зон коры в организации движений.

Наиболее существенной частью 3-его блока мозга являются префронтальные отделы мозга (10 поле Бродмана), которые вследствие отсутствия в их составе клеток Беца и наличия во II и III слоях большого числа мелких клеток (гранул) иногда называют гранулярной лобной корой. Эти отделы мозга относятся к третичным зонам коры, которые выполняют ассоциативные функции, а также играют решающую роль в формировании намерений и программ, в регуляции и контроле наиболее сложных форм поведения человека.

Префронтальная область мозга имеет богатейшую систему связей с нижележащими отделами мозга, ретикулярной формацией и практически со всеми отделами коры. Благодаря двустороннему характеру этих связей префронтальные отделы коры находятся в особенно выгодном положении как для вторичной переработки сложнейших афферентаций, приходящих от всех отделов мозга, так и для организации эфферентных импульсов, позволяющих оказывать регулирующие воздействия на все эти структуры.

Лобные доли получают импульсы от систем 1-ого блока, «заряжаясь» от него, в то же время оказывают интенсивное воздействие на образования ретикулярной формации, придавая её активирующим импульсам дифференцированный характер и приводя их в соответствие с теми динамическими схемами поведения, которые формируются непосредственно в лобной коре.

В отличие от третичных зон задних отделов мозга третичные отделы лобных долей фактически надстроены над всеми отделами мозговой коры (благодаря своим обширным связям), выполняя, таким образом, гораздо более универсальную функцию общей регуляции поведения, чем та, которую имеет задний ассоциативный центр .

Разрушение префронтальной коры приводит к глубокому нарушению сложных программ поведения и к выраженному растормаживанию непосредственных реакций на побочные раздражители (гиперреактивность), в результате чего выполнение сложных программ поведения становится невозможным. Поведение животного после экстирпации лобных долей мозга глубоко изменяется. У такого животного нельзя отметить каких-либо нарушений в работе отдельных органов чувств, однако осмысленное, целенаправленное поведение глубоко страдает. Это проявляется не только в отношении актуально действующих сигналов, но и в формировании активного поведения, направленного на будущее. Также животное без лобных долей оказывается не в состоянии обнаруживать и исправлять допускаемые ошибки, вследствие чего поведение его теряет организованный, осмысленный характер.

ВЫВОД: к 3-ему функциональному блоку относится конвекситальная лобная кора со всеми её корковыми и подкорковыми связями. В передней центральной извилине берёт начало пирамидный путь. Анатомическое строение 3-его блока мозга обусловливает его ведущую роль в программировании и контроле за протеканием психических функций, в формировании замыслов и целей психической деятельности, в регуляции и контроле за результатами отдельных действий, деятельности и поведения в целом.

8. Каково взаимодействие трех основных функциональных блоков мозга? Согласно современным психологическим представлениям, каждая психическая деятельность имеет строго определенную структуру: она начинается с фазы мотивов, намерений, замыслов, которые затем превращаются в определенную программу деятельности, включающую «образ результата» и представление о способах реализации программы, после чего продолжаете в виде фазы реализации программы с помощью определенных операций. Завершается психическая деятельность фазой сличения полученных результатов с исходным «образом результата». В случае несоответствия этих данных психическая деятельность продолжается до получения нужного результата. Эта схема (или психологическая структура) психической деятельности может быть соотнесена с мозгом следующим образом.

В первичной стадии формирования мотивов (намерений) в любой сознательной психической деятельности (гностической, мнестической, интеллектуальной) принимает участие преимущественно первый блок мозга. Он обеспечивает также оптимальный общий уровень активности мозга и избирательные, селективные формы активности, необходимые для осуществления конкретных видов психической деятельности. Первый блок мозга преимущественно ответствен и за эмоциональное «подкрепление» психической деятельности (переживание «успеха-неуспеха»).

Стадия формирования целей, программ (программирования мнестической деятельности ) связана преимущественно с работой 3 блока мозга так же, как и стадия контроля за реализацией программы .

Операциональная стадия (стадию использования различных мнестических приемов) деятельности осуществляется преимущественно с помощью второго блока мозга.

Поражение любого из блоков отражается на любой психической деятельности, так как приводит к нарушению соответствующей стадии (фазы, этапа) её реализации.

Современные представления о строении психических процессов исходят из модели рефлекторного кольца или сложной саморегулирующейся системы, каждое звено которой включает как афферентные, так и эфферентные компоненты и которая в целом носит характер сложной и активной психической деятельности. Напр. предметное восприятие носит не только полирецепторный характер, опираясь на совместную работу целой группы анализаторов, но всегда включает в свой состав активные двигательные компоненты. Решающую роль движений глаз в зрительном восприятии отмечал еще И.М. Сеченов. Неподвижный глаз практически не может воспринимать изображение, состоящее из многих компонентов; сложное предметное восприятие предполагает активные, поисковые движения глаз, выделяющие нужные признаки, и лишь постепенно, по мере развития принимает свернутый характер.

Вывод: восприятие осуществляется при совместном участии всех функциональных блоков мозга, из которых первый обеспечивает нужный тонус коры, второй осуществляет анализ и синтез поступающей информации, а третий обеспечивает направленные поисковые движения, создавая тем самым активный характер воспринимающей деятельности. Такое сложное строение восприятия объясняет, почему его нарушения могут возникать при поражении различных, далеко расположенных друг от друга, мозговых аппаратов.

Другой пример о построении произвольного движения и действия. Участие эфферентных механизмов в построении движения очевидно, но движение не может управляться одними эфферентными импульсами и что для его организованного протекания необходимы постоянные афферентные процессы, сигнализирующие о состоянии сочленений и мышц, положении сегментов движущегося аппарата и тех пространственных координатах, в которых движение протекает. Т.о. произвольное движение, и тем более предметное действие, опирается на совместную работу самых различных отделов мозга, и если аппараты 1-го блока обеспечивают нужный тонус мышц, без которого никакое координированное движение невозможно, то аппараты 2-го блока дают возможность осуществить те афферентные синтезы, в системе которых протекает движение, а аппараты 3-го блока обеспечивают подчинение движения и действия соответствующим намерениям, создают программы выполнения двигательных актов и обеспечивают ту регуляцию и контроль протекания движений, благодаря которым сохраняется его организованный, осмысленный характер.

Сенсорные системы (анализаторы) мозга.

Сенсорной системой (анализатором, по И. П. Павлову) называют часть НС, состоящую из воспринимающих элементов - сенсорных рецепторов, получающих стимулы из внешней или внутренней среды, нервных путей, передающих информацию от рецепторов в мозг, и тех частей мозга, которые перерабатывают эту информацию. Таким образом, сенсорная система вводит информацию в мозг и анализирует ее.

Сенсорная система выполняет следующие основные функции , или операции, с сигналами : 1) обнаружение; 2) различение; 3) передачу и преобразование; 4) кодирование; 5) детектирование признаков; 6) опознание образов. Обнаружение и первичное различение сигналов обеспечивается рецепторами, а детектирование и опознание сигналов - нейронами коры больших полушарий.

У человека различают зрительные, слуховые, обонятельные, вкусовые, осязательные рецепторы, термо-, проприо- и вестибулорецепторы (рецепторы положения тела и его частей в пространстве) и рецепторы боли.

По характеру контакта со средой рецепторы делятся на дистантные, получающие информацию на расстоянии от источника раздражения (зрительные, слуховые и обонятельные), и контактные - возбуждающиеся при непосредственном соприкосновении с раздражителем (вкусовые, тактильные).

В зависимости от природы раздражителя, на который они оптимально настроены, рецепторы могут быть разделены на фоторецепторы, механорецепторы, к которым относятся слуховые, вестибулярные рецепторы, и тактильные рецепторы кожи, рецепторы опорно-двигательного аппарата, барорецепторы сердечно-сосудистой системы; хеморецепторы, включающие рецепторы вкуса и обоняния, сосудистые и тканевые рецепторы; терморецепторы (кожи и внутренних органов, а также центральные термочувствительные нейроны); болевые рецепторы.

Все рецепторы делятся на первично-чувствующие и вторично-чувствующие . К первым относятся рецепторы обоняния, тактильные и проприорецепторы. Они различаются тем, что преобразование энергии раздражения в энергию нервного импульса происходит у них в первом нейроне сенсорной системы. К вторично-чувствующим относятся рецепторы вкуса, зрения, слуха, вестибулярного аппарата. У них между раздражителем и первым нейроном находится специализированная рецепторная клетка, не генерирующая импульсы. Таким образом, первый нейрон возбуждается не непосредственно, а через рецепторную (не нервную) клетку.

Передача и преобразование сигналов . Процессы преобразования и передачи сигналов в сенсорной системе доносят до высших центров мозга наиболее важную (существенную) информацию о раздражителе в форме, удобной для его надежного и быстрого анализа.

Ограничение избыточности информации и выделение существенных признаков сигналов . Зрительная информация, идущая от фоторецепторов, могла бы очень быстро насытить все информационные резервы мозга. Избыточность сенсорных сообщений ограничивается путем подавления информации о менее существенных сигналах.

Кодирование информации . Кодированием называют совершаемое по определенным правилам преобразование информации в условную форму - код. В сенсорной системе сигналы кодируются двоичным кодом, т. е. наличием или отсутствием электрического импульса в тот или иной момент времени.

Опознание образов. Это конечная и наиболее сложная операция сенсорной системы. Она заключается в отнесении образа к тому или иному классу объектов, с которыми ранее встречался организм, т. е. в классификации образов. Синтезируя сигналы от нейронов-детекторов, высший отдел сенсорной системы формирует «образ» раздражителя и сравнивает его с множеством образов, хранящихся в памяти. Опознание завершается принятием решения о том, с каким объектом или ситуацией встретился организм. В результате этого происходит восприятие, т. е. мы осознаем, чье лицо видим перед собой, кого слышим, какой запах чувствуем.

H.H. Данилова:

Первый функциональный блок составляют анализаторы, или сенсорные системы. Анализаторы выполняют функцию приема и переработки сигналов внешней и внутренней среды организма. Каждый анализатор настроен на определенную модальность сигнала и обеспечивает описание всей совокупности признаков воспринимаемых раздражителей. Модальная специфичность анализатора в первую очередь определяется особенностями функционирования его периферических образований и специфичностью рецепторных элементов. Однако в значительной степени она связана с особенностями структурной организации центральных отделов анализатора, упорядоченностью межнейронных связей всех морфологических образований от рецепторного уровня до коркового конца (проекционных зон).

Анализатор - это многоуровневая система с иерархическим принципом ее конструкции. Основанием анализатора служит рецепторная поверхность, а вершиной - проекционные зоны коры. Каждый уровень этой морфологически упорядоченно организованной конструкции представляет собой совокупность клеток, аксоны которых идут на следующий уровень (исключение составляет верхний уровень, аксоны которого выходят за пределы данного анализатора). Взаимоотношения между последовательными уровнями анализаторов построены по принципу «дивергенции- конвергенции». Чем выше нейронный уровень анализаторной системы, тем большее число нейронов он включает. На всех уровнях анализатора сохраняется принцип топической проекции рецепторов. Принцип многократной рецептотопической проекции способствует осуществлению множественной и параллельной переработки (анализу и синтезу) рецепторных потенциалов («узоров возбуждений»), возникающих под действием раздражителей.

Уже в функциональной организации клеточного аппарата рецепторного уровня анализаторов выявились существенные черты их приспособления к адекватному отражению действующих раздражителей (специфичность рецепторов по фото-, термо-, хемо- и другим видам «энергии»). Известный закон Фехнера о логарифмическом отношении силы раздражителя и интенсивности ощущения получил объяснение в частотных характеристиках разряда рецепторных элементов. Обнаруженный в 1958 г. Ф. Ратлиффом эффект латерального торможения в глазе мечехвоста объяснил способ контрастирования изображения, улучшающий возможности предметного зрения (детекции формы). Механизм латерального торможения выступил как универсальный способ формирования селективных каналов передачи информации в центральной нервной системе. Он обеспечивает центральным нейронам анализаторов избирательную настройку их рецептивного поля на определенные свойства раздражителя. Нейрон, стоящий на выходе рецептивного поля, может выделять один признак раздражителя (простые детекторы) или комплекс его свойств (сложные детекторы). Детекторные свойства нейрона обусловливаются структурной организацией его рецептивного поля. Нейроны-детекторы более высокого порядка образуются в результате конвергенции нейронов-детекторов низшего (более элементарного) уровня. Нейроны-детекторы сложных свойств формируют детекторы «сверхсложных» комплексов. Высший уровень иерархической организации детекторов достигается в проекционных зонах и ассоциативных областях коры мозга .

Проекционные зоны анализаторных систем занимают наружную (конвекситальную) поверхность новой коры задних отделов мозга. Сюда входят зрительная (затылочная), слуховая (височная) и общечувствительная (теменная) области коры. В корковый отдел этого функционального блока включается также представительство вкусовой, обонятельной, висцеральной чувствительности. При этом наиболее обширные области в коре занимает та сенсорная система, которая имеет наибольшее экологическое значение для данного вида.

Первичные проекционные зоны коры состоят главным образом из нейронов 4-го афферентного слоя, для которых характерна четкая топическая организация. Значительная часть этих нейронов обладает высочайшей специфичностью. Так, например, нейроны зрительных областей избирательно реагируют на определенные признаки зрительных раздражителей: одни - на оттенки цвета, другие - на направление движения, третьи - на характер линий (край, полоса, наклон линии) и т. п. Однако следует отметить, что в первичные зоны отдельных областей коры включены также нейроны мультимодального типа, реагирующие на несколько видов раздражителей. Кроме того, там же имеются нейроны, реакция которых отражает воздействие неспецифических (лимбико-ретикулярных или модулирующих) систем.

Вторичные проекционные зоны коры располагаются вокруг первичных зон, как бы надстраиваясь над ними. В этих зонах 4-й афферентный слой уступает ведущее место 2-му и 3-му слоям клеток. Для этих нейронов характерно детектирование сложных признаков раздражителей, однако при этом сохраняется модальная специфичность, соответствующая нейронам первичных зон. Поэтому предполагается, что усложнение детекторных селективных свойств нейронов вторичных зон может происходить путем конвергенции на них нейронов первичных зон. В первичной зрительной коре (17-е поле Бродмана) содержатся в основном нейроны-детекторы простых признаков предметного зрения (детекторы ориентации линий, полосы, контраста и т. п.), а во вторичных зонах (18-е и 19-е поля Бродмана) появляются детекторы более сложных элементов контура: края, ограниченной длины линий, углов с различной ориентацией и др. . Первичные (проекционные) зоны слуховой (височной) коры представлены 41-м полем Бродмана (рис. 4), нейроны которого модально специфичны и реагируют на различные свойства звуковых раздражителей. Как и первичное зрительное поле, эти первичные отделы слуховой коры имеют четкую рецептотопию. Над аппаратами первичной слуховой коры надстроены вторичные зоны слуховой коры, расположенные во внешних отделах височной области (22-е и частично 21-е поля Бродмана). Они также состоят преимущественно из мощно развитого 2-го и 3-го слоя клеток, реагирующих избирательно одновременно на несколько частот и интенсивностей: звукового раздражителя.

Наконец, тот же принцип функциональной организации сохраняется и в общечувствительной (теменной) коре. Основой и здесь являются первичные или проекционные зоны (3-, 1- и 2-е поля Бродмана), толща которых также преимущественно состоит из обладающих модальной специфичностью нейронов 4-го слоя, а топография отличается четкой соматотопической проекцией отдельных сегментов тела. Вследствие чего раздражение верхних участков этой зоны вызывает появление кожных ощущений в нижних конечностях, средних участков - в верхних конечностях контрлатеральной стороны, а раздражение пунктов нижнего пояса этой зоны - соответствующие ощущения в контрлатеральных отделах лица, губ и языка. Над первичными зонами располагаются вторичные зоны общечувствительной (теменной) коры (5-е и частично 40-е поле Бродмана), состоящие преимущественно тоже из нейронов 2-го и 3-го слоев, и их раздражение приводит к возникновению более комплексных форм кожной и кинестетической чувствительности (см. рис. 4).

Таким образом, основные, модально-специфические зоны анализаторов мозга построены по единому принципу иерархической структурной и функциональной организации. Первичные и вторичные зоны, согласно И.П. Павлову, составляют центральную часть, или ядро, анализатора в коре, нейроны которого характеризуются избирательной настройкой на определенный набор параметров раздражителя и обеспечивают механизмы тонкого анализа и дифференцировки раздражителей. Взаимодействие первичных и вторичных зон носит сложный, неоднозначный характер и в условиях нормальной деятельности обусловливает согласованное содружество процессов возбуждения и торможения, которое закрепляет макро- и микроструктуру нервной сети, занятой анализом афферентного потока в первичных проекционных сенсорных полях. Это создает основу для динамического межанализаторного взаимодействия, осуществляемого в ассоциативных зонах коры.

Ассоциативные области (третичные зоны) коры являются новым уровнем интеграции: они занимают 2-й и 3-й клеточные (ассоциативные) слои коры, на которых протекает встреча мощных афферентных потоков, как одномодальных, разномодальных, так и неспецифических. Подавляющее большинство ассоциативных нейронов отвечает на обобщенные признаки стимулов - на количество элементов, пространственное положение, отношения между элементами и пр.

Конвергенция разномодальной информации необходима для целостного восприятия, для формирования «сенсорной модели мира», которая возникает в результате сенсорного обучения.

Ассоциативные зоны расположены на границе затылочной, височной и заднетеменной коры. Основную их часть составляют образования нижнетеменной корковой области, которая у человека развилась настолько, что составляет едва ли не четвертую часть всех образований описываемого сенсорного блока мозга. Работа этих отделов коры мозга необходима не только для успешного синтеза и дифференцировки /избирательного различения) воспринимаемых человеком раздражителей, но и для перехода к уровню их символизации - для оперирования значениями слов и использования их для отвлеченного мышления, т.е. для того синтетического характера восприятия, о котором писал в свое время И.М. Сеченов.

Клинические наблюдения различных очаговых поражений третичных зон мозга человека накопили большой материал о взаимосвязи ассоциативных областей с различными функциональными расстройствами. Известно, что поражения лобно-височно-теменной области, так называемых речевых зон (имеется в виду левое полушарие), связаны с возникновением афазии (расстройства речи). При поражении нижневисочной области наблюдают предметную агнозию (нарушение процесса узнавания), теменных областей или угловой извилины теменной доли - развитие оптико-пространетвенной агнозии, при поражении левой височной доли обнаруживается цветовая агнозия и т. д. Следует отметить, что локальные поражения ассоциативных зон коры могут быть связаны как с относительно элементарными сенсорными расстройствами, так и с нарушениями сложных форм восприятия.

У высших животных механизмы, выделяющие элементарные признаки раздражителей, составляют лишь начальное звено в механизме восприятия и дифференцировки стимулов (специфические ядра таламуса и первичные зоны коры). В высших сенсорных (вторичных и ассоциативных) зонах коры выступает закон убывающей специфичности, который является обратной стороной принципа иерархической организации нейронов-детекторов в специфической подкорке и проекционных зонах коры. В нем отражается переход от дробного анализа частных модально-специфических признаков раздражителя к синтезу более общих «схем» воспринимаемого. Закономерным является и то, что, несмотря на убывающую специфичность высших сенсорных полей коры (преобладание мультимодальных и ассоциативных нейронов), они являются в функциональном отношении более совершенными образованиями. Они выполняют функцию интеграции сложных комплексных раздражителей, им свойственна пластичность, они подвержены «неспецифической» активации со стороны модулирующих систем (ретикулярной формации, «центров» актуализированных потребностей и пр.).

Механизмы различения фигур и их пространственной организации у обезьян связывают с ассоциативными зонами (височной и заднетеменной) коры мозга. Известно, что обезьяны легко обучаются различению фигур по форме, размеру и их пространственной ориентации. После экстирпации нижневисочной коры обезьяна испытывает затруднения в различении фигур по их форме, но легко обучается дифференцировать их по размеру и ориентации. В то время как удаление затылочно-теменной зоны коры приводит к нарушению механизма пространственной дифференцировки фигур по отношению к телу, а также нарушению различения положения и перемещения собственного тела по отношению к окружающим предметам. Данные о физиологической роли височной и заднетеменной коры пока малочисленны. Так, для выяснения специфической функции нижневисочной коры и ее нейронной организации были проведены микроэлектродные исследования на обезьянах с использованием сложной стимульной программы: квадрат и круг сопровождались двигательным обучением, а крест и треугольник использовались в качестве незначащих стимулов. В результате исследований выделены три группы клеток: одни нейроны реагировали избирательно только на одну из четырех использовавшихся фигур, другие нейроны отвечали на две фигуры, третьи - на все четыре (без дифференцировки значимости стимула). Из экспериментов следовало, что эти нейроны выделяют сложные признаки зрительного изображения независимо от моторного обучения, при этом одни из них реагируют на появление соответствующего ему сенсорного стимула, другие отвечают лишь тогда, когда стимул сопровождается актом внимания. Нейроны пластичны, их специфическая реакция на сенсорный «образ» не связана с двигательным обучением и может меняться лишь в результате сенсорного обучения. Следует отметить, что свойства этих нейронов хорошо согласуются с поведенческими и клиническими данными о роли нижневисочной коры в процессах формирования сложных образов . Следуя высказанной в 1949 г. гипотезе Д. Хебба, можно предположить, что отдельные нейроны ассоциативных зон коры связаны разнообразными путями и образуют клеточные ансамбли, выделяющие «подобразы», т.е. соответствующие унитарным формам восприятия. Эти связи, как отмечал Д. Хебб, настолько хорошо развиты, что достаточно активировать один нейрон, как возбуждается весь ансамбль. Позднее Ю. Конорский , опираясь на ставшие классическими данные Д. Хьюбела и Т. Визеля о корковых нейронах с «простыми», «сложными» и «сверхсложными» рецептивными полями и детектирующими все более сложные признаки зрительного стимула, выдвинул концепцию о «гностических нейронах». Он предположил, что унитарному восприятию (т. е. узнаванию знакомого лица с первого взгляда, знакомого голоса, знакомого запаха, характерного жеста и др.) соответствуют не ансамбли совозбужденных нейронов, а единичные нейроны - «гностические нейроны», интегрирующие возбуждение при действии сложных комплексных раздражителей. Гностические нейроны составляют главную деятельную основу высших уровней анализаторов, вследствие чего высшие уровни анализаторов представляют, по мнению Ю. Конорского, «гностические зоны». Гностическую зону можно рассматривать как своеобразную картотеку гностических нейронов, в которой представлены все унитарные «подобразы», сформировавшиеся у данного индивидуума в процессе сенсорного обучения.

Для концепции гностических нейронов первое время не было экспериментальных доказательств. Основой для предположений Ю. Конорского служили главным образом клинические данные. Однако вскоре стали появляться работы, из которых следовало, что « гностические нейроны », избирательно реагирующие на сложные комплексы раздражителей, существуют. В лобных долях мозга кошки были обнаружены клетки, которые избирательно реагируют на появление в поле зрения сложного зрительного стимула. У говорящих птиц существуют нейроны, избирательные к гласным звукам человеческой речи. Наконец, с 1980-х годов стали появляться серии работ по исследованию височных отделов коры мозга обезьян. В верхневисочной извилине были обнаружены нейроны, выделяющие определенные черты лица. По гностическим свойствам нейроны верхневисочной извилины отличались друг от друга. Одни нейроны отвечали только при фиксации внимания на интересующем обезьяну объекте, другие - при свободном блуждании взора, если стимул попадал на сетчатку. Одни нейроны давали максимальную реакцию на изображения лица человека в фас, другие - в профиль, третьи - на часть лица (верхнюю или нижнюю). При этом большинство нейронов реагирует на трехмерное изображение лица, а не на двумерное. Одни нейроны реагируют на лицо конкретного индивида, другие - на любое лицо независимо от индивидуальных черт. Большая часть Нейронов верхневисочной извилины оказалась специфичной к живому конкретному лицу (человека или обезьяны). Формирование механизма избирательности в височной коре обезьяны происходит под влиянием индивидуального опыта, поскольку отмечается зависимость селективных свойств нейронов от круга лиц (животных и экспериментаторов), с которыми обезьяна была в общении до экспериментов. Данные нейронных исследований на обезьянах по восприятию изображений лица согласуются с результатами наблюдения больных с прозопагнозией (нарушением узнавания лиц), которые также свидетельствуют о наличии в области височных отделов коры мозга специального механизма по распознаванию лиц .

Известно, что система нейронов, детектирующих сложные сенсорные стимулы (гностические единицы), формируется на базе врожденной (генетически детерминированной) системы корковых нейронов с «жесткими» связями и большим резервом «лабильных», пластичных связей. В определенный критический (сенситивный) период онтогенетического развития и созревания межнейронных связей важным является функциональное задействование этих потенциальных связей. Их актуализация осуществляется под воздействием внешней стимуляции (индивидуального сенсорного опыта) . В процесс приобретения индивидуального опыта дополнительный вклад вносит модулирующая система, оказывающая «неспецифическое» активирующее воздействие на соответствующий анализатор. Активирующее воздействие достигается через ориентировочно-исследовательский рефлекс или внимание. Этот процесс активации, по мнению Ю. Конорского, является необходимой предпосылкой для преобразования потенциальных корковых связей в действующие, т.е. делает возможным формирование гностических нейронов, гностических зон и познавательной системы.

Модулирующие системы мозга

Блок модулирующих систем мозга регулирует тонус коры и подкорковых образований, оптимизирует уровень бодрствованияи обусловливает адекватный выбор поведения в соответствии с потребностью.

В условиях оптимальной возбудимости коры нервные процессы характеризуются концентрированностью, уравновешенностью возбуждения и торможения, способностью к дифференцировке и высокой подвижностью нервных процессов, которые обусловливают протекание организованной целенаправленности деятельности.

Аппаратом, выполняющим роль регулятора уровня бодрствования, осуществляющим избирательную модуляцию и актуализацию приоритета той или иной функции является модулирующая система мозга .Ее часто называют лимбико-ретикулярный комплекс или восходящая активирующая система.

К нервным образованиям этого аппарата относятся лимбическая и неспецифическая система мозга сее:

- активирующими структурами (ретикулярную формацию среднего мозга, задний гипоталамус, синее пятно в нижних отделах ствола мозга);

- инактивирующими структурами (преоптическую область гипоталамуса, ядра шва в стволе мозга, фронтальную кору) .

Важнейшей частью модулирующего блока мозга является активирующая ретикулярная формация - сеть из нервных клеток, находящаяся в середине ствола мозга. Одни авторы рассматривают ретикулярную формацию как диффузное вытянутое в длину единое образование, другие считают ее комплексом, состоящим из многих дифференцированных ядер с различной структурой и функциями. Латерально (с боков) ретикулярная формация окружена сенсорными путями. Таким образом, волокна ретикулярной формации окружены слоем сенсорных путей, которые к ней образуют множество коллатералей.

Функциональное назначение ретикулярной формации . Первым указанием на нисходящие тормозные влияния ретикулярной формации явились опыты И.М. Сеченова, в которых наблюдалось угнетение рефлекторных реакций лягушки при раздражении межуточного мозга. В.М. Бехтерев обнаружил восходящие влияния ретикулярной формации на двигательную область коры , приводящие к возникновению судорожных припадков при раздражении определенных участков Варолиева моста. Исключительная роль ретикулярной формации в интегративной деятельности мозга, это открытие было сделано в 1949 г. Г. Мэгуном и Г. Моруцци. Путем стимуляции через электроды, вживленные в стволовой отдел мозга (на уровне среднего мозга), им удалось получить реакцию пробуждения спящего животного. Эту стволовую систему мозга Г. Мэгун назвал восходящей активирующей системой мозга.

Блок активации с его восходящими и нисходящими влияниями работает (по принципу обратной связи) как единый саморегулирующий аппарат, который обеспечивает изменение тонуса коры, и вместе с тем сам находится под его контролем . Этот аппарат используется для пластичного приспособления организма к условиям среды.

Московский гуманитарно-экономический институт

Тверской филиал

Кафедра прикладной психологии

Реферат по дисциплине

«Физиология высшей нервной деятельности и сенсорных систем»

Тема: «Функциональная организация мозга».


Введение

Заключение

Список литературы


Введение

Открытие И.П. Павловым анализаторов и создание учения об условных рефлексах, в основе которого лежал объективный анализ динамики нервных процессов, послужило основой для развития современных материалистических представлений о динамической локализации мозговых функций - целостном и одновременно дифференцированном вовлечении мозга в любую из форм его активности.

Предложенный И.П. Павловым объективный условно рефлекторный метод исследования позволил наиболее адекватно подойти к экспериментальному решению проблемы функциональной организации мозга. И.П. Павлов развил и экспериментально обосновал представления об анализаторных системах, где каждый анализатор есть определенная анатомически локализованная структура от периферических рецепторных образований до проекционных зон коры головного мозга. Он предположил, что кроме локальных проекционных зон коры, выступающих в качестве «ядра коркового конца анализатора» (или проекционных зон коры), существуют периферические зоны представительства каждого анализатора, так называемые «зоны рассеянных элементов». В силу такой структурной организации все анализаторы, включая и двигательный анализатор, своими периферическими (корковыми) зонами перекрываются и образуют вторичные проекционные зоны коры, которые И.П. Павлов уже тогда рассматривал как «ассоциативный центры» мозга, составляющие основу для динамического взаимодействия всех анализаторных систем.

С позиций системной организации функций в деятельности мозга выделяют различные функциональные системы и подсистемы. Классический вариант интегративной деятельности мозга может быть представлен в виде взаимодействия трех основных функциональных блоков:

1) блок приема и переработки сенсорной информации - сенсорные системы (анализаторы);

2) блок модуляции, активации нервной системы - модулирующие системы (лимбико-ретикулярные системы) мозга;

3) блок программирования, запуска и контроля поведенческих актов - моторные системы (двигательный анализатор).


1. Три основных функциональных блока мозга

1.1 Блок приема и переработки сенсорной информации

Первый функциональный блок составляют анализаторы, или сенсорные системы. Анализаторы выполняют функцию приема и переработки сигналов внешней и внутренней среды организма. Каждый анализатор настроен на определенную модальность сигнала и обеспечивает описание всей совокупности признаков воспринимаемых раздражителей.

Анализатор - это многоуровневая система с иерархическим принципом ее конструкции. Основанием анализатора служит рецепторная поверхность, а вершиной - проекционные зоны коры. Каждый уровень этой морфологически упорядоченно организованной конструкции представляет собой совокупность клеток, аксоны которых идут на следующий уровень (исключение составляет верхний уровень, аксоны которого выходят за пределы данного анализатора). Взаимоотношения между последовательными уровнями анализаторов построены по принципу «дивергенции - конвергенции». Чем выше нейронный уровень анализаторной системы, тем большее число нейронов он включает. На всех уровнях анализатора сохраняется принцип топической проекции рецепторов. Принцип многократной рецептотопической проекции способствует осуществлению множественной и параллельной переработки (анализу и синтезу) рецепторных потенциалов («узоров возбуждений»), возникающих под действием раздражителей.

Нейрон, стоящий на выходе рецептивного поля, может выделять один признак раздражителя (простые детекторы) или комплекс его свойств (сложные детекторы). Детекторные свойства нейрона обусловливаются структурной организацией его рецептивного поля. Нейроны-детекторы более высокого порядка образуются в результате конвергенции нейронов-детекторов низшего (более элементарного) уровня. Нейроны-детекторы сложных свойств формируют детекторы «сверхсложных» комплексов. Высший уровень иерархической организации детекторов достигается в проекционных зонах и ассоциативных областях коры мозга.

Проекционные зоны анализаторных систем занимают наружную (конвекситальную) поверхность новой коры задних отделов мозга. Сюда входят зрительная (затылочная), слуховая (височная) и общечувствительная (теменная) области коры. В корковый отдел этого функционального блока включается также представительство вкусовой, обонятельной, висцеральной чувствительности.

Первичные проекционные зоны коры состоят главным образом из нейронов 4-го афферентного слоя, для которых характерна четкая топическая организация. Значительная часть этих нейронов обладает высочайшей специфичностью. Нейроны зрительных аппаратов коры реагируют только на узкоспециальные свойства зрительных раздражителей (оттенки цвета, характер линий, направление движения). Однако следует отметить, что в первичные зоны отдельных областей коры включены также нейроны мультимодального типа, реагирующие на несколько видов раздражителей.

Вторичные проекционные зоны коры располагаются вокруг первичных зон, как бы надстраиваясь над ними. В этих зонах 4-й афферентный слой уступает ведущее место 2-му и 3-му слоям клеток. Для этих нейронов характерно детектирование сложных признаков раздражителей, однако при этом сохраняется модальная специфичность, соответствующая нейронам первичных зон. Поэтому предполагается, что усложнение детекторных селективных свойств нейронов вторичных зон может происходить путем конвергенции на них нейронов первичных зон. В первичной зрительной коре (17-е поле Бродмана) содержатся в основном нейроны-детекторы простых признаков предметного зрения (детекторы ориентации линий, полосы, контраста и т. п.), а во вторичных зонах (18-е и 19-е поля Бродмана) появляются детекторы более сложных элементов контура: края, ограниченной длины линий, углов с различной ориентацией и др. Первичные (проекционные) зоны слуховой (височной) коры представлены 41-м полем Бродмана (рис. 1), нейроны которого модально специфичны и реагируют на различные свойства звуковых раздражителей. Как и первичное зрительное поле, эти первичные отделы слуховой коры имеют четкую рецептотопию. Над аппаратами первичной слуховой коры надстроены вторичные зоны слуховой коры, расположенные во внешних отделах височной области (22-е и частично 21-е поля Бродмана). Они также состоят преимущественно из мощно развитого 2-го и 3-го слоя клеток, реагирующих избирательно одновременно на несколько частот и интенсивностей: звукового раздражителя.

Рис. 1. Карта цитоархитектонических полей коры головного мозга. Конвекситальная поверхность коры больших полушарий: а - первичные поля; б - вторичные поля; в - третичные поля

Наконец, тот же принцип функциональной организации сохраняется и в общечувствительной (теменной) коре. Основой и здесь являются первичные или проекционные зоны (3-, 1- и 2-е поля Бродмана), толща которых также преимущественно состоит из обладающих модальной специфичностью нейронов 4-го слоя, а топография отличается четкой соматотопической проекцией отдельных сегментов тела. Вследствие чего раздражение верхних участков этой зоны вызывает появление кожных ощущений в нижних конечностях, средних участков - в верхних конечностях контрлатеральной стороны, а раздражение пунктов нижнего пояса этой зоны - соответствующие ощущения в контрлатеральных отделах лица, губ и языка. Над первичными зонами располагаются вторичные зоны общечувствительной (теменной) коры (5-е и частично 40-е поле Бродмана), состоящие преимущественно тоже из нейронов 2-го и 3-го слоев, и их раздражение приводит к возникновению более комплексных форм кожной и кинестетической чувствительности (см. рис. 1).

Таким образом, основные, модально-специфические зоны анализаторов мозга построены по единому принципу иерархической структурной и функциональной организации. Первичные и вторичные зоны, согласно И.П. Павлову, составляют центральную часть, или ядро, анализатора в коре, нейроны которого характеризуются избирательной настройкой на определенный набор параметров раздражителя и обеспечивают механизмы тонкого анализа и дифференцировки раздражителей. Взаимодействие первичных и вторичных зон носит сложный, неоднозначный характер и в условиях нормальной деятельности обусловливает согласованное содружество процессов возбуждения и торможения, которое закрепляет макро- и микроструктуру нервной сети, занятой анализом афферентного потока в первичных проекционных сенсорных полях. Это создает основу для динамического межанализаторного взаимодействия, осуществляемого в ассоциативных зонах коры.

Ассоциативные области (третичные зоны) коры являются новым уровнем интеграции: они занимают 2-й и 3-й клеточные (ассоциативные) слои коры, на которых протекает встреча мощных афферентных потоков, как одномодальных, разномодальных, так и неспецифических. Подавляющее большинство ассоциативных нейронов отвечает на обобщенные признаки стимулов - на количество элементов, пространственное положение, отношения между элементами и пр.

Конвергенция разномодальной информации необходима для целостного восприятия, для формирования «сенсорной модели мира», которая возникает в результате сенсорного обучения.

Ассоциативные зоны расположены на границе затылочной, височной и заднетеменной коры. Работа этих отделов коры мозга необходима не только для успешного синтеза и дифференцировки избирательного различения воспринимаемых человеком раздражителей, но и для перехода к уровню их символизации - для оперирования значениями слов и использования их для отвлеченного мышления.

Клинические наблюдения различных очаговых поражений третичных зон мозга человека накопили большой материал о взаимосвязи ассоциативных областей с различными функциональными расстройствами. Известно, что поражения лобно-височно-теменной области, так называемых речевых зон (имеется в виду левое полушарие), связаны с возникновением афазии (расстройства речи). При поражении нижневисочной области наблюдают предметную агнозию (нарушение процесса узнавания), теменных областей или угловой извилины теменной доли - развитие оптико-пространетвенной агнозии, при поражении левой височной доли обнаруживается цветовая агнозия и т. д. Следует отметить, что локальные поражения ассоциативных зон коры могут быть связаны как с относительно элементарными сенсорными расстройствами, так и с нарушениями сложных форм восприятия.

1.2 Блок модуляции, активации нервной системы

Блок модулирующих систем мозга регулирует тонус коры и подкорковых образований, оптимизирует уровень бодрствования в отношении выполняемой деятельности и обусловливает адекватный выбор поведения в соответствии с актуализированной потребностью. Только в условиях оптимального бодрствования человек может наилучшим образом принимать и перерабатывать информацию, вызывать в памяти нужные избирательные системы связей, программировать деятельность, осуществлять контроль над ней.

В условиях оптимальной возбудимости коры нервные процессы характеризуются известной концентрированностью, уравновешенностью возбуждения и торможения, способностью к дифференцировке и, наконец, высокой подвижностью нервных процессов, которые обусловливают протекание каждой организованной целенаправленности деятельности.

Аппаратом, выполняющим роль регулятора уровня бодрствования, а также осуществляющим избирательную модуляцию и актуализацию приоритета той или иной функции, является модулирующая система мозга. Ее часто называют лимбико-ретикулярный комплекс или восходящая активирующая система. К нервным образованиям этого аппарата относятся лимбическая и неспецифическая система мозга с ее активирующими и инактивирующими структурами. Среди активирующих образований прежде всего выделяют ретикулярную формацию среднего мозга, задний гипоталамус, синее пятно в нижних отделах ствола мозга. К инактивирующим структурам относят преоптическую область гипоталамуса, ядра шва в стволе мозга, фронтальную кору.

Важнейшей частью модулирующего блока мозга является активирующая ретикулярная формация. Филогенетически ретикулярная формация мозга представляет наиболее древнее морфологическое образование. В ретикулярной формации выделяют более или менее компактные и ограниченные клеточные скопления - ядра, отличающиеся различными морфологическими особенностями. В связи с этим одни авторы рассматривают ретикулярную формацию как диффузное вытянутое в длину единое образование, другие считают ее комплексом, состоящим из многих дифференцированных ядер с различной структурой и функциями. Латерально (с боков) ретикулярная формация окружена сенсорными путями. Таким образом, волокна ретикулярной формации окружены слоем сенсорных путей, которые к ней образуют множество коллатералей.

Функциональное назначение ретикулярной формации долго оставалось неизвестным. Электрофизиологические исследования выявили исключительную роль ретикулярной формации в интегративной деятельности мозга. Это открытие было сделано в 1949 г. Г. Мэгуном и Г. Моруцци. Путем стимуляции через электроды, вживленные в стволовой отдел мозга (на уровне среднего мозга), им удалось получить реакцию пробуждения спящего животного. Эту стволовую систему мозга Г. Мэгун назвал восходящей активирующей системой мозга.

Волокна ретикулярной формации, направляясь вверх, образуют модулирующие «входы» (как правило, аксодендритные синапсы) в выше расположенных мозговых образованиях, включая старую и новую кору. От старой и новой коры берут начало нисходящие волокна, которые идут в обратном направлении к структурам гипоталамуса, среднего мозга и к более низким уровням мозгового ствола. Через нисходящие системы связей все нижележащие образования оказываются под управлением и контролем тех программ, которые возникают в коре головного мозга и для выполнения которых требуется модуляция активности и модификация состояний бодрствования. Таким образом, блок активации с его восходящими и нисходящими влияниями работает (по принципу обратной связи) как единый саморегулирующий аппарат, который обеспечивает изменение тонуса коры, и вместе с тем сам находится под его контролем. Этот аппарат используется для пластичного приспособления организма к условиям среды. Он содержит в своей основе по крайней мере два источника активации: внутренний и внешний. Первый связан с обменными процессами, обеспечивающими внутреннее равновесие организма, второй - с воздействием внешней среды. Первым источником активации является внутренняя активность самого организма, или потребности. Любые отклонения от жизненно важных «констант» в результате изменения нервных или гуморальных влияний или вследствие избирательного возбуждения различных отделов мозга приводят к выборочному «включению» определенных органов и процессов, совокупная работа которых обеспечивает достижение оптимального состояния для данного вида деятельности организма.

Наиболее простые формы внутренней активности связаны с дыхательными и пищеварительными процессами, процессами внутренней секреции и другими, включенными в гомеостатический механизм саморегуляции, который устраняет нарушение во внутренней среде организма за счет своих резервов. Более сложные формы этого вида активации организованы в структуру врожденного поведения, направленного на удовлетворение определенной потребности. Естественно, для того чтобы обеспечить механизм инстинктивной регуляции поведения, необходима весьма избирательная и специфическая активация. Такая специфическая активация может быть функцией лимбической системы мозга, в которой важная роль принадлежит гипоталамусу.

Гипоталамус - часть промежуточного мозга, содержит десятки высоко дифференцированных ядер, обладающих обширной и разносторонней системой связей. Гипоталамус координирует внутренние потребности организма с его внешним поведением, направленным на достижение приспособительного эффекта. Гипоталамус входит в состав потребностно-мотивационной системы, являясь ее главной исполнительной структурой. При этом он не просто участвует в регуляции отдельных жизненно важных функций (голода, жажды, полового влечения, активной и пассивной обороны), а осуществляет их объединение в сложные комплексы или системы. В зависимости от характера нервной и гуморальной сигнализации, собирающейся в гипоталамусе, в нем или накапливается, или тормозится мотивационное возбуждение, определяющее внешнее поведение.

Второй источник активации связан с воздействием раздражителей внешней среды. Ограничение контакта с внешней средой приводит к значительному снижению тонуса (возбудимости) коры мозга. В условиях резкого ограничения сенсорной информации у человека могут возникать галлюцинации, которые в какой-то мере компенсируют дефицит сенсорного возбуждения.

Часть непрерывного потока сенсорных сигналов, поставляемых в кору специфическими (анализаторными) системами, по коллатералям поступает в ретикулярную формацию. После многократных переключений в ее синапсах афферентное возбуждение достигает высших отделов головного мозга. Эти так называемые неспецифические активирующие влияния служат необходимым условием для поддержания бодрствования и осуществления любых поведенческих реакций. Помимо этого неспецифическая активация является важным условием для формирования селективных свойств нейронов коры в процессе онтогенетического созревания и обучения.

В аппарате восходящей ретикулярной формации сформировался механизм преобразования сенсорной информации в две формы активации: тоническую (генерализованную) и фазическую (локальную). Тоническая форма активации связана с функцией нижних стволовых отделов ретикулярной формации. Она генерализованно, диффузно поддерживает определенный уровень возбудимости в коре и подкорковых образованиях. Фазическая форма активации связана с верхними отделами ствола мозга, и прежде всего с неспецифической таламической системой, которая локально и избирательно распределяет воздействия восходящей активации на подкорковые образования, старую и новую кору.

Тоническая активация облегчается притоком возбуждений из различных органов чувств. «Экстренное» появление или исчезновение какого-либо раздражителя во внешней среде вызывает ориентировочный рефлекс и реакцию активации (экстренная мобилизация организма). Это поликомпонентная реакция, она связана с работой механизмов тонической и фазической активации ретикулярной формации (среднего мозга и неспецифических ядер таламуса). Кроме того, ориентировочный рефлекс связан с активирующей и тормозной функцией нейронов гиппокампа и хвостатого ядра, которые являются важным аппаратом регуляции тонических состояний коры мозга.

Кора головного мозга наряду со специфическим функциональным вкладом оказывает активирующие и тормозные влияния на нижележащие нервные образования. Корковые влияния, поступающие по нисходящим волокнам, представляют достаточно дифференцированную организацию и могут рассматриваться в качестве дополнительного третьего источника активации. Нисходящие волокна активирующей (и тормозящей) ретикулярной системы имеют достаточно дифференцированную корковую организацию; если связанные со специфическими путями пучки волокон (повышающих или понижающих тонус сенсорных или двигательных аппаратов) исходят из первичных (и частично из вторичных) зон коры, то волокна, опосредствующие более общие активирующие влияния на ретикулярную формацию ствола, исходят прежде всего из лобных отделов коры. Нисходящие волокна, идущие преимущественно от префронтальной (орбитальной и медиальной) коры, адресуются к ядрам зрительного бугра и нижележащих стволовых образований и являются тем аппаратом, посредством которого высшие отделы мозговой коры, непосредственно участвующие в формировании намерений и планов, управляют работой нижележащих аппаратов ретикулярной формации таламуса и ствола, тем самым модулируя их работу и обеспечивая наиболее сложные формы сознательной деятельности.

1.3 Блок программирования, запуска и контроля поведенческих актов

Прием, переработка и хранение внешней информации составляют только одну сторону психической жизни человека. Ее другую сторону составляет организация активной сознательной психической деятельности. С этой задачей и связан третий из основных функциональных блоков мозга - блок программирования, регуляции и контроля за протекающей деятельностью.

Аппараты третьего функционального блока мозга расположены в передних отделах больших полушарий, спереди от центральной извилины (см. рис. 1). Его основной отличительной чертой является то, что он не содержит модально-специфических зон, представляющих отдельные анализаторы, а состоит целиком из аппаратов эфферентного (двигательного) типа, однако сам находится под постоянным притоком информации из аппаратов афферентного (сенсорного) блока. Следующая важнейшая черта, отличающая работу третьего функционального блока от афферентного, состоит в том, что процессы здесь идут в нисходящем направлении, начинаясь с наиболее высоких - третичных и вторичных зон коры. Здесь в высших отделах интегративно-пускового блока формируются двигательные программы, а затем переходят к аппаратам низших моторных образований (первичным корковым зонам; стволовым и спинальным двигательным ядрам). Решающее значение в подготовке двигательной эфферентной импульсации имеют надстроенные над первичной моторной корой вторичные (премоторные отделы, 6-е и 8-е поля) и третичные зоны (префронтальные отделы лобной коры), или лобные доли (см. рис. 1).

Двигательная кора (первичная проекционная зона) занимает пространство ростральнее Роландовой борозды (4-е поле Бродмана). Она является выходными воротами интегративно-пусковой системы мозга, или функционального блока программирования, регуляции и контроля деятельности. Передняя центральная извилина является лишь первичной (проекционной) зоной, исполнительным аппаратом (выходными воротами) мозговой коры. Естественно, что состав двигательных импульсов, посылаемых на периферию, должен быть подготовлен, включен в определенные программы, и только после такой подготовки двигательная импульсная программа может обеспечить нужные целесообразные движения. Эта программа формируется как в аппарате передней центральной извилины, так и в аппаратах, надстроенных над ней.

Особенностью цитоархитектонической организации моторной коры является мощное развитие 5-го эфферентного слоя, который содержит гигантские пирамидные клетки Беца. Пирамидные нейроны расположены неравномерно, группами с вертикальными связями между нейронами II и IV слоев. Аксоны гигантских пирамид дают начало длинным нисходящим волокнам, составляющим значительную часть «главного» двигательного пути мозга - пирамидного тракта, оканчивающегося на моторных ядрах головного и спинного мозга, т. е. образуют кортикоспинальные пути. Пирамидная система тесно связана с экстрапирамидной системой. К последней относятся все образования головного мозга, имеющие отношение к управлению движениями и посылающие супраспинальные проекции вне кортикоспинальных путей.

Функциональная организация моторной коры имеет проекционный и топографический характер с четко выраженными признаками соматотопической проекции: в медиальных отделах поверхности коры берут начало волокна, управляющие мускулатурой нижних конечностей, нервные клетки срединных отделов поверхности коры посылают аксоны к спинальным механизмам верхних конечностей, от латеральных отделов нисходящие эфферентные волокна направляются к двигательным ядрам черепно-мозговых нервов ствола мозга и управляют мышцами гортани, рта, глаз и лица. По ходу следования все нисходящие волокна перекрещиваются и управляют мускулатурой противоположной стороны туловища. Органы, которые нуждаются в наиболее тонкой регуляции и выполняют дискретные движения, имеют в моторной зоне коры максимальное топическое представительство.

В отличие от человека у животных в зонах прецентральной извилины коры отмечается значительное перекрытие моторных и сенсорных зон, вследствие чего эта область называется сенсомоторной корой. Значительную часть афферентных входов гигантопирамидных клеток составляют волокна зрительного, слухового и других анализаторов. В связи с этим первичные зоны коры животных являются областью сенсомоторной интеграции. Модульная структура сенсомоторной коры является основательной предпосылкой для синхронной мультисенсорной интеграции и формирования эфферентного импульсного разряда. Предполагается, что в пределах передней центральной извилины аппаратом, участвующим в межнейронной интеграции, являются верхние слои коры, состоящие из дендритов пирамид и глиальных клеток. Известно, что отношение массы этого внеклеточного серого вещества к массе клеток передней центральной извилины резко возрастает по мере эволюции, так что величина его у человека вдвое больше, чем у высших обезьян, и почти в 5 раз больше, чем у низших обезьян.

Удаление прецентрального двигательного поля приводит к неодинаковым последствиям у животных с разной степенью развития полушарий. Обычно наблюдаются двигательные расстройства в виде пареза, спастичности мышц и ограничения двигательного репертуара. Удаление поля 4 приводит к некомпенсируемым нарушениям движений большого и других пальцев руки, к нарушению произвольных движений конечностей, гиподинамии. Удаление представительства руки вызывает устойчивое, длящееся до одного месяца спастическое сгибание пальцев и паралич руки. Отмечается общая слабость и наиболее яркий симптом - исчезновение выразительных и столь характерных для обезьян ориентировочно-исследовательских реакций. Полное иссечение поля 4 у человека делает невозможным сложные и тонкие движения на контрлатеральной стороне тела, при этом раздельные движения пальцев не восстанавливаются.

С помощью метода локальной электрической стимуляции было установлено точное представительство мышц тела и конечностей в коре человека и животных. Локальная стимуляция коры вызывает рефлексию отдельных мышц противоположной стороны тела. Дискретные движения с наименьшим порогом вызываются стимуляцией моторной коры (4-е поле). Эти движения обусловливаются активацией гигантских пирамидных клеток, которые отсутствуют в постцентральной области коры. Все это говорит о том, что моторная зона является лишь проекционной зоной, исполнительным аппаратом мозговой коры и она не может функционировать «самостоятельно». Решающее значение в подготовке двигательных программ для передачи их на гигантские пирамидные клетки имеют надстроенные над ней вторичные и третичные зоны коры.

Вторичные зоны двигательной коры или премоторные отделы лобной области морфологически сохраняют тот же принцип «вертикальной организации», который характерен для всякой двигательной коры, но отличается несравнимо большим развитием верхних клеточных слоев коры - малых пирамид. Премоторная кора подчиняется принципу убывающей специфичности, в ней отсутствует локальная соматотопическая проекция, а аксоны пирамидных клеток этой области образуют эфференты, переключающиеся на обширные подкорковые моторные образования. Раздражение 5-, 7- и 8-го полей премоторной области коры (см. рис. 1) вызывает не соматотопически ограниченные (локальные) вздрагивания отдельных мышц, а целые комплексы движений, имеющих системно организованный характер (баллистические движения глаз в определенную точку пространства, медленные прослеживающие движения глаз, поворот головы, туловища, направленные движения конечностей). Это указывает на то, что «командные» нейроны премоторной коры «организуют» отдельные мышечные сокращения в целостный двигательный акт.

Премоторные отделы коры представляют мощный аппарат мулътисенсорной конвергенции. Эти ассоциативные зоны снабжены богатой и разветвленной системой эфферентных путей как к корковым формациям рострального полюса больших полушарий, так и к подкорковым образованиям - специфическим, неспецифическим, ассоциативным ядрам таламуса, гипоталамуса, миндалине, ядрам экстрапирамидной системы, помимо этого они образуют связи со спинным мозгом через пирамидный тракт.

Наиболее важной частью третьего функционального блока мозга являются третичные зоны коры, которые занимают префронтальные или лобные отделы (см. рис. 1). Лобные отделы, по мнению А.Р. Лурии, представляют собой блок программирования намерений, оценки выполненных действий и коррекции допущенных ошибок, т.е. аппарат наиболее сложных форм регуляции целостного поведения.

Особенностью префронтальной области (ассоциативных полей) мозга является ее богатейшая система связей как с нижележащими подкорковыми образованиями мозга и соответствующими отделами ретикулярной формации, так и со всеми остальными отделами коры. Эти связи носят двусторонний, а нередко моносинаптический характер и делают префронтальные отделы коры образованиями, находящимися в самом выгодном положении как для приема и синтеза сложнейшей системы афферентаций, идущих от всех отделов мозга, так и для организации эфферентных импульсов, позволяющих оказывать регулирующие воздействия на все эти структуры.

Лобные доли коры целиком состоят из мелких, зернистых клеток, обладающих в основном короткими аксонами и разветвленными дендритами и таким образом несущих ассоциативные функции. Получая по восходящим пучкам связей от ретикулярной формации активирующие воздействия, они сами оказывают регулирующее влияние на нее. Они придают деятельности неспецифической активирующей системы дифференцированный характер, приводя состояние активности в соответствие с различными формами поведения. Как более поздняя онтогенетическая «надстройка», лобные доли осуществляют гораздо более универсальную функцию общей организации поведения и высших форм ассоциативной деятельности. Они становятся окончательно подготовленными к деятельности у ребенка лишь 4-7-летнего возраста, когда ассоциативные пути обеспечивают нарастающее в онтогенезе совершенствование механизмов сочетательной (условнорефлекторной) деятельности головного мозга, когда верхний продольный пучок нервных волокон устанавливает связь между новыми полями лобной, теменной, затылочной и височной областей коры. Созревание ассоциативных систем мозга отражается в постепенной нормализации различных физиологических показателей организма, динамических свойств нервных процессов, а также готовности к повышенной функциональной нагрузке ассоциативных систем.

Как указывал еще И.П. Павлов, лобные доли мозга животных, помимо двигательно-кинестетических функций, выполняют сложные процессы анализа и синтеза, обеспечивающие интеграцию высших функций, формирование сложнейших временных связей. У лобэктомированной собаки не отмечается нарушений в восприятии различных экстероцептивных сигналов и в реализации простых условных рефлексов, но исчезает способность последовательно совершать выработанные до операции двигательные навыки, нарушается целенаправленная деятельность. Поведение становится фрагментарным, возникают инертные стереотипные движения, нарушается память, пространственная ориентация, появляется гиперактивность.

Дальнейшие исследования позволили внести уточнения в анализ функций лобных долей мозга. Наиболее заметные изменения в поведении наступают после лобэктомии у антропоидов. Обезьяна, лишенная лобных долей, успешно осуществляет простые акты поведения, но не в состоянии дифференцировать сигналы, использующиеся в разных ситуациях (например, при последовательной смене стимулов), и, таким образом, не может выполнять программу поведения, требующую хранения следа раздражителя в памяти. Иными словами, нарушается выполнение различного рода отсроченных задач. Однако, по мнению К. Прибрама, разрушение лобных долей у шимпанзе ведет не столько к нарушению памяти, сколько к нарушению поведения в результате потери способности решения задач в связи с возникновением устойчивого ориентировочного рефлекса (неугасающей реакцией на всевозможные побочные раздражители). При этом животное не способно к состоянию «активного ожидания» и в условиях длительной паузы делает массу движений, не относя их к моменту ожидаемого раздражителя. Таким, образом, есть основания считать, что лобные доли являются одним из важнейших аппаратов, позволяющих животному осуществлять ориентировку не только на настоящий момент, но и на будущее.

Нейропсихологические данные (полученные в условиях клиники) позволили выделить ряд симптомов, связанных с локальными поражениями участков лобной коры, и уточнить, таким образом, специфику их участия. Повреждение премоторной области лобного отдела мозга приводит к нарушению контроля над двигательной сферой деятельности человека. Особенно тяжелые последствия наступают при поражении левого полушария, связанного с речевой функцией, в связи с этим страдает выполнение действий, вызванных словесными инструкциями, меняется уровень интеллектуальной деятельности. При повреждениях, захватывающих базальные (орбитальные) отделы любой области, которые тесно связаны с лимбическими образованиями мозга, наблюдаются симптомы, связанные непосредственно с высшим контролем внутренней мотивационной сферы организма.

Нейропсихологи и нейрофизиологи единодушно считают, что одной из наиболее существенных сторон лобного синдрома является расстройство способности к планированию адекватного поведения, учета эффекта совершаемых действий. Процессы программирования, регуляции и контроля сознательной деятельности в значительной степени зависят от префронтальных отделов. К. Прибрам считает, что лобные доли формируют набор нейронных программ, придающих индивидуальному опыту известную структуру, и строят «грамматику» поведения. По мнению А.Р. Лурии, именно лобные доли осуществляют экстренную активацию процессов, обусловливающих сложные формы сознательной деятельности (непосредственно связанной с речью).


2. Взаимодействие трех основных функциональных блоков мозга

Мы рассмотрели современные представления о трех основных функциональных блоках мозга и постарались показать роль каждого из них в организации сложной психической деятельности.

Было бы неправильным думать, что каждый из этих блоков может самостоятельно осуществлять ту или иную форму деятельности, считая, например, что второй функциональный блок полностью осуществляет функцию восприятия и мышления, а третий - функцию движения и построения действий.

Каждая форма сознательной деятельности всегда является сложной функциональной системой и осуществляется, опираясь на совместную работу всех трех блоков мозга, каждый из которых вносит свой вклад в осуществление психического процесса в целом.

Факты, которые хорошо установлены современной психологией, делают это положение бесспорным.

Уже давно прошло то время, когда психологи рассматривали психические функции как изолированные «способности», каждая из которых может быть локализована в определенном участке мозга. Отвергнута и другая концепция, согласно которой психические процессы представлялись по модели рефлекторной дуги, первая часть которой имела чисто афферентный характер и выполняла функции ощущения и восприятия, в то время как вторая - эффекторная - часть целиком осуществляла движения и действия.

Современные представления о строении психических процессов исходят из модели рефлекторного кольца или сложной саморегулирующейся системы, каждое звено которой включает как афферентные, так и эфферентные компоненты и которая в целом носит характер сложной и активной психической деятельности.

Рассмотрим это на двух примерах: восприятия и движения, или действия. Сделаем это лишь в самых общих чертах, поскольку подробный анализ структуры и мозговой организации этих процессов будет представлен в последней части этой книги.

Известно, что ощущение включает в себя двигательные компоненты, и современная психология рассматривает ощущение, и тем более восприятие, как рефлекторный акт, содержащий как афферентные, так и эфферентные звенья (А.Н. Леонтьев, 1959); чтобы убедиться в сложном активном характере ощущений, достаточно напомнить, что даже у животных они включают в свой состав процесс отбора биологически значимых признаков, а у человека - и активное кодирующее влияние языка (Брунер, 1957; A.А. Люблинская, 1969).

Еще более отчетливо активный характер процессов выступает в сложном предметном восприятии. Хорошо известно, что предметное восприятие носит не только полирецепторный характер, опираясь на совместную работу целой группы анализаторов, но всегда включает в свой состав активные двигательные компоненты. Решающую роль движений глаз в зрительном восприятии отмечал еще И.М. Сеченов (1874-1878), однако доказано это было лишь в последнее время. В целом ряде психофизиологических исследований было показано, что неподвижный глаз практически не может воспринимать изображение, состоящее из многих компонентов, и что сложное предметное восприятие предполагает активные, поисковые движения глаз, выделяющие нужные признаки (А.Л. Ярбус, 1965, 1967), и лишь постепенно, по мере развития принимает свернутый характер (А.В. Запорожец, 1967; B.П.Зинченко и др., 1962).

Все эти факты убеждают нас в том, что восприятие осуществляется при совместном участии всех тех функциональных блоков мозга, из которых первый обеспечивает нужный тонус коры, второй осуществляет анализ и синтез поступающей информации, а третий обеспечивает направленные поисковые движения, создавая тем самым активный характер воспринимающей деятельности.

Аналогичное можно сказать и о построении произвольного движения и действия.

Участие эфферентных механизмов в построении движения самоочевидно; однако еще Н.А. Бернштейн (1947) показал, что движение не может управляться одними эфферентными импульсами и что для его организованного протекания необходимы постоянные афферентные процессы, сигнализирующие о состоянии сочленений и мышц, положении сегментов движущегося аппарата и тех пространственных координатах, в которых движение протекает.

Таким образом, произвольное движение, и тем более предметное действие, опирается на совместную работу самых различных отделов мозга, и если аппараты первого блока обеспечивают нужный тонус мышц, без которого никакое координированное движение не было бы возможным, то аппараты второго блока дают возможность осуществить те афферентные синтезы, в системе которых протекает движение, а аппараты третьего блока обеспечивают подчинение движения и действия соответствующим намерениям, создают программы выполнения двигательных актов и обеспечивают ту регуляцию и контроль протекания движений, благодаря которым сохраняется его организованный, осмысленный характер.


Заключение

В данной работе были рассмотрены три основных функциональных блока коры головного мозга. Первым функциональным блоком коры головного мозга является блок приема, переработки и хранения сенсорной информации. Он расположен в задних отделах полушарий и включает в свой состав зрительные (затылочные), слуховые (височные) и общечувствительные (теменные) отделы коры головного мозга и соответствующие подкорковые структуры.

Аппараты этого (как и следующего) блока имеют иерархическое строение, распадаясь на первичные (проекционные) зоны, которые принимают информацию и дробят ее на мельчайшие составные части, вторичные (проекционно-ассоциативные) зоны, которые обеспечивают кодирование (синтез) этих составных частей и превращают соматотопическую проекцию в функциональную организацию, и третичные зоны (или зоны перекрытия), обеспечивающие совместную работу различных анализаторов и выработку надмодальных (символических) схем, лежащих в основе комплексных форм познавательной деятельности.

Указанные иерархически построенные зоны коры разбираемого блока работают по принципам убывающей модальной специфичности и возрастающей функциональной латерализации. Оба эти принципа и обеспечивают возможность наиболее сложных форм работы мозга, лежащих в основе наиболее высоких видов познавательной деятельности человека, генетически связанных с трудом, а структурно - с участием речи в организации психических процессов.

Второй функциональный блок головного мозга играет важную роль в регуляции состояний активности коры и уровня бодрствования. Этот блок построен по типу неспецифической нервной сети, которая осуществляет свою функцию путем постепенного, градуального изменения состояний и не имеет непосредственного отношения ни к приему и переработке поступающей извне информации, ни к выработке намерений, планов и программ поведения. Этим второй функциональный блок мозга, расположенный в основном в пределах мозгового ствола, образований межуточного мозга и медиальных отделов новой коры, существенно отличается от аппаратов первого функционального блока мозга, основная функция которого заключается в приеме, переработке и хранении внешней информации.

Третий функциональный блок мозга - блок программирования, регуляции и контроля за протекающей деятельностью.

Аппараты третьего функционального блока мозга расположены в передних отделах больших полушарий, спереди от центральной извилины. Он состоит целиком из аппаратов эфферентного (двигательного) типа, однако сам находится под постоянным притоком информации из аппаратов афферентного (сенсорного) блока. Следующая важнейшая черта, отличающая работу третьего функционального блока от афферентного, состоит в том, что процессы здесь идут в нисходящем направлении, начинаясь с наиболее высоких - третичных и вторичных зон коры. Здесь в высших отделах интегративно-пускового блока формируются двигательные программы, а затем переходят к аппаратам низших моторных образований (первичным корковым зонам; стволовым и спинальным двигательным ядрам).

Каждый из этих основных блоков имеет иерархическое строение и состоит по крайней мере из надстроенных друг над другом корковых зон трех типов: первичных (или проекционных), куда поступают импульсы с периферии или откуда направляются импульсы на периферию, вторичных (или проекционно-ассоциативных), где происходит переработка получаемой информации или подготовка соответствующих программ, и, наконец, третичных (или зон перекрытия), которые являются наиболее поздно развивающимися аппаратами больших полушарий и которые у человека обеспечивают наиболее сложные формы психической деятельности, требующие совместного участия многих зон мозговой коры.


Список литературы

1. Батуев А.С. Физиология высшей нервной деятельности и сенсорных систем: учебник. – СПб.: Питер, 2008.

2. Данилова Н.Н., Крылова А.Л. Физиология высшей нервной деятельности: учебник. –Ростов н / Д, 2001.

3. Лурия А.Р. Основы нейропсихологии. Учеб. пособие для студ. высш. учеб. заведений. – М.: Изд-во «Академия», 2003.

4. Симонов П.В. Лекции о работе головного мозга. Потребностно-информационная теория высшей нервной деятельности. – М.: Наука, 2001.

5. Смирнов В.М., Будылина С.М. Физиология сенсорных систем и высшая нервная деятельность. – М.: Академия, 2007.

Первый функциональный блок составляют анализаторы, или сенсорные системы. Анализаторы выполняют функцию приема и переработки сигналов внешней и внутренней среды организма. Каждый анализатор настроен на определенную модальность сигнала и обеспечивает описание всей совокупности признаков воспринимаемых раздражителей. Модальная специфичность анализатора в первую очередь определяется особенностями функционирования его периферических образований и специфичностью рецепторных элементов. Однако в значительной степени она связана с особенностями структурной организации центральных отделов анализатора, упорядоченностью межнейронных связей всех морфологических образований от рецепторного уровня до коркового конца (проекционных зон).

Анализатор - это многоуровневая система с иерархическим принципом ее конструкции. Основанием анализатора служит рецепторная поверхность, а вершиной - проекционные зоны коры. Каждый уровень этой морфологически упорядоченно организованной конструкции представляет собой совокупность клеток, аксоны которых идут на следующий уровень (исключение составляет верхний уровень, аксоны которого выходят за пределы данного анализатора). Взаимоотношения между последовательными уровнями анализаторов построены по принципу «дивергенции- конвергенции». Чем выше нейронный уровень анализаторной системы, тем большее число нейронов он включает. На всех уровнях анализатора сохраняется принцип топической проекции рецепторов. Принцип многократной рецептотопической проекции способствует осуществлению множественной и параллельной переработки (анализу и синтезу) рецепторных потенциалов («узоров возбуждений»), возникающих под действием раздражителей.



Уже в функциональной организации клеточного аппарата рецепторного уровня анализаторов выявились существенные черты их приспособления к адекватному отражению действующих раздражителей (специфичность рецепторов по фото-, термо-, хемо- и другим видам «энергии»). Известный закон Фехнера о логарифмическом отношении силы раздражителя и интенсивности ощущения получил объяснение в частотных характеристиках разряда рецепторных элементов. Обнаруженный в 1958 г. Ф. Ратлиффом эффект латерального торможения в глазе мечехвоста объяснил способ контрастирования изображения, улучшающий возможности предметного зрения (детекции формы). Механизм латерального торможения выступил как универсальный способ формирования селективных каналов передачи информации в центральной нервной системе. Он обеспечивает центральным нейронам анализаторов избирательную настройку их рецептивного поля на определенные свойства раздражителя. Нейрон, стоящий на выходе рецептивного поля, может выделять один признак раздражителя (простые детекторы) или комплекс его свойств (сложные детекторы). Детекторные свойства нейрона обусловливаются структурной организацией его рецептивного поля. Нейроны-детекторы более высокого порядка образуются в результате конвергенции нейронов-детекторов низшего (более элементарного) уровня. Нейроны-детекторы сложных свойств формируют детекторы «сверхсложных» комплексов. Высший уровень иерархической организации детекторов достигается в проекционных зонах и ассоциативных областях коры мозга.

Проекционные зоны анализаторных систем занимают наружную (конвекситальную) поверхность новой коры задних отделов мозга. Сюда входят зрительная (затылочная), слуховая (височная) и общечувствительная (теменная) области коры. В корковый отдел этого функционального блока включается также представительство вкусовой, обонятельной, висцеральной чувствительности. При этом наиболее обширные области в коре занимает та сенсорная система, которая имеет наибольшее экологическое значение для данного вида.

Первичные проекционные зоны коры состоят главным образом из нейронов 4-го афферентного слоя, для которых характерна четкая топическая организация. Значительная часть этих нейронов обладает высочайшей специфичностью. Так, например, нейроны зрительных областей избирательно реагируют на определенные признаки зрительных раздражителей: одни - на оттенки цвета, другие - на направление движения, третьи - на характер линий (край, полоса, наклон линии) и т. п. Однако следует отметить, что в первичные зоны отдельных областей коры включены также нейроны мультимодального типа, реагирующие на несколько видов раздражителей. Кроме того, там же имеются нейроны, реакция которых отражает воздействие неспецифических (лимбико-ретикулярных или модулирующих) систем.

Вторичные проекционные зоны коры располагаются вокруг первичных зон, как бы надстраиваясь над ними. В этих зонах 4-й афферентный слой уступает ведущее место 2-му и 3-му слоям клеток. Для этих нейронов характерно детектирование сложных признаков раздражителей, однако при этом сохраняется модальная специфичность, соответствующая нейронам первичных зон. Поэтому предполагается, что усложнение детекторных селективных свойств нейронов вторичных зон может происходить путем конвергенции на них нейронов первичных зон. В первичной зрительной коре (17-е поле Бродмана) содержатся в основном нейроны-детекторы простых признаков предметного зрения (детекторы ориентации линий, полосы, контраста и т. п.), а во вторичных зонах (18-е и 19-е поля Бродмана) появляются детекторы более сложных элементов контура: края, ограниченной длины линий, углов с различной ориентацией и др. . Первичные (проекционные) зоны слуховой (височной) коры представлены 41-м полем Бродмана (рис. 4), нейроны которого модально специфичны и

Рис. 4. Карта цитоархитектонических полей коры головного мозга.

Конвекситальная поверхность коры больших полушарий: а - первичные поля; б - вторичные поля; в - третичные поля

реагируют на различные свойства звуковых раздражителей. Как и первичное зрительное поле, эти первичные отделы слуховой коры имеют четкую рецептотопию. Над аппаратами первичной слуховой коры надстроены вторичные зоны слуховой коры, расположенные во внешних отделах височной области (22-е и частично 21-е поля Бродмана). Они также состоят преимущественно из мощно развитого 2-го и 3-го слоя клеток, реагирующих избирательно одновременно на несколько частот и интенсивностей: звукового раздражителя.

Наконец, тот же принцип функциональной организации сохраняется и в общечувствительной (теменной) коре. Основой и здесь являются первичные или проекционные зоны (3-, 1- и 2-е поля Бродмана), толща которых также преимущественно состоит из обладающих модальной специфичностью нейронов 4-го слоя, а топография отличается четкой соматотопической проекцией отдельных сегментов тела. Вследствие чего раздражение верхних участков этой зоны вызывает появление кожных ощущений в нижних конечностях, средних участков - в верхних конечностях контрлатеральной стороны, а раздражение пунктов нижнего пояса этой зоны - соответствующие ощущения в контрлатеральных отделах лица, губ и языка. Над первичными зонами располагаются вторичные зоны общечувствительной (теменной) коры (5-е и частично 40-е поле Бродмана), состоящие преимущественно тоже из нейронов 2-го и 3-го слоев, и их раздражение приводит к возникновению более комплексных форм кожной и кинестетической чувствительности (см. рис. 4).

Таким образом, основные, модально-специфические зоны анализаторов мозга построены по единому принципу иерархической структурной и функциональной организации. Первичные и вторичные зоны, согласно И.П. Павлову, составляют центральную часть, или ядро, анализатора в коре, нейроны которого характеризуются избирательной настройкой на определенный набор параметров раздражителя и обеспечивают механизмы тонкого анализа и дифференцировки раздражителей. Взаимодействие первичных и вторичных зон носит сложный, неоднозначный характер и в условиях нормальной деятельности обусловливает согласованное содружество процессов возбуждения и торможения, которое закрепляет макро- и микроструктуру нервной сети, занятой анализом афферентного потока в первичных проекционных сенсорных полях. Это создает основу для динамического межанализаторного взаимодействия, осуществляемого в ассоциативных зонах коры.

Ассоциативные области (третичные зоны) коры являются новым уровнем интеграции: они занимают 2-й и 3-й клеточные (ассоциативные) слои коры, на которых протекает встреча мощных афферентных потоков, как одномодальных, разномодальных, так и неспецифических. Подавляющее большинство ассоциативных нейронов отвечает на обобщенные признаки стимулов - на количество элементов, пространственное положение, отношения между элементами и пр. Конвергенция разномодальной информации необходима для целостного восприятия, для формирования «сенсорной модели мира», которая возникает в результате сенсорного обучения.

Ассоциативные зоны расположены на границе затылочной, височной и заднетеменной коры. Основную их часть составляют образования нижнетеменной корковой области, которая у человека развилась настолько, что составляет едва ли не четвертую часть всех образований описываемого сенсорного блока мозга. Работа этих отделов коры мозга необходима не только для успешного синтеза и дифференцировки (избирательного различения) воспринимаемых человеком раздражителей, но и для перехода к уровню их символизации - для оперирования значениями слов и использования их для отвлеченного мышления, т.е. для того синтетического характера восприятия, о котором писал в свое время И.М. Сеченов.

Клинические наблюдения различных очаговых поражений третичных зон мозга человека накопили большой материал о взаимосвязи ассоциативных областей с различными функциональными расстройствами. Известно, что поражения лобно-височно-теменной области, так называемых речевых зон (имеется в виду левое полушарие), связаны с возникновением афазии (расстройства речи). При поражении нижневисочной области наблюдают предметную агнозию (нарушение процесса узнавания), теменных областей или угловой извилины теменной доли - развитие оптико-пространетвенной агнозии, при поражении левой височной доли обнаруживается цветовая агнозия и т. д. Следует отметить, что локальные поражения ассоциативных зон коры могут быть связаны как с относительно элементарными сенсорными расстройствами, так и с нарушениями сложных форм восприятия.

У высших животных механизмы, выделяющие элементарные признаки раздражителей, составляют лишь начальное звено в механизме восприятия и дифференцировки стимулов (специфические ядра таламуса и первичные зоны коры). В высших сенсорных (вторичных и ассоциативных) зонах коры выступает закон убывающей специфичности, который является обратной стороной принципа иерархической организации нейронов-детекторов в специфической подкорке и проекционных зонах коры. В нем отражается переход от дробного анализа частных модально-специфических признаков раздражителя к синтезу более общих «схем» воспринимаемого. Закономерным является и то, что, несмотря на убывающую специфичность высших сенсорных полей коры (преобладание мультимодальных и ассоциативных нейронов), они являются в функциональном отношении более совершенными образованиями. Они выполняют функцию интеграции сложных комплексных раздражителей, им свойственна пластичность, они подвержены «неспецифической» активации со стороны модулирующих систем (ретикулярной формации, «центров» актуализированных потребностей и пр.).

Механизмы различения фигур и их пространственной организации у обезьян связывают с ассоциативными зонами (височной и заднетеменной) коры мозга. Известно, что обезьяны легко обучаются различению фигур по форме, размеру и их пространственной ориентации. После экстирпации нижневисочной коры обезьяна испытывает затруднения в различении фигур по их форме, но легко обучается дифференцировать их по размеру и ориентации. В то время как удаление затылочно-теменной зоны коры приводит к нарушению механизма пространственной дифференцировки фигур по отношению к телу, а также нарушению различения положения и перемещения собственного тела по отношению к окружающим предметам. Данные о физиологической роли височной и заднетеменной коры пока малочисленны. Так, для выяснения специфической функции нижневисочной коры и ее нейронной организации были проведены микроэлектродные исследования на обезьянах с использованием сложной стимульной программы: квадрат и круг сопровождались двигательным обучением, а крест и треугольник использовались в качестве незначащих стимулов. В результате исследований выделены три группы клеток: одни нейроны реагировали избирательно только на одну из четырех использовавшихся фигур, другие нейроны отвечали на две фигуры, третьи - на все четыре (без дифференцировки значимости стимула). Из экспериментов следовало, что эти нейроны выделяют сложные признаки зрительного изображения независимо от моторного обучения, при этом одни из них реагируют на появление соответствующего ему сенсорного стимула, другие отвечают лишь тогда, когда стимул сопровождается актом внимания. Нейроны пластичны, их специфическая реакция на сенсорный «образ» не связана с двигательным обучением и может меняться лишь в результате сенсорного

обучения. Следует отметить, что свойства этих нейронов хорошо согласуются с поведенческими и клиническими данными о роли нижневисочной коры в процессах формирования сложных образов. Следуя высказанной в 1949 г. гипотезе Д. Хебба, можно предположить, что отдельные нейроны ассоциативных зон коры связаны разнообразными путями и образуют клеточные ансамбли, выделяющие «подобразы», т.е. соответствующие унитарным формам восприятия. Эти связи, как отмечал Д. Хебб, настолько хорошо развиты, что достаточно активировать один нейрон, как возбуждается весь ансамбль. Позднее Ю. Конорский, опираясь на ставшие классическими данные Д. Хьюбела и Т. Визеля о корковых нейронах с «простыми», «сложными» и «сверхсложными» рецептивными полями и детектирующими все более сложные признаки зрительного стимула, выдвинул концепцию о «гностических нейронах». Он предположил, что унитарному восприятию (т. е. узнаванию знакомого лица с первого взгляда, знакомого голоса, знакомого запаха, характерного жеста и др.) соответствуют не ансамбли совозбужденных нейронов, а единичные нейроны - «гностические нейроны», интегрирующие возбуждение при действии сложных комплексных раздражителей. Гностические нейроны составляют главную деятельную основу высших уровней анализаторов, вследствие чего высшие уровни анализаторов представляют, по мнению Ю. Конорского, «гностические зоны». Гностическую зону можно рассматривать как своеобразную картотеку гностических нейронов, в которой представлены все унитарные «подобразы», сформировавшиеся у данного индивидуума в процессе сенсорного обучения.

Для концепции гностических нейронов первое время не было экспериментальных доказательств. Основой для предположений Ю. Конорского служили главным образом клинические данные. Однако вскоре стали появляться работы, из которых следовало, что « гностические нейроны », избирательно реагирующие на сложные комплексы раздражителей, существуют. В лобных долях мозга кошки были обнаружены клетки, которые избирательно реагируют на появление в поле зрения сложного зрительного стимула. У говорящих птиц существуют нейроны, избирательные к гласным звукам человеческой речи. Наконец, с 1980-х годов стали появляться серии работ по исследованию височных отделов коры мозга обезьян. В верхневисочной извилине были обнаружены нейроны, выделяющие определенные черты лица. По гностическим свойствам нейроны верхневисочной извилины отличались друг от друга. Одни нейроны отвечали только при фиксации внимания на интересующем обезьяну объекте, другие - при свободном блуждании взора, если стимул попадал на сетчатку. Одни нейроны давали максимальную реакцию на изображения лица человека в фас, другие - в профиль, третьи - на часть лица (верхнюю или нижнюю). При этом большинство нейронов реагирует на трехмерное изображение лица, а не на двумерное. Одни нейроны реагируют на лицо конкретного индивида, другие - на любое лицо независимо от индивидуальных черт. Большая часть нейронов верхневисочной извилины оказалась специфичной к живому конкретному лицу (человека или обезьяны). Формирование механизма избирательности в височной коре обезьяны происходит под влиянием индивидуального опыта, поскольку отмечается зависимость селективных свойств нейронов от круга лиц (животных и экспериментаторов), с которыми обезьяна была в общении до экспериментов. Данные нейронных исследований на обезьянах по восприятию изображений лица согласуются с результатами наблюдения больных с прозопагнозией (нарушением узнавания лиц), которые также свидетельствуют о наличии в области височных отделов коры мозга специального механизма по распознаванию

Известно, что система нейронов, детектирующих сложные сенсорные стимулы (гностические единицы), формируется на базе врожденной (генетически детерминированной) системы корковых нейронов с «жесткими» связями и большим резервом «лабильных», пластичных связей. В определенный критический (сенситивный) период онтогенетического развития и созревания межнейронных связей важным является функциональное задействование этих потенциальных связей. Их актуализация осуществляется под воздействием внешней стимуляции (индивидуального сенсорного опыта). В процесс приобретения индивидуального опыта дополнительный вклад вносит модулирующая система, оказывающая «неспецифическое» активирующее воздействие на соответствующий анализатор. Активирующее воздействие достигается через ориентировочно-исследовательский рефлекс или внимание. Этот процесс активации, по мнению Ю. Конорского, является необходимой предпосылкой для преобразования

потенциальных корковых связей в действующие, т.е. делает возможным формирование гностических нейронов, гностических зон и познавательной системы.

Модулирующие системы мозга

Блок модулирующих систем мозга регулирует тонус коры и подкорковых образований, оптимизирует уровень бодрствования в отношении выполняемой деятельности и обусловливает адекватный выбор поведения в соответствии с актуализированной потребностью. Только в условиях оптимального бодрствования человек может наилучшим образом принимать и перерабатывать информацию, вызывать в памяти нужные избирательные системы связей, программировать деятельность, осуществлять контроль над ней.

И.П. Павлов неоднократно возвращался к вопросам о решающей роли в реализации полноценной условнорефлекторной деятельности оптимального тонуса мозговой коры, необходимости высокой подвижности: нервных процессов, позволяющих с легкостью переходить от одной деятельности к другой. В условиях оптимальной возбудимости коры нервные процессы характеризуются известной концентрированностью, уравновешенностью возбуждения и торможения, способностью к дифференцировке и, наконец, высокой подвижностью нервных процессов, которые обусловливают протекание каждой организованной целенаправленности деятельности.

Аппаратом, выполняющим роль регулятора уровня бодрствования, а также осуществляющим избирательную модуляцию и актуализацию приоритета той или иной функции, является модулирующая система мозга. Ее часто называют лимбико-ретикулярный комплекс или восходящая активирующая система. К нервным образованиям этого аппарата относятся лимбическая и неспецифическая система мозга с ее активирующими и инактивирующими структурами. Среди активирующих образований прежде всего выделяют ретикулярную формацию среднего мозга, задний гипоталамус, синее пятно в нижних отделах ствола мозга. К инактивирующим структурам относят преоптическую область гипоталамуса, ядра шва в стволе мозга, фронтальную кору.

Важнейшей частью модулирующего блока мозга является активирующая ретикулярная формация. Филогенетически ретикулярная формация мозга представляет наиболее древнее морфологическое образование. Еще в 1855 г. венгерским анатомом Йожефом Ленхошшеком была описана сеть из нервных клеток, находящаяся в середине ствола мозга. Цитоархитектоника этой своеобразной сетчатой структуры изучена еще недостаточно, очевидно, что ретикулярная формация не является аморфным образованием. В ретикулярной формации выделяют более или менее компактные и ограниченные клеточные скопления - ядра, отличающиеся различными морфологическими особенностями. В связи с этим одни авторы рассматривают ретикулярную формацию как диффузное вытянутое в длину единое образование, другие считают ее комплексом, состоящим из многих дифференцированных ядер с различной структурой и функциями. Латерально (с боков) ретикулярная формация окружена сенсорными путями. Таким образом, волокна ретикулярной формации окружены слоем сенсорных путей, которые к ней образуют множество коллатералей.

Функциональное назначение ретикулярной формации долго оставалось неизвестным. Первым указанием на нисходящие тормозные влияния ретикулярной формации явились опыты И.М. Сеченова, в которых наблюдалось угнетение рефлекторных реакций лягушки при раздражении межуточного мозга.

В.М. Бехтерев обнаружил восходящие влияния ретикулярной формации на двигательную область коры, приводящие к возникновению судорожных припадков при раздражении определенных участков Варолиева моста. Однако только электрофизиологические исследования выявили исключительную роль ретикулярной формации в интегративной деятельности мозга. Это открытие было сделано в 1949 г. Г. Мэгуном и Г. Моруцци. Путем стимуляции через электроды, вживленные в стволовой отдел мозга (на уровне среднего мозга), им удалось получить реакцию пробуждения спящего животного. Эту стволовую систему мозга Г. Мэгун назвал восходящей активирующей системой мозга.

Волокна ретикулярной формации, направляясь вверх, образуют модулирующие «входы» (как правило, аксодендритные синапсы) в выше расположенных мозговых образованиях, включая старую и новую кору. От старой и новой коры берут начало нисходящие волокна, которые идут в обратном направлении к структурам гипоталамуса, среднего мозга и к более низким уровням мозгового ствола. Через нисходящие системы связей все нижележащие образования оказываются под управлением и контролем тех программ, которые возникают в коре головного мозга и для выполнения которых требуется модуляция активности и модификация состояний бодрствования. Таким образом, блок активации с его восходящими и нисходящими влияниями работает (по принципу обратной связи) как единый саморегулирующий аппарат, который обеспечивает изменение тонуса коры, и вместе с тем сам находится под его контролем. Этот аппарат используется для пластичного приспособления организма к условиям среды. Он содержит в своей основе по крайней мере два источника активации: внутренний и внешний. Первый связан с обменными процессами, обеспечивающими внутреннее равновесие организма, второй - с воздействием внешней среды. Первым источником активации является внутренняя активность самого организма, или потребности. Любые отклонения от жизненно важных «констант» в результате изменения нервных или гуморальных влияний или вследствие избирательного возбуждения различных отделов мозга приводят к выборочному «включению» определенных органов и процессов, совокупная работа которых обеспечивает достижение оптимального состояния для данного вида деятельности организма.

Наиболее простые формы внутренней активности связаны с дыхательными и пищеварительными процессами, процессами внутренней секреции и другими, включенными в гомеостатический механизм саморегуляции, который устраняет нарушение во внутренней среде организма за счет своих резервов. Более сложные формы этого вида активации организованы в структуру врожденного поведения, направленного на удовлетворение определенной потребности. Естественно, для того чтобы обеспечить механизм инстинктивной регуляции поведения, необходима весьма избирательная и специфическая активация. Такая специфическая активация может быть функцией лимбической системы мозга, в которой важная роль принадлежит гипоталамусу.

Гипоталамус - часть межуточного мозга, содержит десятки высоко дифференцированных ядер, обладающих обширной и разносторонней системой связей. Его важной анатомической особенностью является высокая проницаемость сосудов гипоталамуса для крупномолекулярных белковых соединений. Этим обеспечиваются оптимальные условия для обмена веществ в нейронах гипоталамуса и получения информации о гуморальной среде организма. Его разносторонние регулирующие функции реализуются гуморальным путем и через обширные нервные связи с различными областями головного мозга.

Как часть активирующей системы мозга задний гипоталамус обусловливает поведенческую активацию. Это достигается прежде всего через регуляцию вегетативных и эндокринных функций организма. Таким образом, гипоталамус координирует внутренние потребности организма с его внешним поведением, направленным на достижение приспособительного эффекта. Гипоталамус входит в состав потребностно-мотивационной системы, являясь ее главной исполнительной структурой. При этом он не просто участвует в регуляции отдельных жизненно важных функций (голода, жажды, полового влечения, активной и пассивной обороны), а осуществляет их объединение в сложные комплексы или системы.

В зависимости от характера нервной и гуморальной сигнализации, собирающейся в гипоталамусе, в нем или накапливается, или тормозится мотивационное возбуждение, определяющее внешнее поведение (например, пищевое). При сильном пищевом возбуждении преобладает симпатическая активация коры больших полушарий, общее двигательное беспокойство и воспроизведение ранее заученного поведения. Удовлетворение актуализированной потребности сопровождается доминированием деятельности парасимпатической системы - двигательным успокоением и сонливостью. У бесполушарных животных стимуляция потребностных центров гипоталамуса вызывает лишь более общее, генерализованное мотивационное возбуждение, проявляющееся в общем, нецеленаправленном беспокойстве, поскольку более сложные формы поведения - поисковая реакция, выбор объекта и его оценка - регулируются вышележащими структурами, лимбическими образованиями и корой головного мозга.

Второй источник активации связан с воздействием раздражителей внешней среды. Ограничение контакта с внешней средой (сенсорная депривация) приводит к значительному снижению тонуса (возбудимости) коры мозга. В условиях резкого ограничения сенсорной информации у человека могут возникать галлюцинации, которые в какой-то мере компенсируют дефицит сенсорного возбуждения.

Часть непрерывного потока сенсорных сигналов, поставляемых в кору специфическими (анализаторными) системами, по коллатералям поступает в ретикулярную формацию. После многократных переключений в ее синапсах афферентное возбуждение достигает высших отделов головного мозга. Эти так называемые неспецифические активирующие влияния служат необходимым условием для поддержания бодрствования и осуществления любых поведенческих реакций. Помимо этого неспецифическая активация является важным условием для формирования селективных свойств нейронов коры в процессе онтогенетического созревания и обучения.

В аппарате восходящей ретикулярной формации сформировался механизм преобразования сенсорной информации в две формы активации: тоническую (генерализованную) и фазическую (локальную). Тоническая форма активации связана с функцией нижних стволовых отделов ретикулярной формации. Она генерализованно, диффузно поддерживает определенный уровень возбудимости в коре и подкорковых образованиях. Фазическая форма активации связана с верхними отделами ствола мозга, и прежде всего с неспецифической таламической системой, которая локально и избирательно распределяет воздействия восходящей активации на подкорковые образования, старую и новую кору.

Тоническая активация облегчается притоком возбуждений из различных органов чувств. «Экстренное» появление или исчезновение какого-либо раздражителя во внешней среде вызывает ориентировочный рефлекс и реакцию активации (экстренная мобилизация организма). Это поликомпонентная реакция, она связана с работой механизмов тонической и фазической активации ретикулярной формации (среднего мозга и неспецифических ядер таламуса). Кроме того, ориентировочный рефлекс связан с активирующей и тормозной функцией нейронов гиппокампа и хвостатого ядра, которые являются важным аппаратом регуляции тонических состояний коры мозга.

Установлено, что кора головного мозга наряду со специфическим функциональным вкладом оказывает «неспецифические» активирующие и тормозные влияния на нижележащие нервные образования. Корковые влияния, поступающие по нисходящим волокнам, представляют достаточно дифференцированную организацию и могут рассматриваться в качестве дополнительного третьего источника активации . Специфические пучки этих волокон, селективно меняющих возбудимость сенсорных и двигательных аппаратов, исходят из первичных и вторичных зон коры. Из лобных отделов коры (источник произвольной активации) исходят наиболее обширные активирующие и инактивирующие избирательные влияния, проецирующиеся на стволовой отдел мозга. Эти нисходящие волокна, проводящие корковую избирательную импульсацию к различным образованиям ствола, по мнению А.Р. Лурии , являются тем аппаратом, посредством которого высшие отделы коры непосредственно участвуют в формировании замыслов и программ поведения человека; с их помощью нижележащие модулирующие аппараты таламического и стволового отдела тоже вовлекаются в реализацию этих процессов, и таким образом обеспечивается достаточный уровень активности для осуществления сложных форм высшей нервной (психической) деятельности.

← Вернуться

×
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:
Я уже подписан на сообщество «sinkovskoe.ru»