Газотурбинные и газовые установки. Принцип действия газотурбинных установок

Подписаться
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:

Пока мы говорили только о самой газовой турбине, не

* * задавая вопроса, откуда берется газ, приводящий ее в действие.

В паровую турбину рабочий пар поступает из паро­вого котла. Какие же устройства необходимы для того, чтобы питать рабочим газом газовую турбину?

Для работы газовой турбины необходим газ, имеющий большой запас энергии. Энергия газа - его способность совершать при определенных условиях механическую ра­боту- зависит от давления и температуры. Чем сильнее сжат газ и чем выше его температура, тем большую ме­ханическую работу способен он совершить при своем рас­ширении. Значит, для работы турбин необходим сжатый и нагретый газ. Отсюда понятно, какие устройства должны входить в газотурбинную установку (или газо­турбинный двигатель). Это, во-первых, устройство для сжатия воздуха, во-вторых, устройство для его подогрева

И, в-третьих, сама газовая турбина, преобразующая вну­треннюю энергию сжатого и нагретого газа в механиче­скую работу.

Сжатие воздуха - сложная задача. Осуществить ее значительно труднее, чем подать в камеру сгорания жидкое горючее. Например, чтобы подавать в камеру сго­рания с давлением 10 атмосфер один килограмм керосина в секунду, необходимо расходовать около 2 лошадиных сил, а для сжатия до 10 атмосфер одного килограмма воздуха в секунду необходимо примерно 400 лошадиных сил. А в газотурбинных установках на один килограмм керосина приходится примерно 60 килограммов воздуха.

Значит, на подачу воздуха в камеру сгорания с давле­нием 10 атмосфер надо затрачивать в 12 тысяч раз боль­шую мощность, чем на подачу жидкого горючего.

Для сжатия воздуха применяются специальные ма­шины, называемые нагнетателями или компрессорами. Они получают необходимую для их работы механическую энергию от самой газовой турбины. Компрессор и тур-

Бежного компрессора.

Компрессора.

Бина крепятся на одном валу, и турбина во время работы отдает часть своей мощности воздушному компрессору.

В газотурбинных установках используются компрес­соры двух типов: центробежные и осевые.

В центробежном компрессоре (рис. 6), как показывает его название, для сжатия воздуха используется действие центробежной силы. Такой компрессор состоит из вход­ного патрубка, по которому внешний воздух входит в компрессор; диска с рабочими лопатками, называемого часто крыльчаткой (рис. 7); так называемого диффузора, в который поступает выходящий из крыльчатки воздух, и выходных патрубков, отводящих сжатый воздух к месту назначения, например к камере сгорания газотурбинной установки.

Воздух, входящий в центробежный компрессор, под­хватывается лопатками быстровращающейся крыль­чатки и под действием центробежной силы отбрасывается от центра к окружности. Двигаясь по каналам между лопатками и вращаясь вместе с диском, он сжимается центробежными силами. Чем быстрее вращение крыль­чатки, тем больше сжатие воздуха. В современных ком­прессорах окружная скорость крыльчатки достигает 500 метров в секунду. При этом давление воздуха на выходе из крыльчатки составляет примерно 2,5 атмо­сферы. Помимо повышенного давления, воздух, проходя между лопатками, приобретает большую скорость, близ­кую по величине к окружной скорости крыльчатки. За­тем воздух пропускают через диффузор - постепенно расширяющийся канал. При движении по такому каналу скорость воздуха уменьшается, а давление растет. На выходе из диффузора воздух обычно имеет давление по­рядка 5 атмосфер.

Центробежные компрессоры просты по конструкции. Они имеют малый вес, могут сравнительно эффективно работать при различных числах оборотов вала и расходах воздуха. Эти качества обеспечили им широкое примене­ние в технике. Однако у центробежных компрессоров не­достаточно высок коэффициент полезного действия - всего 70-75%. Поэтому в газотурбинных установках, где на сжатие воздуха затрачивается очень много энергии, чаще применяются компрессоры осевого типа. Их коэф­фициент полезного действия выше, он достигает 85-90 %. Но по своему устройству осевой компрессор сложнее центробежного и имеет больший вес.

Осевой компрессор состоит из нескольких рабочих ко­лес, жестко укрепленных на валу и помещенных в канал, по которому движется воздух. Каждое рабочее колесо представляет собой диск с лопатками на ободе. При бы­стром вращении рабочего колеса лопатки сжимают про­ходящий по каналу воздух и увеличивают его скорость.

За каждым рабочим колесом помещается один ряд не­подвижных лопаток - направляющий аппарат, который еще более повышает давление воздуха и сообщает струе требуемое направление.

Рабочее колесо с расположенным за ним рядом не­подвижных лопаток направляющего аппарата называется ступенью компрессора. Одна ступень осевого компрес­сора увеличивает давление воздуха примерно в 1,3 раза. Чтобы получить большее давление, применяют осевые компрессоры с несколькими ступенями. Для получения высоких давлений используются осевые компрессоры с

Рис. 8. Ротор пятнадцахиступенчатого осевого компрессора.

14, 16 и большим числом ступеней. В многоступенчатых осевых компрессорах рабочие лопатки иногда крепятся не на отдельных дисках, а на общем пустотелом валу, так называемом барабане. Вращающуюся часть компрес­сора (барабан с рядами лопаток или рабочие колеса, укрепленные на валу) называют ротором (рис. 8), а не­подвижные направляющие лопатки, укрепленные на ко­жухе компрессора,- его статором.

Свое название осевой компрессор получил потому, что воздух движется вдоль его оси, в отличие от центробеж­ного компрессора, в котором воздух перемещается в ра­диальном направлении.

Воздух, сжатый в компрессоре до высокого давления, подается в камеру сгорания. Здесь в поток воздуха впры­скивается через распылители-форсунки жидкое топливо, которое воспламеняется таким же путем, как это де­лается в двигателях внутреннего сгорания,- с помощью электросвечи. Электросвеча работает только в период запуска двигателя. Далее горение происходит непре­рывно. При этом выделяется большое количество тепла. При сгорании одного килограмма керосина выделяется 10 500 калорий тепла.

Чем больше тепла выделится при сгорании топлива, тем выше будет температура газов в конце камеры сгора­ния. Если на 15 килограммов воздуха подать 1 килограмм керосина, то температура газов достигнет примерно 2500° С. При столь высокой температуре газов работа газотурбинной установки была бы весьма эффективной. Однако материал лопаток соплового аппарата и рабочих лопаток турбины не может выдержать такого нагрева. Лучшие современные жаропрочные сплавы, применяемые в авиационных газотурбинных двигателях, позволяют ра­ботать при температуре газов порядка 900° С. В турбинах, работающих на электростанциях, где требуется более длительный срок службы и используются менее дорогие сплавы, допустимая температура газов еще ниже. По­этому в камерах сгорания газотурбинных установок на

1 килограмм керосина или нефти подается 50-80 кило­граммов воздуха. При таком соотношении в конце ка­меры сгорания устанавливается температура газов, допу­скаемая прочностью лопаток.

Проектирование камеры сгорания для газотурбинных установок представляет собой сложную научно-техниче­скую задачу. К камере сгорания предъявляется ряд стро­гих требований, от выполнения которых зависит работо­способность всей установки. Вот важнейшие из этих тре­бований. Во-первых, необходимо обеспечить полное сго­рание топлива. Если топливо не успеет полностью сго­реть в камере сгорания, то часть его энергии будет напрасно потеряна. Экономичность газотурбинной уста­новки понизится. Более того, топливо, не успевшее сгореть в камере сгорания, станет догорать между лопат­ками турбины, что приведет к прогоранию и поломке лопаток, то есть к аварии. Нельзя допускать также, чтобы поступающий в турбину газ вместо одинаковой температуры по всему поперечному сечению имел в одном месте, например, 600° С, а в другом - 1200°. Нужно поэто­му обеспечить хорошее смешение газов перед выходом из камеры, исключить возможность проникновения в турбину отдельных «факелов» газа с повышенной температурой. Наконец, необходимо хорошо охлаждать стенки камеры сгорания, чтобы защитить их от прогорания.

Для решения всех этих задач воздушный поток в ка­мерах сгорания газотурбинных двигателей делят на две части (рис. 9). Меньшая часть потока направляется во внутреннюю часть камеры - в так называемую жаровую трубу. Там топливо сгорает при высокой температуре (высокая температура позволяет достигнуть достаточно

Полного сгорания). Остальная часть воздуха не участвует в горении. Она омывает с внешней стороны жаровую трубу и охлаждает ее. Затем происходит смешивание холодного воздуха с горячими газами. Для лучшего перемешивания в стенках трубы делается большое число мелких отверстий, через которые охлаждающий воздух небольшими порциями вводится внутрь и смешивается с горячими газами. Благодаря такой подаче охлаждаю­щего воздуха температура газа около стенок оказывается ниже, чем в центре жаровой трубы. Это также способ­ствует ее защите от прогорания.

Камера сгорания газотурбинной установки обычно располагается между компрессором и турбиной. При та­ком расположении поток газов идет прямо от входа уста­новки к ее выходу. Но в центре установки проходит вал, соединяющий турбину с компрессором. Этот вал не дол­жен сильно нагреваться, иначе его прочность понизится. Поэтому камеру сгорания делают кольцевой или одну

Общую камеру заменяют 6-10 отдельными камерами, расположенными по окружности вокруг вала.

Вы познакомились с тремя основными частями газо­турбинной установки: воздушным компрессором, камерой сгорания и газовой турбиной. На рис. 10 показана схема газотурбинного двигателя. Вот как он работает.

Компрессор засасывает воздух из атмосферы и сжи­мает его. Сжатый воздух поступает в камеру сгорания, где благодаря сжиганию топлива его температура возра­стает на несколько сот градусов. Давление же газа

Остается примерно постоянным. Поэтому двигатели такого типа называют газотурбинными двигателями с постоян­ным давлением сгорания. Из камеры сгорания газ с вы­соким давлением и температурой, а следовательно, с большим запасом энергии идет в турбину. Там происхо­дит процесс перехода энергии сжатого и нагретого газа в полезную работу.

Газ совершает в турбине работу в процессе расшире­ния, то есть когда снижается его давление. В большин­стве газотурбинных установок давление газа снижается до атмосферного. Значит, в турбине происходит процесс, обратный тому, который идет в компрессоре.

Если бы температура воздуха на выходе из компрес­сора и при входе в турбину была одинакова, то при рас­ширении воздуха в турбине он совершал бы такую же работу, какая была затрачена на его сжатие в компрес­соре - при том условии, что не было бы никаких потерь энергии на трение воздуха и на его завихрение. А с уче­том этих потерь воздух совершал бы в турбине работу меньшую, чем работа, требуемая для вращения компрес­сора. Ясно, что от такой установки не было бы никакой пользы. Но в компрессоре сжимается холодный воздух, а в турбину поступает сильно нагретый газ. Поэтому работа расширения газа оказывается в 1,5-2 ра­за больше, чем требуется для компрессора. Например, если газовая турбина развивает мощность в 10 ООО лошадиных сил, то на вращение соединенного с ней ком­прессора надо затрачивать примерно 6000 лошадиных

Сил. Оставшаяся свободная мощность в 4000 лошадиных сил может быть использована для вращения электрогене­ратора, судового винта, воздушного винта самолета или каких-либо иных механизмов.

Для работы газотурбинного двигателя необходим ряд вспомогательных агрегатов: топливные насосы, автома­тические приборы, регулирующие его работу, система смазки и охлаждения, система управления и др.

Чтобы запустить газотурбинный двигатель, надо рас­крутить его ротор (рис. 11) до нескольких сот оборотов в минуту. Для этой цели служит небольшой вспомога­тельный двигатель, называемый стартером. У больших газотурбинных двигателей стартером часто служат ма­ленькие газотурбинные двигатели мощностью порядка 100 лошадиных сил, а иногда и более. Эти стартеры в свою очередь раскручиваются небольшими электромото­рами, получающими питание от аккумулятора.

ЖДысль о возможности использовать поток горячих га - *** зов для получения механической работы зароди­лась очень давно. Еще 450 лет назад великий итальян­ский ученый Леонардо да Винчи дал описание колеса с лопастями, установленного в дымоходе над очагом. Под действием газового потока такое колесо могло вра­щаться и приводить в действие вертел. Колесо Леонардо да Винчи можно считать прообразом газовой турбины.

В 1791 году англичанин Джон Барбер взял патент на газотурбинную установку. По рисунку, приложенному к патенту, можно было представить, что установка, по мысли автора, должна была работать на горючем газе, получаемом перегонкой твердого или жидкого топлива. Газ с помощью примитивного компрессора нагнетался в резервуар. Из него он поступал в камеру сгорания, где смешивался с воздухом, подаваемым вторым компрессо­ром, и воспламенялся. Продукты сгорания поступали из камеры на колесо турбины. Однако при существовавшем тогда уровне развития техники осуществить газовую тур­бину не представлялось возможным. Первая газовая тур­бина была создана лишь в самом конце XIX века рус­ским изобретателем П. Д. Кузьминским, который, как мы уже говорили, построил и первую паровую турбину для морских судов.

Газотурбинный двигатель, построенный в 1897 году по проекту П. Д. Кузьминского, состоял из воздушного компрессора, камеры сгорания и радиальной турбины (рис. 12). Кузьминский применил охлаждение камеры сгорания водой. Вода охлаждала стенки и затем посту­пала внутрь камеры. Подача воды снижала температуру и в то же время увеличивала массу газов, поступающих в турбину, что должно было повысить эффективность установки. К сожалению, работа Кузьминского не встре­тила никакой поддержки со стороны царского правитель­ства.

Спустя 7 лет, в 1904 году, за границей была по­строена газовая турбина по проекту немецкого инженера Штольца, но практического применения она не получила, так как имела много недостатков.

В 1906 году французские инженеры Арманго и Ле- маль построили газовую турбину мощностью в 25 лоша­диных сил, а затем другую - мощностью уже в 400 ло­шадиных сил. Коэффициент полезного действия этой установки составлял всего 3%.

Испытания первых газотурбинных установок показали, что для повышения их эффективности необходимо до­биться значительного увеличения коэффициента полез­ного действия компрессора и турбины, а также поднять

Температуру газов в камере сгорания. Это побудило мно­гих изобретателей искать другие конструкции газовых турбин. Возникло желание избавиться от компрессора, чтобы избежать больших потерь энергии при сжатии воз­духа. Но турбина может работать лишь тогда, когда давление газов в камере сгорания выше, чем за турби­ной. Иначе газ не потечет из камеры в турбину и не при­ведет в действие ее рабочее колесо. При непрерывном процессе горения в камере неизбежно применение ком­прессора, подающего сжатый воздух. Однако, если сде­лать процесс горения прерывистым, то можно отказаться

От компрессора или использовать компрессор, дающий не­большое сждтие воздуха и соответственно с этим потреб­ляющий меньшую мощность. В такую пульсирующую ка­меру воздух подается в то время, когда в ней нет горения и давление очень низкое. После входа воздуха и впрыска горючего входное отверстие камеры закрывается, проис­ходит вспышка. Так как камера закрыта и газы расши­риться не могут, то давление в ней резко возрастает. После то­го как газы вытекут из камеры в турбину, впускной клапан от­крывается и в камеру входит новая порция воздуха. Так, осуще­ствляя процесс горе­ния при постоянном объеме газов, то есть в замкнутой камере, можно повысить их давление без помощи компрессора.

В 1908 году рус­ский инженер В. В.

Кароводин создал опытную модель та­кой газовой турбины (рис. 13). Закрытие камеры в период го­рения топлива осу­ществлялось в ней с помощью специального клапана. Тур­бина имела четыре камеры сгорания, из которых газ по четырем длинным соплам шел к рабочему колесу. При испытаниях модель развивала мощность 1,6 лошадиной силы; коэффициент полезного действия равнялся всего 3%. Для промышленного применения эта турбина также еще не годилась.

Над созданием газовых турбин с постоянным объе­мом сгорания долго работал и немецкий инженер Хольц - варт. По его проектам в период 1914-1920 годов было
построено несколько турбин мощностью от 500 до 2000 ло­шадиных сил. Однако ни одна из них не годилась для промышленной эксплуатации. Лишь в 30-х годах швей­царской фирме «Броун-Бовери» удалось создать не­сколько пригодных для практической эксплуатации тур­бин с горением при постоянном объеме. В настоящее время работы над подобными турбинами почти полно­стью прекращены.

Наши ученые пошли по другому пути. Инженер

В. X. Абианц в своей книге «Теория авиационных газовых турбин» пишет о трудах советских специалистов:

«Одна из главных заслуг советских ученых заклю­чается в том, что они обосновали целесообразность и перспективность развития турбин с постоянным давле­нием сгорания, в то время как зарубежные (в частности, немецкие) газотурбинисты работали в области турбин с постоянным объемом сгорания. Все последующее разви­тие газовых турбин, в том числе и авиационных, бле­стяще подтвердило прогнозы советских ученых, ибо стол­бовой дорогой развития газовых турбин оказался путь создания турбин с постоянным давлением сгорания».

Трудами советских ученых было доказано, что газо­турбинные установки с постоянным давлением сгорания при достаточно высокой температуре газов могут иметь высокий коэффициент полезного действия.

В 1939 году профессором В. М. Маковским была по­строена на Харьковском турбогенераторном заводе газо­вая турбина с постоянным давлением сгорания. Ее мощ­ность составляла 400 киловатт. Вал, диск и полые ло­патки турбины охлаждались водой. Турбина Маковского предназначалась для работы на горючем газе, получае­мом в результате подземной газификации каменного угля. Она была установлена и успешно испытана на одной из шахт в Горловке.

В настоящее время наши заводы производят различ­ные типы высокоэффективных газовых турбин.

Хотя газотурбинная установка по своему устройству более проста, чем поршневой двигатель внутреннего сго­рания, для создания ее потребовалось провести огромную научно-исследовательскую работу. Вот почему только в наше время, на основе современных достижений науки и техники, удалось создать эффективный газотурбинный двигатель.

Какие же научные проблемы надо было решить уче­ным, прежде чем сделать возможным создание газотур­бинных установок?

При создании газовой турбины необходимо было стре­миться к тому, чтобы возможно полнее использовать энер­гию газа, предельно снизить ее потери на трение и вихре - образование. Большая скорость движения газа через турбину позволяет получить и большую мощность неболь­шой по - размерам установки. Но в то же время такая скорость таит в себе опасность больших потерь энергии. Чем больше скорость движения жидкости или газа, тем больше потери энергии на трение и образование вихрей.

Чтобы построить газотурбинную установку с высоким коэффициентом полезного действия, надо было выбрать наивыгодные размеры, форму и взаимное расположение частей компрессора и турбины. А для этого требовалось изучить движение газов и узнать, как они воздействуют на обтекаемые ими твердые тела. Изучение движения газа требовалось для развития многих отраслей техники.

Первой задачей ученых в этой области было исследо­вать движение газа при сравнительно малых скоростях, когда он практически не сжимается. Поскольку движение несжимаемого газа подчиняется тем же законам, что и движение жидкости, этот раздел науки получил название гидродинамики («гидр» - по-гречески вода).

Одновременно развивалась наука о молекулярном строении газа, о процессах изменения его состояния под действием давления и температуры. Она называется тер­модинамикой (от латинского слова «термо» - теплота).

В процессе развития гидродинамики возникла необхо­димость учитывать характерные особенности газа, отли­чающие его от жидкости. И вот на базе гидродинамики возникла аэродинамика - наука о законах течения воз­духа и обтекания тел воздушным потоком. В то же время появление паровых турбин побудило ученых-термодина - миков исследовать и такие вопросы, как истечение газов и паров из сопел.

В процессе своего развития гидродинамика и термо­динамика, расширяя круг изучаемых вопросов, проникая все глубже и глубже в сущность физических явлений, приближались друг к другу. Так возник еще один новый раздел науки - газовая динамика, изучающая законы движения газа с большими скоростями и тепловые про­цессы, происходящие в газовом потоке.

Эта наука и послужила теоретической основой для развития газотурбинных двигателей. Первые фундамен­тальные работы по теории газовых турбин были выпол­нены выдающимся чешским ученым Стодола, советскими профессорами В. М. Маковским, В. В. Уваровым и рядом других ученых.

Разработка теоретических основ газотурбинной тех­ники и начавшиеся во многих странах мира эксперимен­тальные работы в этой области показали, что важнейшей задачей в развитии двигателей такого типа являлось усо­вершенствование их проточной части, т. е. тех элементов двигателя, по которым течет газ: воздухозаборника, ком­прессора, камеры сгорания, турбины и сопла. В первую очередь стоял вопрос о разработке теории компрессоров и турбин, которые часто называют одним термином «ло­паточные машины». Именно решением этой фундамен­тальной задачи и занялись советские ученые. На основе гениальных трудов Эйлера, Бернулли, Жуковского, Чап­лыгина советские ученые создали теорию газотурбинных двигателей.

Исключительно ценный вклад в теорию газотурбин­ных двигателей внес академик Б. С. Стечкин. Его тру­дами была создана стройная теория лопаточных машин. Им были разработаны методы расчета осевых и центро­бежных компрессоров. Он является творцом теории са­мых распространенных в современной авиации газотур­бинных воздушно-реактивных двигателей.

Глубокие теоретические исследования и плодотворную экспериментальную работу по компрессорам провели профессора К. А. Ушаков, В. Н. Дмитриевский, К. В. Хол­щевников, П. К. Казанджан и ряд других ученых. Значи­тельным вкладом в теорию лопаточных машин явился труд украинского академика Г. Ф. Проскура «Гидродина­мика турбомашины», изданный еще в 1934 году.

Теории газовых турбин и газотурбинных двигателей в целом были посвящены работы профессоров Г. С. Жи -

Ридкого, А. В. Квасникова, П. И. Кириллова, Я. И. Шнеэ, Г. П. Зотикова и многих других.

Большая работа была проделана учеными по созда­нию наиболее выгодной формы турбинных лопаток. Ра­бота лопаток турбины имеет много общего с работой крыла самолета. Однако между ними имеются и суще­ственные различия. Крыло работает изолированно, а тур­бинная лопатка - в соседстве с другими лопатками. В последнем случае получается, как принято говорить, «решетка профилей». Влияние соседних лопаток сильно изменяет картину обтекания газом профиля лопатки. Кроме того, крыло обдувается потоком воздуха, имею­щим перед встречей с самолетом одинаковую скорость вдоль всего размаха крыла. А скорость газа относи­тельно лопатки турбины не одинакова по ее длине. Она зависит от окружной скорости лопаток. Так как лопатки делают довольно длинными, то окружная скорость у корня лопатки значительно меньше, чем у ее конца. Зна­чит, и скорость газа относительно лопатки у ее корня будет иная, чем у внешней окружности рабочего колеса. Поэтому профиль лопатки должен быть таким, чтобы лопатка по всей своей длине работала с наибольшей эффективностью. Задача создания таких лопаток была решена трудами профессора В. В. Уварова и других ученых.

Важнейшей проблемой, от решения которой зависело создание экономичных газотурбинных двигателей, была проблема жаропрочных материалов. Экономичность газо­турбинной установки увеличивается с ростом темпера­туры газов. Но чтобы турбина могла надежно работать при высокой температуре, необходимо изготавливать ее лопатки и диск из таких сплавов, прочность которых со­храняется и при большом нагреве. Поэтому для развития газотурбинной техники требовался высокий уровень раз­вития металлургии. В настоящее время металлургами созданы сплавы, способные выдерживать большие тем­пературы. Лопатки турбины, изготовленные из таких сплавов, могут без специального охлаждения работать при температуре поступающих в турбину газов до 900° С.

Кроме сплавов, существуют и другие жаростойкие материалы, например особая керамика. Но керамика довольно хрупка, это препятствует ее применению в газо­вых турбинах. Дальнейшие работы по усовершенствова­нию жаропрочной керамики могут оказать, однако, суще­ственное влияние на развитие газовых турбин.

Конструкторы газовых турбин разрабатывают также лопатки с искусственным охлаждением. Внутри лопаток делают каналы, по которым пропускают воздух или жид­кость. Диск турбины обычно обдувается воздухом.

Условия горения топлива в газотурбинных установках существенно отличаются от условий в топках паровых котлов или в цилиндрах поршневых двигателей. Газо­турбинный двигатель способен при малых размерах про­изводить громадную работу. Но для этого надо сжигать в малом объеме камеры большое количество горючего. Этого можно добиться лишь при очень большой скорости горения. Частицы топлива находятся в камере сгорания газотурбинного двигателя менее сотой доли секунды. За такое короткое время должно произойти хорошее пере­мешивание топлива с воздухом, его испарение и полное сгорание.

Чтобы успешно решить задачу, необходимо изучить физику горения. Над этим работают в наше время круп­ные коллективы ученых.

Учеными детально исследован и вопрос о максималь­ном использовании тепла, выделяемого при горении топ­лива в газотурбинных установках. Из рабочего колеса турбины газы выходят с высокой температурой и, сле­довательно, уносят с собой в атмосферу большое коли­чество внутренней энергии. Возникло естественное жела­ние использовать тепло отходящих газов. Для этого была предложена следующая схема установки. Газы из рабо­чего колеса, прежде чем выйти в атмосферу, проходят через теплообменник, где передают часть своего тепла сжатому воздуху, вышедшему из компрессора. Воздух, нагреваясь в теплообменнике, повышает свою энергию без расхода на это какого-либо количества горючего. Из теплообменника воздух направляется в камеру сгорания, где его температура поднимается еще выше. Устройством таких теплообменников можно значительно сократить расход топлива на нагревание газа и тем самым повы­сить экономичность установки. Теплообменник представ­ляет собой канал, по которому текут горячие газы. Внутри канала помещается пучок стальных труб, распо­ложенных по потоку газов или перпендикулярно к нему. Внутри этих труб течет воздух. Газ нагревает стенки труб и текущий внутри них воздух. Происходит возврат части тепла из уходящих газов в рабочий воздух. Этот процесс называется процессом регенерации тепла. И теп­лообменники часто называют регенераторами.

Газотурбинные установки с регенерацией тепла яв­ляются значительно более экономичными, чем обычные турбины. К сожалению, теплообменники очень громоздки по своим размерам, что затрудняет их применение на некоторых транспортных установках.

В числе научных проблем, лежащих в основе разви­тия газотурбинной техники, следует отметить и проч­ность конструкций. Для постройки прочных камер сго­рания необходимо знать методы расчета тонкостенных оболочек. Этим занимается один из новых разделов науки о сопротивлении материалов. Сложной задачей является обеспечение прочности рабочих лопаток турбины. Ротор турбины совершает очень большое число оборотов (5000-10 ООО оборотов в минуту, а в некоторых конструк­циях и более), и на лопатки действуют большие центро­бежные силы (несколько тонн на каждую лопатку).

Мы рассказали здесь только о самых главных научных проблемах, решение которых потребовалось для развития газотурбинной техники. Ученые и инженеры продолжают работать над совершенствованием газотурбинных двига­телей. Перед ними стоит еще много нерешенных вопро­сов, много интересных и важных проблем.

Например, исключительно большое значение имеют работы по созданию газовых турбин, использующих в качестве топлива каменный уголь. Известно, что камен­ного угля добывается больше, чем нефти, и он дешевле ее. Сжигание угля в камере сгорания газовой турбины - трудная задача. Его приходится размельчать, превра­щать в угольную пыль. Газы, выходящие из камеры сго­рания, надо очищать от золы. Если в газе содержатся частицы золы размером даже в 0,03-0,05 миллиметра, то лопатки турбины начнут разрушаться, и турбина вый­дет из строя.

Создание очистителей газа - дело сложное. Но ре­шить такую задачу для газотурбинного двигателя можно. У двигателей внутреннего сгорания сжатие воздуха, сго­рание и расширение газа происходят в одном месте - в цилиндре. Установить в цилиндре какой-нибудь очисти­тель оказалось невозможным. Поэтому до сих пор по­пытки сжигания угля в цилиндрах двигателей внутрен­него сгорания ни к чему не привели. В газотурбинной же установке сжатие, сгорание и расширение совершаются в разных местах. Сжатие воздуха осуществляется в ком­прессоре, нагревание - в камере, а расширение - в тур­бине. Очиститель можно поместить между камерой и тур­биной. Нужно только, чтобы он не сильно снижал давле­ние проходящих через него газов и не был слишком велик по размерам.

В наши дни ведутся исследования и по созданию атомных газотурбинных двигателей. В этих двигателях нагрев воздуха осуществляется не за счет сжигания топ­лива, а за счет тепла, выделяющегося в атомном котле. Много трудностей предстоит преодолеть ученым на этом пути. Но нет сомнения, что атомным газотурбинным дви­гателям предстоит большое будущее.

Газотурбинные установки (ГТУ) - тепловые машины, в которых тепловая энергия газообразного рабочего тела преобразуется в механическую энергию. Основными компонентами являются: компрессор, камера сгорания и газовая турбина. Для обеспечения работы и управления в установке присутствует комплекс объединенных между собой вспомогательных систем. ГТУ в совокупности с электрическим генератором называют газотурбинным агрегатом. Вырабатываемая мощность одного устройства составляет от двадцати киловатт до десятков мегаватт. Это классические газотурбинные установки. Производство электроэнергии на электростанции осуществляется при помощи одной или нескольких ГТУ.

Устройство и описание

Газотурбинные установки состоят из двух основных частей, расположенных в одном корпусе, - газогенератора и силовой турбины. В газогенераторе, включающем в себя камеру сгорания и турбокомпрессор, создается поток газа высокой температуры, воздействующего на лопатки силовой турбины. При помощи теплообменника производится утилизация выхлопных газов и одновременное производство тепла через водогрейный или паровой котел. Работа газотурбинных установок предусматривает использование двух видов топлива - газообразного и жидкого.

В обычном режиме ГТУ работает на газе. В аварийном или резервном при прекращении подачи газа осуществляется автоматический переход на жидкое (дизельное) топливо. В оптимальном режиме газотурбинные установки комбинированно производят электрическую и тепловую энергию. По количеству вырабатываемой тепловой энергии ГТУ значительно превосходят газопоршневые устройства. Турбоагрегаты используются на электростанциях как для работы в базовом режиме, так и для компенсирования пиковых нагрузок.

История создания

Идея использовать энергию горячего газового потока была известна еще с древних времен. Первый патент на устройство, в котором были представлены те же основные составляющие, что и в современных ГТУ, был выдан англичанину Джону Барберу в 1791 году. Газотурбинная установка включала в себя компрессоры (воздушный и газовый), камеру сгорания и активное турбинное колесо, но так и не получила практического применения.

В 19-м и начале 20-го века многие ученые и изобретатели всего мира разрабатывали установку, пригодную для практического применения, но все попытки были безуспешными ввиду низкого развития науки и техники тех времен. Полезная мощность, выдаваемая опытными образцами, не превышала 14% при низкой эксплуатационной надежности и конструктивной сложности.

Впервые газотурбинные установки электростанций были использованы в 1939 году в Швейцарии. В эксплуатацию была введена электростанция с турбогенератором, выполненным по простейшей схеме мощностью 5000 кВт. В 50-х годах эта схема была доработана и усложнена, что позволило увеличить КПД и мощность до 25 МВт. Производство газотурбинных установок в промышленно развитых странах сформировалось в единый уровень и направление развития по мощностям и параметрам турбоагрегатов. Суммарная мощность выпущенных в Советском Союзе и России газотурбинных установок исчисляется миллионами кВт.

Принцип работы ГТУ

Атмосферный воздух поступает в компрессор, сжимается и под высоким давлением через воздухоподогреватель и воздухораспределительный клапан направляется в камеру сгорания. Одновременно через форсунки в камеру сгорания подается газ, который сжигается в воздушном потоке. Сгорание газовоздушной смеси образует поток раскаленных газов, который с высокой скоростью воздействует на лопасти газовой турбины, заставляя их вращаться. Тепловая энергия потока горячего газа преобразуется в механическую энергию вращения вала турбины, который приводит в действие компрессор и электрогенератор. Электроэнергия с клемм генератора через трансформатор направляется в потребительскую электросеть.

Горячие газы через регенератор поступают в водогрейный котел и далее через утилизатор в дымовую трубу. Между водогрейным котлом и центральным тепловым пунктом (ЦТП) при помощи сетевых насосов организована циркуляция воды. Нагретая в котле жидкость поступает в ЦТП, к которому осуществляется подключение потребителей. Термодинамический цикл газотурбинной установки состоит из адиабатного сжатия воздуха в компрессоре, изобарного подвода теплоты в камере сгорания, адиабатного расширения рабочего тела в газовой турбине, изобарного отвода теплоты.

В качестве топлива для ГТУ используется природный газ - метан. В аварийном режиме, в случае прекращения подачи газа, ГТУ переводится на частичную нагрузку, а в качестве резервного топлива используются дизельное топливо или сжиженные газы (пропан-бутан). Возможные варианты работы газотурбинной установки: отпуск электроэнергии или совмещенный отпуск электричества и тепловой энергии.

Когенерация

Производство электричества с одновременной выработкой сопутствующей тепловой энергии называется когенерацией. Эта технология позволяет значительно повысить экономическую эффективность использования топлива. В зависимости от нужд газотурбинная установка дополнительно может оснащаться водогрейными или паровыми котлами. Это дает возможность получать горячую воду или пар различного давления.

При оптимальном использовании двух видов энергии достигается максимальный экономический эффект когенерации, а коэффициент использования топлива (КИТ) достигает 90%. В этом случае тепло выхлопных газов и тепловая энергия из системы охлаждения агрегатов, вращающих электрогенераторы (по сути, бросовая энергия), используется по назначению. При необходимости утилизируемое тепло может использоваться для производства холода в абсорбционных машинах (тригенерация). Система когенерации состоит из четырех ключевых частей: первичный двигатель (газовая турбина), электрогенератор, система теплоутилизации, система управления и контроля.

Управление

Выделяют два основных режима работы, при которых эксплуатируются газотурбинные установки:

  • Стационарный. В этом режиме турбина работает при фиксированной номинальной или неполной нагрузке. До недавнего времени стационарный режим был основным для ГТУ. Остановка турбины проводилась несколько раз в год для плановых ремонтов или в случае неполадок.
  • Переменный режим предусматривает возможность изменения мощности ГТУ. Необходимость изменять режим работы турбины может быть вызвана одной из двух причин: если изменилась потребляемая электрогенератором мощность ввиду изменения подключенной к нему нагрузки потребителей, и если изменилось атмосферное давление и температура забираемого компрессором воздуха. К нестационарным режимам, причем наиболее сложным, относится остановка и пуск газотурбинной установки. При последнем машинист газотурбинных установок должен выполнить многочисленные операции перед первым толчком ротора. Перед полноценным пуском установки осуществляется предварительная раскрутка ротора.

Изменение режима работы установки осуществляется регулировкой подачи горючего в камеру сгорания. Главной задачей управления ГТУ является обеспечение нужной мощности. Исключением является газотурбинная энергетическая установка, для которой основная задача управления - постоянство частоты ращения, связанного с турбиной электрического генератора.

Применение в энергетике

В стационарной энергетике применяются ГТУ разного назначения. В качестве основных приводных двигателей электрогенераторов на тепловых электростанциях газотурбинные установки используются в основном в районах с достаточным количеством природного газа. Благодаря возможности быстрого пуска ГТУ широко применяются для покрытия пиковых нагрузок в энергосистемах в периоды максимального потребления энергии. Резервные газотурбинные агрегаты обеспечивают внутренние нужды ТЭС во время остановки основного оборудования.

КПД

В целом электрический КПД газовых турбин ниже, чем у других силовых агрегатов. Но при полной реализации теплового потенциала газотурбинного агрегата значимость этого показателя становится менее актуальной. Для мощных газотурбинных установок существует инженерный подход, предполагающий комбинированное использование двух видов турбин за счет высокой температуры выхлопных газов.

Вырабатываемая тепловая энергия идет на производство пара для паровой турбины, которая используется параллельно с газовой. Это повышает электрический КПД до 59% и существенно увеличивает эффективность использования топлива. Недостатком такого подхода является конструктивное усложнение и удорожание проекта. Соотношение производимой ГТУ электрической и тепловой энергии примерно 1:2, то есть на 10 МВт электроэнергии выдается 20 МВт энергии тепловой.

Достоинства и недостатки

К преимуществам газовых турбин относятся:

  • Простота устройства. Ввиду отсутствия котельного блока, сложной системы трубопроводов и множества вспомогательных механизмов металлозатраты на единицу мощности у газотурбинных установок значительно меньше.
  • Минимальный расход воды, которая в ГТУ требуется только для охлаждения подаваемого к подшипникам масла.
  • Быстрый ввод в работу. Для газовых турбоагрегатов время пуска из холодного состояния до принятия нагрузки не превышает 20 минут. Для паросиловой установки ТЭС пуск занимает несколько часов.

Недостатки:

  • В работе газовых турбоагрегатов используется газ с весьма высокой начальной температурой - более 550 градусов. Это вызывает трудности при практическом исполнении газовых турбин, так как требуются специальные жаростойкие материалы и особые системы охлаждения для наиболее нагреваемых частей.
  • Около половины развиваемой турбиной мощности расходуется на привод компрессора.
  • ГТУ ограничены по топливу, используется природный газ или качественное жидкое топливо.
  • Мощность одной газотурбинной установки ограничена 150 МВт.

Экология

Позитивным фактором использования ГТУ является минимальное содержание вредных веществ в выбросах. По этому критерию газовые турбины опережают ближайшего конкурента - поршневые электростанции. Благодаря своей экологичности газотурбинные агрегаты без проблем можно размещать в непосредственной близости от мест проживания людей. Низкое содержание вредных выбросов при эксплуатации ГТУ позволяет экономить средства при строительстве дымовых труб и приобретении катализаторов.

Экономика ГТУ

На первый взгляд, цены на газотурбинные установки довольно высоки, но при объективной оценке возможностей этого энергетического оборудования все аспекты встают на свои места. Высокие капиталовложения на старте энергетического проекта полностью компенсируются незначительными расходами при последующей эксплуатации. Кроме того, значительно снижаются экологические платежи, уменьшаются затраты на покупку электрической и тепловой энергии, снижается влияние на окружающую среду и население. Вследствие перечисленных причин ежегодно приобретаются и устанавливаются сотни новых газотурбинных установок.

ГАЗОТУРБИННЫЕ УСТАНОВКИ (ГТУ)

Рабочий процесс ГТУ. В современ­ных ГТУ используется цикл со сгоранием при р = const (рис. 6.5).

В состав ГТУ обычно входят камера сгорания, газовая турбина, воздушный компрессор, теплообменные аппараты различного назначения (воздухоохлади­тели, маслоохладители системы смазки, регенеративные теплообменники) и вспо­могательные устройства (маслонасосы, элементы водоснабжения и др.).

Рабочим телом ГТУ служат продукты сгорания топлива, в качестве которого используется природный газ, хорошо очищенные искусственные газы (домен­ный, коксовый, генераторный) и специ­альное газотурбинное жидкое топливо (прошедшее обработку дизельное мотор­ное и соляровое масло).

Подготовка рабочей смеси произво­дится в камере сгорания. Огневой объем камеры (рис. 20.9) разделяется на зону горения, где происходит сгорание топли­ва при температуре порядка 2000 °С, и зону смешения, где к продуктам сгора­ния подмешивают воздух для снижения их температуры до 750-1090 °С в стаци­онарных турбинах и до 1400 °С - в авиационных турбинах.

Принцип работы газовой и паровой турбин одинаков, но конструкция про­точной части газовых турбин значительно проще. Они работают на относительно небольшом располагаемом теплоперепаде и поэтому имеют небольшое число ступеней.

В связи с высокой температурой про­дуктов сгорания детали проточной части турбин (сопла, рабочие лопатки, диски, валы) изготавливают из легированных высококачественных сталей. Для надеж­ной работы у большинства турбин пре­дусмотрено интенсивное охлаждение на­иболее нагруженных деталей корпуса и ротора.

В реальных условиях все процессы в ГТУ являются неравновесными, что связано с потерями работы в турбине и компрессоре, а также с аэродинамиче­скими сопротивлениями в тракте ГТУ. На рис. 20.10 действительный процесс сжатия в компрессоре изображен ли­нией 1-2, а процесс расширения в тур­бине - линией 3-4. Точками 2а и 4а от­мечено состояние рабочего тела соот­ветственно в конце равновесного адиа­батного сжатия и расширения, точ­кой О - параметры окружающей среды. Ввиду потерь давления во всасывающем тракте компрессора (линия 01) процесс сжатия начинается в точке1.

Таким образом, на сжатие воздуха в реальном цикле затрачивается боль­шая работа, а при расширении газа в турбине получается меньшая работа по сравнению с идеальным циклом. КПД цикла получается ниже. Чем больше сте­пень повышения давления π (т. е. выше р 2), тем больше сумма этих потерь по сравнению с полезной работой. При оп­ределенном значении π (оно тем выше, чем больше Т з и внутренний относитель­ный КПД турбины и компрессора, т. е. меньше потери в них) работа турби­ны может стать равной работе, затрачен­ной на привод компрессора, а полезная работа - нулю.

Поэтому наибольшая эффективность реального цикла, в отличие от идеально­го, достигается при определенной (опти­мальной) степени повышения давления, причем каждому значению Тз соответ­ствует свое π опт (рис. 20.11). КПД про­стейших ГТУ не превышает 14-18 %, и с целью его повышения ГТУ выпол­няют с несколькими ступенями подвода теплоты и промежуточным охлаждением сжимаемого воздуха, а также с регене­ративным подогревом сжатого воздуха отработавшими газами после турбины, приближая тем самым реальный цикл к циклу Карно.

ГТУ с утилизацией теплоты уходя­щих газов. Теплоту уходящих из ГТУ га­зов можно использовать для получения пара и горячей воды в обычных тепло­обменниках. Так, установки ГТ-25-700 ЛМЗ снабжены подогревателями, нагревающими воду в системе отопле­ния до 150-160 °С.

Вместе с тем сравнительно высокий уровень коэффициента избытка воздуха в ГТУ позволяет сжигать достаточно большое количество дополнительного топлива в среде продуктов сгорания. В результате из дополнительной камеры сгорания после ГТУ выходят газы с до­статочно высокой температурой, пригод­ные для получения пара энергетических параметров в специально устанавливае­мом для этой цели парогенераторе. На Кармановской ГРЭС по такой схеме строится котел к блоку электрической мощностью 500 МВт.

Применение ГТУ. В последние го­ды ГТУ широко используются в раз­личных областях: на транспорте, в энергетике, для привода стационар­ных установок и др.

Энергетические ГТУ. Га­зовая турбина меньше и легче паровой, поэтому при пуске она прогревается до рабочих температур значительно быстрее. Камера сгорания выводится на режим практически мгновенно, в отличие от парового котла, который требует мед­ленного длительного (многие часы и да­же десятки часов) прогрева во избежа­ние аварии из-за неравномерных тепло­вых удлинений, особенно массивного барабана диаметром до 1,5 м, длиной до 15 м, с толщиной стенки выше 100 мм.

Поэтому ГТУ применяют прежде все­го для покрытия пиковых нагрузок и в качестве аварийного резерва для собственных нужд крупных энергоси­стем, когда надо очень быстро включить агрегат в работу. Меньший КПД ГТУ по сравнению с ПСУ в этом случае роли не играет, так как установки работают в те­чение небольших отрезков времени. Для таких ГТУ характерны частые пуски (до 1000 в год) при относительно малом чис­ле часов использования (от 100 до 1500ч/год). Диапазон единичных мощ­ностей таких ГТУ составляет от 1 до 100 МВт.

ГТУ применяются также для привода электрогенератора и получения электро­энергии в передвижных установках (например, на морских судах). Такие ГТУ обычно работают в диапазоне нагрузок 30-110% номинальной, с частыми пусками и остановками. Единичные мощ­ности таких ГТУ составляют от десятков киловатт до 10МВт. Быстрое развитие атомных энергетических установок с ре­акторами, охлаждаемыми, например, ге­лием, открывает перспективу применения в них одноконтурных ГТУ, работающих по замкнутому циклу (рабочее тело не покидает установку).

Специфическую группу энергетиче­ских ГТУ составляют установки, работа­ющие в технологических схемах химиче­ских, нефтеперерабатывающих, метал­лургических и других комбинатов (энерготехнологические). Они работают в базовом режиме нагруз­ки и предназначены чаще всего для при­вода компрессора, обеспечивающего тех­нологический процесс сжатым воздухом или газом за счет энергии расширения газов, образующихся в результате само­го технологического процесса.

Приводные ГТУ широко ис­пользуются для привода центробежных нагнетателей природного газа на ком­прессорных станциях магистральных трубопроводов, а также насосов для транспортировки нефти и нефтепродук­тов и воздуходувок в парогазовых уста­новках. Полезная мощность таких ГТУ составляет от 2 до 30 МВт.



Транспортные ГТУ широко применяются в качестве главных и фор­сажных двигателей самолетов (турборе­активных и турбовинтовых) и судов мор­ского флота. Это связано с возможно­стью получения рекордных показателей по удельной мощности и габаритным размерам по сравнению с другими типа­ми двигателей, несмотря на несколько завышенные расходы топлива. Газовые турбины весьма перспективны как двига­тели локомотивов, где их незначительные габариты и отсутствие потребности в во­де являются особенно ценными. Транс­портные ГТУ работают в широком диа­пазоне нагрузок и пригодны для кратков­ременных форсировок.

Единичная мощность ГТУ пока не превышает 100МВт, а КПД установки 27-37 %. С повышение начальной температуры газов до 1200 °С мощность ГТУ будет доведена до 200 МВт и КПД установки до 38-40 %.

ГАЗОТУРБИННЫЕ УСТАНОВКИ

ВВЕДЕНИЕ

На первых этапах развития ГТУ для сжигания топлива применяли два типа камер сгорания. В камеру сгорания первого типа топливо и окислитель (воздух) подавались непрерывно, их горение также поддерживалось непрерывно, а давление не изме­нялось. В камеру сгорания, второго типа топливо и окислитель (воздух) подавались порциями. Смесь поджигалась и сгорала в замкнутом объеме, а затем продукты сгорания поступали в тур­бину. В такой камере сгорания температура и давление не посто­янны: они резко увеличиваются в момент сгорания топлива.

Со временем выявились несомненные преимущества камер сго­рания первого типа. Поэтому в современных ГТУ топливо в большинстве случаев сжигают при постоянном давлении в камере сгорания.

Первые ГТУ имели низкий КПД, так как газовые турбины и компрессоры были несовершенны. По мере совершенствования этих агрегатов увеличивался КПД газотурбинных установок, и они становились конкурентоспособными по отношению к другим видам тепловых двигателей.

В настоящее время газотурбинные установки являются основ­ным видом двигателей, используемых в авиации, что обусловлено простотой их конструкции, способностью быстро набирать нагруз­ку, большой мощностью при малой массе, возможностью полной автоматизации управления. Самолет с газотурбинным двигателем впервые совершил полет в 1941 г.

В энергетике ГТУ работают в основном в то время, когда резко увеличивается потребление электроэнергии, т. е. во время пиков нагрузки. Хотя КПД ГТУ ниже кпд паротурбинных установок (при мощности 20-100 МВт КПД ГТУ достигает 20-30%), исполь­зование их в пиковом режиме оказывается выгодным, так как пуск занимает гораздо меньше времени.

В некоторых пиковых ГТУ в качестве источников газа для турбины, вращающей электрический генератор, применяют авиа­ционные турбореактивные двигатели, отслужившие свой срок в авиации. Наряду с двигателями внут­реннего сгорания ГТУ применяют в качестве основных двигателей на передвижных электростанциях.



В технологических процессах нефтеперегонных и химических производств горючие отходы используются в качестве топлива для газовых турбин.

Газотурбинные установки находят также широкое применение на железнодорожном, морском, речном и автомобильном транс­порте. Так, на быстроходных судах на подводных крыльях и воз­душной подушке ГТУ являются двигателями. На большегрузных автомобилях они могут использоваться в качестве как основного, так и вспомогательного двигателя, предназначенного для подачи воздуха в основной двигатель внутреннего сгорания и работаю­щего на его выхлопных газах.

Кроме того, ГТУ служат приводом нагнетателей природного газа на магистральных газопроводах, резервных электрогенераторов пожарных насосов.

! Основное направление, по которому развивается газотурбиностроение, это повышение экономичности ГТУ за счет увеличения температуры и давления газа перед газовой турбиной. С этой целью разрабатываются сложные системы охлаждения наиболее напряженных деталей турбин или применяются новые, высокопрочные материалы - жаропрочные на основе никеля, керамика и др.

Газотурбинные установки обычно надежны и просты в эксплуа­тации при условии строгого соблюдения установленных правил и режимов работы, отступление от которых может вызвать разру­шение турбин, поломку компрессоров, взрывы в камерах сгорания и др.

ОСНОВНЫЕ ЭЛЕМЕНТЫ ГАЗОТУРБИННЫХ УСТАНОВОК

ОБЩИЕ СВЕДЕНИЯ О ГАЗОТУРБИННЫХ УСТАНОВКАХ

Газотурбинный двигатель (ГТД) - один из видов теплового двигателя, в котором газ сжимается и нагревается, а затем энергия сжатого и нагретого газа преобразуется в механическую работу на валу газовой турбины. Газотурбинная установка состоит из трех основных элементов: газовой турбины, камер сгорания и воздушного компрессора.

Превращение теплоты в работу осуществляется в нескольких агрегатах ГТД (рис.1)

Рис. 1. Схема газотурбинного двигателя:

ТН – топливный насос; КС – камера сгорания; К – компрессор; Т – турбина; ЭГ – электрогенератор.

В камеру сгорания топливным насосом подаются топли­во и сжатый воздух после компрессора. Топливо перемешивается с воздухом, который служит окислителем, поджигается и сгорает. Чистые продукты сгорания также смешиваются с воздухом, что­бы температура газа, получившегося после смешения, не превы­шала заданного значения. Из камер сгорания газ поступает в га­зовую турбину, которая предназначена для преобразования его потенциальной энергии в механическую работу. Совершая работу, газ остывает и давление его уменьшается до атмосферного. Из газовой турбины газ выбрасывается в окружающую среду.

Из атмосферы в компрессор поступает чистый воздух. В ком­прессоре его давление увеличивается и температура растет. На привод компрессора приходится отбирать значительную часть мощности турбины.

Газотурбинные установки, работающие по такой схеме, назы­вают установками открытого цикла . Большинство современных ГТУ работает по этой схеме.

Рис. 2. Цикл газотурбинного двигателя.

Заменив сгорание топлива изобарным подводом теплоты (линия 2-3 на рис. 2), а охлаждение выброшенных в атмосферу продуктов сгорания – изобарным отводом теплоты (линия 1-4), получается цикл ГТД:

1-2 – сжатие рабочего тела от атмосферного давления до давления в двигателе;

2-3 – горение в камере;

3-4 – процесс адиабатного расширения рабочего тела;

4-1 – отработанные газы выбрасываются в атмосферу

Кроме того, применяются замкнутые ГТУ (рис. 3). В замкну­тых ГТУ также имеются компрессор 3 и турбина 2. Вместо камеры сгорания используется источник теплоты 1, в котором теплота передается рабочему телу без перемешивания с топливом. В ка­честве рабочего тела может применяться воздух, углекислый газ, пары ртути или другие газы.

Рабочее тело, давление которого повышено в компрессоре, в источнике теплоты 1нагревается и поступает в турбину 2, в которой отдает свою энергию. После турбины газ поступает в промежуточный теплообменник 5 (регенератор), в котором он подогревает воз­дух, а затем охлаждается в ох­ладителе 4, поступает в компрессор 3, и цикл повторяется, В качестве источника теплоты могут использоваться специальные котлы для нагрева рабочего-тела энергией сжигаемого топлива или атомные реакторы.

Рис. 3. Схема газотурбинного двигателя, работающего по замкнутому циклу: 1 - поверхностный нагреватель; 2 - турбина; 3 - компрессор; 4 - охладитель; 5 - регенератор; 6 - аккумулятор воздуха; 7 - вспомогательный компрессор.

Имеют единичную электрическую мощность от двадцати киловатт (микротурбины) и до нескольких десятков мегаватт - это классические газовые турбины.

Электрический КПД современных газотурбинных установок составляет 33–39% . КПД газотурбинных установок, в целом ниже, чем у газопоршневых силовых агрегатов. Но с газотурбинными установками значительно упрощается задача получения высокой мощности электростанции. При реализации всего теплового потенциала газовых турбин значимость высокого электрического КПД для потребителей становится менее актуальной. С учетом высокой температуры выхлопных газов в мощных газотурбинных установках имеется возможность комбинированного использования газовых и паровых турбин . Такой инженерный подход позволяет существенно повысить эффективность использования топлива и увеличивает электрический КПД установок до 57–59%. Этот способ хорош, но ведет к удорожанию и усложнению проекта.

Соотношение производимой электрической энергии к тепловой энергии у составляет ~ 1:2. То есть газотурбинная установка с электрической мощностью 10 МВт способна выдать ~ 20 МВт тепловой энергии. Для перевода МВт в ГКал используется коэффициент 1,163 (1,163 МВт = 1163 кВт = 1 Гкал ).

В зависимости от потребностей дополнительно оснащаются паровыми или водогрейными котлами , что дает возможность иметь пар различного давления для производственных потребностей, или горячую воду со стандартными температурами (ГВС). При комбинированном использовании энергии двух видов коэффициент использования топлива (КИТ) газотурбинной тепловой электростанции увеличивается до 90%.

Режим работы электростанции, с использованием сопутствующей тепловой энергии имеет свой технический термин - когенерация .

Возможность получения от газотурбинных установок больших количеств бесплатной тепловой энергии предполагает возврат более быстрый возврат.

Применение газотурбинных установок в качестве силового оборудования для мощных ТЭС и мини–ТЭЦ оправдано экономически, так как на сегодняшний день электростанции, работающие на газовом топливе , имеют наиболее привлекательную для потребителя удельную стоимость строительства и низкие затраты при последующей эксплуатации.

Избытки бесплатной тепловой энергии в любое время года дают возможность, посредством чиллеров - АБХМ , без затрат электричества, наладить полноценное кондиционирование помещений любого назначения. Охлажденный таким образом теплоноситель можно применять в промышленных целях, в различных производственных циклах. Эта технология называется тригенерация .

Эффективность использования газотурбинных установок обеспечивается в широком диапазоне электрических нагрузок от минимальных 1–3% до максимальных 110–115%.

Позитивным фактором использования газотурбинных установок - ГТУ непосредственно в местах проживания людей, является то, что содержание вредных выбросов у них минимально и находится на уровне 9–25 ppm . Такие отличные экологические качества позволяют без проблем размещать газотурбинные установки в непосредственной близости от местонахождения людей.

Этот критерий газотурбинных установок - ГТУ незначительно лучше, чем у ближайших конкурентов газовых турбин - поршневых электростанций .

При использовании газотурбинных установок потребитель получает экономию денежных средств на катализаторах и при строительстве дымовых труб .

На фото изображена газотурбинная установка SIEMENS SGT–700 мощностью 29 МВт.

Газотурбинные установки имеют незначительные вибрации и шумы в пределах 65–75 дБ (что соответствует по шкале уровня шума звуку пылесоса на расстоянии 1 метр). Как правило, специальная звуковая изоляция для подобного высокотехнологичного генерационного оборудования не нужна.

Газотурбинные установки обладают относительно компактными размерами и небольшим удельным весом. Допускается монтаж ГТУ на техническом этаже здания или крышное расположение маломощных газотурбинных установок. Это полезное свойство ГТУ является важным финансовым фактором в городской застройке, потому что оно позволяет экономить дорогостоящие дефицитные квадратные метры и во многих ситуациях дает больше технического простора инженерам для решения задачи размещения автономной электростанции.

Газотурбинные установки - ГТУ отличаются высокой надежностью и неприхотливостью. Имеются подтвержденные заводские данные о безостановочной работе некоторых газотурбинных установок - ГТУ в течение 5–7 лет.

Некоторые производители современных газовых турбин осуществляют ремонт узлов без транспортировки на завод–изготовитель, а другие производители заранее привозят сменную турбину или камеру сгорания, что существенно снижает сроки выполнения капитального ремонта до 4–6 рабочих дней. Эти меры снижают затраты на обслуживание установок.

Преимуществом газотурбинных установок - ГТУ является длительный ресурс (полный до 200 000 часов, до капитального ремонта 30000–60000 часов). В рабочем цикле газотурбинных установках моторное масло не применяется. Имеется небольшой объем редукторного масла, частота замены которого редка.

Отсутствие водяного охлаждения выгодно отличает газотурбинные установки от поршневых электростанций. Многие марки ГТУ надежно функционируют на различных видах газового топлива , включая попутный нефтяной газ (ПНГ) . Но, как и для других видов электростанций, попутный газ с содержанием сероводорода требует специальной подготовки. Без современной установки - станции подготовки газа жизненный цикл электростанции любого типа сокращается в 4–5 раз. Последствия эксплуатации ГПЭС или ГТУ без станций подготовки ПНГ зачастую носят просто фатальный характер.

Газотурбинные установки подготовлены для эксплуатации в различных климатических условиях. Строительство газотурбинных установок в отдаленных районах позволяет получить экономию финансовых средств за счет исключения дорогостоящего строительства линий электропередач (ЛЭП). В местах с более развитой инфраструктурой газотурбинные установки повышают надежность электрического и теплового снабжения.

Одним из вариантов применения газотурбинных установок - ГТУ является концепция блочно-модульных систем (кластеров). Модульные газотурбинные установки - ГТУ состоят из унифицированных энергоблоков и общих управляющих систем, что позволяет за короткий период времени увеличивать электрическую мощность с наименьшими финансовыми и временными затратами.

Блочные вариации газотурбинных установок - ГТУ обеспечивают высокий уровень заводской готовности. Размеры модулей газотурбинных установок - ГТУ, как правило, стандартны. Существуют мобильные ГТУ , которые можно оперативно перемещать с одного объекта энергоснабжения на другой, но такие установки, как правило, не имеют возможности для производства тепловой энергии.

Автоматизированные системы управления газотурбинной электростанции позволяют отказаться от непосредственного присутствия обслуживающего персонала. Мониторинг работы газотурбинных установок - ГТУ может осуществляться удаленно через различные телекоммуникационные каналы. При возникновении внештатных ситуаций предусмотрены комплексные системы автоматической защиты и пожаротушения.

Газотурбинные установки - ГТУ - принцип работы

В газотурбинных установках - ГТУ многоступенчатый компрессор сжимает атмосферный воздух, и подает его под высоким давлением в камеру сгорания. В камеру сгорания газотурбинных установок - ГТУ подается и определенное количество топлива. При столкновении на высокой скорости топливо и воздух воспламеняются. Топливовоздушная смесь сгорает, выделяя большое количество энергии. Затем, энергия газообразных продуктов сгорания преобразуется в механическую работу за счёт вращения струями раскаленного газа лопаток турбины.

← Вернуться

×
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:
Я уже подписан на сообщество «sinkovskoe.ru»