Русские евреи и лично л брежнев. Проекты пнпо "россия в красках"

Подписаться
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:

Ученый Альберт Эйнштейн говорил, что о световой скорости нельзя размышлять: она на протяжении всего времени не изменяется, неважно, тело приближается или удаляется относительно других объектов.

Удивительные выводы

В начале проведения своих работ о теории относительности он выдвинул пару фантастических гипотез. Говорил такие слова: если скоростное обозначение предмета близка к скорости света, то его параметры понижаются, а масса повышается. Но никакой объект не может быть в движении со скоростью, близкой или приблизительно равной скорости света.

Второе предположение оказалось наиболее удивительным, даже противоречило здоровому смыслу. Нужно представить, что один из однояйцевых близнецов жил на Земле, а второй путешествовал по космическому пространству с близкой к скорости света. С этого времени прошло семьдесят лет. Эйнштейн утверждал, что в космосе время идет намного медленнее, и с момента отбытия второго близнеца прошло около десяти лет. Значит, первый ребенок был на шесть десятков лет старше. На основании лабораторных опытов было подтверждено данное утверждение: если скорость близка к скорости света, время быстрее замедляется.

Вывод, который можно сделать исходя из его теории

В теорию относительности Эйнштейна включается всем известная формула Первой космической скорости, в которой играют роль масса, энергия и скорость света. Ученый безошибочно предполагал, что масса тела может переходить в энергию. Благодаря его утверждениям в современном мире создали ядерную бомбу и атомную энергетику.

Многие гипотезы великого ученого в его время не могли быть подтверждены опытами из-за отсутствия нужного оборудования и техники, но со временем это устранили.

События

Самолет, на котором специально установили часы с повышенной точностью, взлетел ввысь и прошел вокруг диаметра Земли на очень высоких скоростях. Далее он спустился в точку старта и часы, которые были установлены в самолете, на ничтожно малую долю времени отставали от часов, оставшиеся на планете.

Если дно лифта упадет с ускорением g — это ускорение свободного падения, а первоначально на нем будет воздушный шар, последний останется в воздухе. Так получается из-за того, что ускорение обоих объектов одинакова.

Альберт Эйнштейн доказал примерами, что притяжение напрямую влияет на пространственные и временные характеристики, влияющие на передвижение объектов на Земле. Рано или поздно два объекта, которые двигаются по параллельным прямым на встречу друг другу, обязательно будут находиться одновременно в одном месте.

Искривление пространства и времени

Если вселенский корабль движется со скорость, которая практически равна световой скорости, часы на борту замедлятся.

Ученый говорил, что пути движения небесного тела вокруг Солнца строго закреплены. Теория относительности доказывает малое искривление орбит всех планет, которые связаны с присутствием гравитации. И в скором времени это подтвердилось.

Введение

2. Общая теория относительности Эйнштейна

Заключение

Список использованных источников


Введение

Еще в конце XIX века большинство ученых склонялось к точке зрения, что физическая картина мира в основном построена и останется в дальнейшем незыблемой - предстоит уточнять лишь детали. Но в первые десятилетия ХХ века физические воззрения изменились коренным образом. Это было следствием «каскада» научных открытий, сделанных в течение чрезвычайно короткого исторического периода, охватывающего последние годы ХIХ столетия и первые десятилетия ХХ, многие из которых совершенно не укладывались в представление обыденного человеческого опыта. Ярким примером может служить теория относительности, созданная Альбертом Эйнштейном (1879-1955).

Впервые принцип относительности был установлен Галилеем, но окончательную формулировку получил лишь в механике Ньютона.

Принцип относительности означает, что во всех инерциальных системах все механические процессы происходят одинаковым образом.

Когда в естествознании господствовала механистическая картина мира, принцип относительности не подвергался никакому сомнению. Положение резко изменилось, когда физики вплотную приступили к изучению электрических, магнитных и оптических явлений. Для физиков стала очевидной недостаточность классической механики для описания явлений природы. Возник вопрос: выполняется ли принцип относительности и для электромагнитных явлений?

Описывая ход своих рассуждений, Альберт Эйнштейн указывает на два аргумента, которые свидетельствовали в пользу всеобщности принципа относительности:

Этот принцип с большой точностью выполняется в механике, и поэтому можно надеяться, что он окажется правильным и в электродинамике.

Если инерциальные системы неравноценны для описания явлений природы, то разумно предположить, что законы природы проще всего описываются лишь в одной инерциальной системе.

Например, рассматривается движение Земли вокруг Солнца со скоростью 30 километров в секунду. Если бы принцип относительности в данном случае не выполнялся, то законы движения тел зависели бы от направления и пространственной ориентировки Земли. Ничего подобного, т.е. физической неравноценности различных направлений, не обнаружено. Однако здесь возникает кажущаяся несовместимость принципа относительности с хорошо установленным принципом постоянства скорости света в пустоте (300 000 км/с).

Возникает дилемма: отказ либо от принципа постоянства скорости света, либо от принципа относительности. Первый принцип установлен настолько точно и однозначно, что отказ от него был бы явно неоправданным; не меньшие трудности возникают и при отрицании принципа относительности в области электромагнитных процессов. В действительности, как показал Эйнштейн:

«Закон распространения света и принцип относительности совместимы».

Кажущееся противоречие принципа относительности закону постоянства скорости света возникает потому, что классическая механика, по заявлению Эйнштейна, опиралась «на две ничем не оправданные гипотезы»: промежуток времени между двумя событиями не зависит от состояния движения тела отсчета и пространственное расстояние между двумя точками твердого тела не зависит от состояния движения тела отсчета. В ходе разработки своей теории ему пришлось отказаться: от галилеевских преобразований и принять преобразования Лоренца; от ньютоновского понятия абсолютного пространства и определения движения тела относительно этого абсолютного пространства.

Каждое движение тела происходит относительно определенного тела отсчета и поэтому все физические процессы и законы должны формулироваться по отношению к точно указанной системе отсчета или координат. Следовательно, не существует никакого абсолютного расстояния, длины или протяженности, так же как не может быть никакого абсолютного времени.

Новые понятия и принципы теории относительности существенно изменили физические и общенаучные представления о пространстве, времени и движении, которые господствовали в науке более двухсот лет.

Все вышесказанное обосновывает актуальность выбранной темы.

Цель данной работы всестороннее изучение и анализ создания специальной и общей теорий относительности Альбертом Эйнштейном.

Работа состоит из введения, двух частей, заключения и списка использованной литературы. Общий объем работы 16 страниц.

1. Специальная теория относительности Эйнштейна

В 1905 году Альберт Эйнштейн, исходя из невозможности обнаружить абсолютное движение, сделал вывод о равноправии всех инерциальных систем отсчета. Он сформулировал два важнейших постулата, которые составили основу новой теории пространства и времени, получившей название Специальной Теории Относительности (СТО):

1. Принцип относительности Эйнштейна - этот принцип явился обобщением принципа относительности Галилея на любые физические явления. Он гласит: все физические процессы при одних и тех же условиях в инерциальных систем отсчета (ИСО) протекают одинаково. Это означает, что никакими физическими опытами, проведенными внутри замкнутой ИСО, нельзя установить, покоится ли она или движется равномерно и прямолинейно. Таким образом, все ИСО совершенно равноправны, а физические законы инвариантны по отношению к выбору ИСО (т.е. уравнения, выражающие эти законы, имеют одинаковую форму во всех инерциальных системах отсчета).

2. Принцип постоянства скорости света - скорость света в вакууме постоянна и не зависит от движения источника и приемника света. Она одинакова во всех направлениях и во всех инерциальных системах отсчета. Скорость света в вакууме - предельная скорость в природе - это одна из важнейших физических постоянных, так называемых мировых констант.

Глубокий анализ этих постулатов показывает, что они противоречат представлениям о пространстве и времени, принятым в механике Ньютона и отраженным в преобразованиях Галилея. Действительно, согласно принципу 1 все законы природы, в том числе законы механики и электродинамики, должны быть инвариантны по отношению к одним и тем же преобразованиям координат и времени, осуществляемым при переходе от одной системы отсчета к другой. Уравнения Ньютона этому требованию удовлетворяют, а вот уравнения электродинамики Максвелла – нет, т.е. оказываются не инвариантными. Это обстоятельство привело Эйнштейна к выводу о том, что уравнения Ньютона нуждаются в уточнении, в результате которого как уравнения механики, так и уравнения электродинамики оказались бы инвариантными по отношению к одним и тем же преобразованиям. Необходимое видоизменение законов механики и было осуществлено Эйнштейном. В результате возникла механика, согласующаяся с принципом относительности Эйнштейна – релятивистская механика.

Создатель теории относительности сформулировал обобщенный принцип относительности, который теперь распространяется и на электромагнитные явления, в том числе и на движение света. Этот принцип гласит, что никакими физическими опытами (механическими, электромагнитными и др.), производимыми внутри данной системы отсчета, нельзя установить различие между состояниями покоя и равномерного прямолинейного движения. Классическое сложение скоростей неприменимо для распространения электромагнитных волн, света. Для всех физических процессов скорость света обладает свойством бесконечной скорости. Для того чтобы сообщить телу скорость, равную скорости света, требуется бесконечное количество энергии, и именно поэтому физически невозможно, чтобы какое-нибудь тело достигло этой скорости. Этот результат был подтвержден измерениями, которые проводились над электронами. Кинетическая энергия точечной массы растет быстрее, нежели квадрат ее скорости, и становится бесконечной для скорости, равной скорости света.

Скорость света является предельной скоростью распространения материальных воздействий. Она не может складываться ни с какой скоростью и для всех инерциальных систем оказывается постоянной. Все движущиеся тела на Земле по отношению к скорости света имеют скорость, равную нулю. И в самом деле, скорость звука всего лишь 340 м/с. Это неподвижность по сравнению со скоростью света.

Из этих двух принципов - постоянства скорости света и расширенного принципа относительности Галилея - математически следуют все положения специальной теории относительности. Если скорость света постоянна для всех инерциальных систем, а они все равноправны, то физические величины длины тела, промежутка времени, массы для разных систем отсчета будут различными. Так, длина тела в движущейся системе будет наименьшей по отношению к покоящейся. По формуле:

где /" - длина тела в движущейся системе со скоростью V по отношению к неподвижной системе; / - длина тела в покоящейся системе.

Для промежутка же времени, длительности какого-либо процесса - наоборот. Время будет как бы растягиваться, течь медленнее в движущейся системе по отношению к неподвижной, в которой этот процесс будет более быстрым. По формуле:


Напомним, что эффекты специальной теории относительности будут обнаруживаться при скоростях, близких к световым. При скоростях значительно меньше скорости света формулы СТО переходят в формулы классической механики.

Рис.1. Эксперимент «Поезд Эйнштейна»

Эйнштейн попытался наглядно показать, как происходит замедление течения времени в движущейся системе по отношению к неподвижной. Представим себе железнодорожную платформу, мимо которой проходит поезд со скоростью, близкой к скорости света (рис.1).

Долгое время ни один ученый в мире не мог сравниться с Исааком Ньютоном по тому влиянию, которое тот оказал на представления человечества о природе. Такой человек появился на свет в 1879 г. в немецком городе Ульм, и звали его Альберт Эйнштейн.

Эйнштейн родился в семье торговца электротехническими товарами, учился в обычной гимназии в Мюнхене, не отличался особым прилежанием, затем не смог сдать вступительные экзамены в цюрихский Политехникум и заканчивал кантональную школу в городе Аарау. Только со второй попытки он поступил в Политехникум. Молодому человеку с трудом давались языки и история, зато он рано проявил большие способности к математике, физике и музыке, став неплохим скрипачом.

Летом 1900 г. Эйнштейн получил диплом преподавателя физики. Только через два года по рекомендации друзей он устроился на постоянную работу экспертом федерального патентного бюро в Берне. Эйнштейн проработал там с 1902 по 1909 г. Служебные обязанности оставляли ему достаточно времени для размышлений над научными проблемами. Наиболее удачным оказался для Эйнштейна 1905 г. – 26‑летний физик опубликовал пять статей, которые впоследствии были признаны шедеврами научной мысли. Работа «Об одной эвристической точке зрения на возникновение и превращение света» содержала гипотезу о световых квантах – элементарных частицах электромагнитного излучения. Гипотеза Эйнштейна позволила объяснить фотоэлектрический эффект: появление тока при освещении вещества коротковолновым излучением. Эффект был открыт в 1886 г. Герцем и не укладывался в рамки волновой теории света. За эту работу позднее Эйнштейн был удостоен Нобелевской премии. Открытие Эйнштейна создало идейную основу для модели атома Резерфорда – Бора, согласно которой свет излучается и поглощается порциями (квантами), и концепции «волн материи» Луи де Бройля. Незадолго до того Макс Планк установил, что тепло также излучается квантами. Был осуществлен синтез двух, казалось, несовместимых точек зрения на природу света, высказанных в свое время Гюйгенсом и Ньютоном.

Опубликованную в том же 1905 г. статью Эйнштейна «К электродинамике движущихся тел» можно рассматривать как введение в специальную теорию относительности, которая произвела переворот в представлениях о пространстве и времени.

Естественнонаучные представления о пространстве и времени прошли длинный путь развития. Долгое время основными были обыденные представления о пространстве и времени, как о каких‑то внешних условиях бытия, в которые помещена материя и которые сохранились бы, если бы даже материя исчезла. Такой взгляд позволил сформулировать концепцию абсолютного пространства и времени, получившую свою наиболее отчетливую формулировку в работе Ньютона «Математические начала натуральной философии».

Специальная теория относительности, созданная в 1905 г. Эйнштейном, стала результатом обобщения и синтеза классической механики Галилея – Ньютона и электродинамики Максвелла – Лоренца. Она описывает законы всех физических процессов при скоростях движения, близких к скорости света, но без учета поля тяготения. При уменьшении скоростей движения она сводится к классической механике, которая оказывается ее частным случаем. Исходным пунктом этой теории стал принцип относительности, из которого следует, что между покоем и движением – если оно равномерно и прямолинейно – нет никакой принципиальной разницы. Понятия покоя и движения приобретают смысл лишь тогда, когда указана точка отсчета. В соответствии со специальной теорией относительности, которая объединяет пространство и время в единый четырехмерный пространственно‑временной континуум, пространственно‑временные свойства тел зависят от скорости их движения. Пространственные размеры сокращаются в направлении движения при приближении скорости тел к скорости света в вакууме (300 тысяч км/с), временные процессы замедляются в быстродвижущихся системах, масса тела увеличивается.

Находясь в сопутствующей системе отсчета, т. е. двигаясь параллельно и на одинаковом расстоянии от измеряемой системы, нельзя заметить эти эффекты, которые называются релятивистскими, так как все используемые при измерениях пространственные масштабы и части будут меняться точно таким же образом. Согласно принципу относительности, все процессы в инерциальных системах отсчета протекают одинаково. Но если система является неинерциальной, то релятивистские эффекты можно заметить и изменить. Так, если воображаемый релятивистский корабль отправится к далеким звездам, то после возвращения его на Землю времени в системе корабля пройдет меньше, чем на Земле, и это различие будет тем больше, чем дальше совершается полет, а скорость корабля будет ближе к скорости света. Теория Эйнштейна использовала в качестве базового положение, что во Вселенной ничто не может двигаться быстрее света в вакууме и скорость света остается постоянной для всех наблюдателей, независимо от скорости их собственного перемещения в пространстве.

Статья «Зависит ли инерция тела от содержания в нем энергии?» завершала создание релятивистской (от лат. relativus – «относительный») теории. Здесь впервые была доказана связь между массой и энергией, в современных обозначениях – E = mc2. Эйнштейн писал: «…если тело отдает энергию E в виде излучения, то его масса уменьшается на E/c2… Масса тела есть мера содержащейся в нем энергии». Это открытие вышло за пределы физики, техники и философии и до сегодняшнего дня косвенно определяет судьбу человечества. Так, атомная энергия – это, собственно говоря, превратившаяся в энергию масса.

Появление столь эпохальных работ не принесло Эйнштейну немедленного признания, он все еще вынужден был продолжать работать в патентном бюро. Только весной 1909 г. Эйнштейна избрали профессором теоретической физики в цюрихском Политехникуме и он смог уйти из бюро. В 1913 г. ученый был избран членом Прусской академии наук. В Берлине Эйнштейн получил благоприятные условия для продолжения своей научной работы. В 1916 г. он опубликовал «Основы общей теории относительности». Идеи Эйнштейна имели в глазах ученых‑теоретиков, а еще больше в его собственных глазах, не столько узкопрактический, сколько философский смысл. Он создал гармоничную картину Вселенной.

В 1921 г. Эйнштейн получил Нобелевскую премию за «заслуги в области теоретической физики и в особенности за открытие закона фотоэлектрического эффекта». Присуждение этой премии еврею привело к резкому росту антисемитских настроений в Германии. Нападки на Эйнштейна усилились, однако он продолжал активную научную работу, читал много публичных лекций.

В 1932 г. физик отправился в очередную поездку в США и домой уже не вернулся – там к власти пришел Гитлер, и ничего хорошего всемирно признанный гений от него не ожидал. С этих пор Эйнштейн работал в Америке. В 1939 г. он направил письмо президенту Рузвельту с призывом как можно быстрее создать атомную бомбу, чтобы исключить монополию со стороны Германии. Последняя так и не получила это страшное оружие, зато проект, поддержанный правительством США, как известно, завершился «успешно», и в этом есть немалая заслуга и Эйнштейна. Впрочем, он решительно осудил бомбардировку Хиросимы и Нагасаки. Скончался ученый в Принстоне в 1955 г. Он запомнился современникам не только теорией относительности, которую, по правде говоря, хотя бы приблизительно понимает ничтожный процент населения Земли, но и чудаковатостью и неподражаемым юмором.

Новый ум короля [О компьютерах, мышлении и законах физики] Пенроуз Роджер

Общая теория относительности Эйнштейна

Напомним великую истину, открытую Галилеем: все тела под действием силы тяжести падают одинаково быстро. (Это было блестящей догадкой, едва ли подсказанной эмпирическими данными, поскольку из-за сопротивления воздуха перья и камни все же падают не одновременно ! Галилей внезапно понял, что, если бы сопротивление воздуха можно было свести к нулю, то перья и камни падали бы на Землю одновременно.) Потребовалось три столетия, прежде чем глубокое значение этого открытия было по достоинству осознано и стало краеугольным камнем великой теории. Я имею в виду общую теорию относительности Эйнштейна - поразительное описание гравитации, для которого, как нам вскоре станет ясно, потребовалось введение понятия искривленного пространства-времени !

Какое отношение имеет интуитивное открытие Галилея к идее «кривизны пространства-времени»? Каким образом могло получиться, что эта концепция, столь явно отличная от схемы Ньютона, согласно которой частицы ускоряются под действием обычных гравитационных сил, оказалась способной не только сравняться в точности описания с ньютоновской теорией, но и превзойти последнюю? И потом, насколько верным будет утверждение, что в открытии Галилея было нечто такое, что не было позднее включено в ньютоновскую теорию?

Позвольте мне начать с последнего вопроса потому, что ответить на него проще всего. Что, согласно теории Ньютона, управляет ускорением тела под действием гравитации? Во-первых, на тело действует гравитационная сила , которая, как гласит открытый Ньютоном закон всемирного тяготения, должна быть пропорциональна массе тела . Во-вторых, величина ускорения, испытываемая телом под действием заданной силы, по второму закону Ньютона, обратно пропорциональна массе тела . Удивительное открытие Галилея зависит от того факта, что «масса», входящая в открытый Ньютоном закон всемирного тяготения, есть, в действительности, та же «масса», которая входит во второй закон Ньютона. (Вместо «та же» можно было бы сказать «пропорциональна».) В результате ускорение тела под действием гравитации не зависит от его массы. В общей схеме Ньютона нет ничего такого, что указывало бы, что оба понятия массы одинаковы. Эту одинаковость Ньютон лишь постулировал . Действительно, электрические силы аналогичны гравитационным в том, что и те, и другие обратно пропорциональны квадрату расстояния, но электрические силы зависят от электрического заряда , который имеет совершенно другую природу, чем масса во втором законе Ньютона. «Интуитивное открытие Галилея» было бы неприменимо к электрическим силам: о телах (заряженных телах) брошенных в электрическом поле, нельзя сказать, что они «падают» с одинаковой скоростью!

На время просто примем интуитивное открытие Галилея относительно движения под действием гравитации и попытаемся выяснить, к каким следствиям оно приводит. Представим себе Галилея, бросающего с Пизанской наклонной башни два камня. Предположим, что с одним из камней жестко скреплена видеокамера, направленная на другой камень. Тогда на пленке окажется запечатленной следующая ситуация: камень парит в пространстве, как бы не испытывая действия гравитации (рис. 5.23)! И так происходит именно потому, что все тела под действием гравитации падают с одной и той же скоростью.

Рис. 5.23. Галилей бросает два камня (и видеокамеру) с Пизанской башни

В описанной выше картине мы пренебрегаем сопротивлением воздуха. В наше время космические полеты открывают перед нами лучшую возможность проверки этих идей, так как в космическом пространстве нет воздуха. Кроме того, «падение» в космическом пространстве означает просто движение по определенной орбите под действием гравитации. Такое «падение» совсем не обязательно должно происходить по прямой вниз - к центру Земли. В нем вполне может быть и некоторая горизонтальная составляющая. Если эта горизонтальная составляющая достаточно велика, то тело может «падать» по круговой орбите вокруг Земли, не приближаясь к ее поверхности! Путешествие по свободной околоземной орбите под действием гравитации - весьма изощренный (и очень дорогой!) способ «падения». Как в описанной выше видеозаписи, астронавт, совершая «прогулку в открытом космосе», видит свой космический корабль парящим перед собой и как бы не испытывающим действия гравитации со стороны огромного шара Земли под ним! (См. рис. 5.24.) Таким образом, переходя в «ускоренную систему отсчета» свободного падения, можно локально исключить действие гравитации.

Рис. 5.24. Астронавт видит, что его космический корабль парит перед ним, как будто неподверженный действию гравитации

Мы видим, что свободное падение позволяет исключить гравитацию потому, что эффект от действия гравитационного поля такой же, как от ускорения Действительно, если вы находитесь в лифте, который движется с ускорением вверх, то вы просто ощущаете, что кажущееся гравитационное поле увеличивается, а если лифт движется с ускорением вниз, то вам кажется, что гравитационное поле убывает. Если бы трос, на котором подвешена кабина, оборвался, то (если пренебречь сопротивлением воздуха и эффектами трения) результирующее ускорение, направленное вниз (к центру Земли), полностью уничтожило бы действие гравитации, и люди, оказавшиеся в кабине лифта, стали бы свободно плавать в пространстве, подобно астронавту во время выхода в открытый космос, до тех пор, пока кабина не стукнулась бы о Землю! Даже в поезде или на борту самолета ускорения могут быть такими, что ощущения пассажира относительно величины и направления гравитации могут не совпадать с тем, где, как показывает обычный опыт, должны быть «верх» и «низ». Объясняется это тем, что действия ускорения и гравитации схожи настолько, что наши ощущения не способны отличить одни от других. Этот факт - то, что локальные проявления гравитации эквивалентны локальным проявлениям ускоренно движущейся системы отсчета, - и есть то, что Эйнштейн назвал принципом эквивалентности .

Приведенные выше соображения «локальны». Но если разрешается производить (не только локальные) измерения с достаточно высокой точностью, то в принципе можно установить различие между «истинным» гравитационным полем и чистым ускорением. На рис. 5 25 я изобразил в немного преувеличенном виде, как первоначально стационарная сферическая конфигурация частиц, свободно падающая под действием гравитации, начинает деформироваться под влиянием неоднородности (ньютоновского) гравитационного поля.

Рис. 5.25. Приливный эффект. Двойные стрелки указывают относительное ускорение (ВЕЙЛЬ)

Это поле неоднородно в двух отношениях. Во-первых, поскольку центр Земли расположен на некотором конечном расстоянии от падающего тела, частицы, расположенные ближе к поверхности Земли, движутся вниз с бо?льшим ускорением, чем частицы, расположенные выше (напомним закон обратной пропорциональности квадрату расстояния Ньютона). Во-вторых, по той же причине существуют небольшие различия в направлении ускорения для частиц, занимающих различные положения на горизонтали. Из-за этой неоднородности сферическая форма начинает слегка деформироваться, превращаясь в «эллипсоид». Первоначальная сфера удлиняется в направлении к центру Земли (а также в противоположном направлении), так как те ее части, которые ближе к центру Земли, движутся с чуть бо?льшим ускорением, чем те части, которые дальше от центра Земли, и сужается по горизонтали, так как ускорения ее частей, находящихся на концах горизонтального диаметра, слегка скошены «внутрь» - в направлении на центр Земли.

Это деформирующее действие известно как приливный эффект гравитации. Если мы заменим центр Земли Луной, а сферу из материальных частиц - поверхностью Земли, то получим в точности описание действия Луны, вызывающей приливы на Земле, причем «горбы» образуются по направлению к Луне и от Луны. Приливный эффект - общая особенность гравитационных полей, которая не может быть «исключена» с помощью свободного падения. Приливный эффект служит мерой неоднородности ньютоновского гравитационного поля. (Величина приливной деформации в действительности убывает обратно пропорционально кубу, а не квадрату расстояния от центра притяжения.)

Закон всемирного тяготения Ньютона, по которому сила обратно пропорциональна квадрату расстояния, допускает, как оказывается, простую интерпретацию в терминах приливного эффекта: объем эллипсоида, в который первоначально деформируется сфера, равен объему исходной сферы - в предположении, что сфера окружает вакуум. Это свойство сохранения объема характерно для закона обратных квадратов; ни для каких других законов оно не выполняется. Предположим далее, что исходная сфера окружает не вакуум, а некоторое количество материи общей массой М . Тогда возникает дополнительная компонента ускорения, направленная внутрь сферы из-за гравитационного притяжения материи внутри сферы. Объем эллипсоида, в который первоначально деформируется наша сфера из материальных частиц, сокращается - на величину, пропорциональную М . С примером эффекта уменьшения объема эллипсоида мы бы столкнулись, если бы выбрали нашу сферу так, чтобы она окружала Землю на постоянной высоте (рис. 5.26). Тогда обычное ускорение, обусловленное земным притяжением и направленное вниз (т. е. внутрь Земли), будет той самой причиной, по которой происходит сокращение объема нашей сферы.

Рис. 5.26. Когда сфера окружает некое вещество (в данном случае - Землю), возникает результирующее ускорение, направленное внутрь (РИЧЧИ)

В этом свойстве сжимания объема заключена оставшаяся часть закона всемирного тяготения Ньютона, а именно - что сила пропорциональна массе притягивающего тела.

Попробуем получить пространственно-временну?ю картину такой ситуации. На рис. 5.27 я изобразил мировые линии частиц нашей сферической поверхности (представленной на рис. 5.25 в виде окружности), причем я использовал для описания ту систему отсчета, в которой центральная точка сферы кажется покоящейся («свободное падение»).

Рис. 5.27. Кривизна пространства-времени: приливный эффект, изображенный в пространстве-времени

Позиция общей теории относительности состоит в том, чтобы считать свободное падение «естественным движением» - аналогичным «равномерному прямолинейному движению», с которыми имеют дело в отсутствие гравитации. Таким образом, мы пытаемся описывать свободное падение «прямыми» мировыми линиями в пространстве-времени! Но если взглянуть на рис. 5.27, то становится понятно, что использование слова «прямые» применительно к этим мировым линиям способно ввести читателя в заблуждение, поэтому мы будем в терминологических целях называть мировые линии свободно падающих частиц в пространстве-времени - геодезическими .

Но насколько хороша такая терминология? Что обычно понимают под «геодезической» линией? Рассмотрим аналогию для двумерной искривленной поверхности. Геодезическими называются такие кривые, которые на данной поверхности (локально) служат «кратчайшими маршрутами». Иначе говоря, если представить себе отрезок нити, натянутый на указанную поверхность (и не слишком длинный, чтобы он не мог соскользнуть), то нить расположится вдоль некоторой геодезической линии на поверхности.

Рис. 5.28. Геодезические линии в искривленном пространстве: линии сходятся в пространстве с положительной кривизной, и расходятся - в пространстве с отрицательной кривизной

На рис. 5.28 я привел два примера поверхностей: первая (слева) - поверхность так называемой «положительной кривизны» (как поверхность сферы), вторая - поверхность «отрицательной кривизны» (седловидная поверхность). На поверхности положительной кривизны две соседние геодезические линии, выходящие из начальных точек параллельно друг другу, начинают впоследствии изгибаться навстречу друг другу; а на поверхности отрицательной кривизны они изгибаются в стороны друг от друга.

Если мы представим себе, что мировые линии свободно падающих частиц в некотором смысле ведут себя как геодезические линии на поверхности, то окажется, что существует тесная аналогия между гравитационным приливным эффектом, о котором шла речь выше, и эффектами кривизны поверхности - причем как положительной кривизны, так и отрицательной. Взгляните на рис. 5.25, 5.27. Мы видим, что в нашем пространстве-времени геодезические линии начинают расходиться в одном направлении (когда они «выстраиваются» в сторону Земли) - как это происходит на поверхности отрицательной кривизны на рис. 5.28 - и сближаться в других направлениях (когда они смещаются горизонтально относительно Земли) - как на поверхности положительной кривизны на рис. 5.28. Таким образом, создается впечатление, что наше пространство-время, как и вышеупомянутые поверхности, тоже обладает «кривизной», только более сложной, поскольку из-за высокой размерности пространства-времени при различных перемещениях она может носить смешанный характер, не будучи ни чисто положительной, ни чисто отрицательной.

Отсюда следует, что понятие «кривизны» пространства-времени может быть использовано для описания действия гравитационных полей. Возможность использования такого описания в конечном счете следует из интуитивного открытия Галилея (принципа эквивалентности) и позволяет нам исключить гравитационную «силу» с помощью свободного падения. Действительно, ничто из сказанного мной до сих пор не выходит за рамки ньютонианской теории. Нарисованная только что картина дает просто переформулировку этой теории. Но когда мы пытаемся скомбинировать новую картину с тем, что дает предложенное Минковским описание специальной теории относительности - геометрии пространства-времени, которая, как мы знаем, применяется в отсутствие гравитации - в игру вступает новая физика. Результат этой комбинации - общая теория относительности Эйнштейна.

Напомним, чему учил нас Минковский. Мы имеем (в отсутствие гравитации) пространство-время, наделенное особого рода мерой «расстояния» между точками: если мы имеем в пространстве-времени мировую линию, описывающую траекторию какой-нибудь частицы, то «расстояние» в смысле Минковского, измеряемое вдоль этой мировой линии, дает время , реально прожитое частицей. (В действительности, в предыдущем разделе мы рассматривали это «расстояние» только для тех мировых линий, которые состоят из прямолинейных отрезков - но приведенное выше утверждение справедливо и по отношению к искривленным мировым линиям, если «расстояние» измеряется вдоль кривой.) Геометрия Минковского считается точной, если нет гравитационного поля, т. е. если у пространства-времени нет кривизны. Но при наличии гравитации мы рассматриваем геометрию Минковского уже лишь как приближенную - аналогично тому, как плоская поверхность лишь приблизительно соответствует геометрии искривленной поверхности. Вообразим, что, изучая искривленную поверхность, мы берем микроскоп, дающий все большее увеличение - так, что геометрия искривленной поверхности кажется все больше растянутой. При этом поверхность будет нам казаться все более плоской. Поэтому мы говорим, что искривленная поверхность имеет локальное строение евклидовой плоскости. Точно так же мы можем сказать, что при наличии гравитации пространство-время локально описывается геометрией Минковского (которая есть геометрия плоского пространства-времени), но мы допускаем некоторую «искривленность» на более крупных масштабах (рис. 5.29).

Рис. 5.29. Картина искривленного пространства-времени

В частности, как и в пространстве Минковского, любая точка пространства-времени является вершиной светового конуса - но в данном случае эти световые конусы расположены уже не одинаково. В главе 7 мы познакомимся с отдельными моделями пространства-времени, в которых явно видна эта неоднородность расположения световых конусов (см. рис. 7.13, 7.14). Мировые линии материальных частиц всегда направлены внутрь световых конусов, а линии фотонов - вдоль световых конусов. Вдоль любой такой кривой мы можем ввести «расстояние» в смысле Минковского, которое служит мерой времени, прожитого частицами так же, как и в пространстве Минковского. Как и в случае искривленной поверхности, эта мера «расстояния» определяет геометрию поверхности, которая может отличаться от геометрии плоскости.

Геодезическим линиям в пространстве-времени теперь можно придать интерпретацию, аналогичную интерпретации геодезических линий на двумерных поверхностях, учитывая при этом различия между геометриями Минковского и Евклида. Таким образом, наши геодезические линии в пространстве-времени представляют собой не (локально) кратчайшие кривые, а наоборот - кривые, которые (локально) максимизируют «расстояние» (т. е. время) вдоль мировой линии. Мировые линии частиц, свободно перемещающиеся под действием гравитации, согласно этому правилу действительно являются геодезическими. В частности, небесные тела, движущиеся в гравитационном поле, хорошо описываются подобными геодезическими линиями. Кроме того, лучи света (мировые линии фотонов) в пустом пространстве так же служат геодезическими линиями, но на этот раз - нулевой «длины». В качестве примера я схематически нарисовал на рис. 5.30 мировые линии Земли и Солнца. Движение Земли вокруг Солнца описывается «штопорообразной» линией, навивающейся вокруг мировой линии Солнца. Там же я изобразил фотон, приходящий на Землю от далекой звезды. Его мировая линия кажется слегка «изогнутой» вследствие того, что свет (по теории Эйнштейна) на самом деле отклоняется гравитационным полем Солнца.

Рис. 5.30. Мировые линии Земли и Солнца. Световой луч от далекой звезды отклоняется Солнцем

Нам необходимо еще выяснить, каким образом ньютоновский закон обратных квадратов может быть включен (после надлежащей модификации) в общую теорию относительности Эйнштейна. Обратимся еще раз к нашей сфере из материальных частиц, падающей в гравитационном поле. Напомним, что если внутри сферы заключен только вакуум, то, согласно теории Ньютона, объем сферы первоначально не изменяется; но если внутри сферы находится материя общей массой М , то происходит сокращение объема, пропорциональное М . В теории Эйнштейна (для малой сферы) правила в точности такие же, за исключением того, что не все изменение объема определяется массой М ; существует (обычно очень малый) вклад от давления , возникающем в окруженном сферой материале.

Полное математическое выражение для кривизны четырехмерного пространства-времени (которая должна описывать приливные эффекты для частиц, движущихся в любой данной точке по всевозможным направлениям) дается так называемым тензором кривизны Римана . Это несколько сложный объект; для его описания необходимо в каждой точке указать двадцать действительных чисел. Эти двадцать чисел называются его компонентами . Различные компоненты соответствуют различным кривизнам в различных направлениях пространства-времени. Тензор кривизны Римана обычно записывают в виде R tjkl , но так как мне не хочется объяснять здесь, что означают эти субиндексы (и, конечно, что такое тензор), то я запишу его просто как:

РИМАН .

Существует способ, позволяющий разбить этот тензор на две части, называемые, соответственно, тензором ВЕЙЛЯ и тензором РИЧЧИ (каждый - с десятью компонентами). Условно я запишу это разбиение так:

РИМАН = ВЕЙЛЬ + РИЧЧИ .

(Подробная запись тензоров Вейля и Риччи для наших целей сейчас совершенно не нужна.) Тензор Вейля ВЕЙЛЬ служит мерой приливной деформации нашей сферы из свободно падающих частиц (т. е. изменения начальной формы, а не размеров); тогда как тензор Риччи РИЧЧИ служит мерой изменения первоначального объема. Напомним, что ньютоновская теория гравитации требует, чтобы масса , содержащаяся внутри нашей падающей сферы, была пропорциональна этому изменению первоначального объема. Это означает, что, грубо говоря, плотность массы материи - или, что эквивалентно, плотность энергии (так как Е = mc 2 ) - следует приравнять тензору Риччи.

По существу, это именно то, что утверждают уравнения поля общей теории относительности, а именно - полевые уравнения Эйнштейна . Правда, здесь имеются некоторые технические тонкости, в которые нам сейчас, впрочем, лучше не вдаваться. Достаточно сказать, что существует объект, называемый тензором энергии-импульса , который объединяет всю существенную информацию об энергии, давлении и импульсе материи и электромагнитных полей. Я буду называть этот тензор ЭНЕРГИЕЙ . Тогда уравнения Эйнштейна весьма схематично можно представить в следующем виде,

РИЧЧИ = ЭНЕРГИЯ .

(Именно наличие «давления» в тензоре ЭНЕРГИЯ вместе с некоторыми требованиями непротиворечивости уравнений в целом приводят с необходимостью к учету давления в описанном выше эффекте сокращения объема.)

Кажется, что вышеприведенное соотношение ничего не говорит о тензоре Вейля. Тем не менее, оно отражает одно важное свойство. Приливный эффект, производимый в пустом пространстве, обусловлен ВЕЙЛЕМ . Действительно, из приведенных выше уравнений Эйнштейна следует, что существуют дифференциальные уравнения, связывающие ВЕЙЛЯ с ЭНЕРГИЕЙ - практически как во встречавшихся нам ранее уравнениях Максвелла. Действительно, точка зрения, согласно которой ВЕЙЛЯ надлежит рассматривать как своего рода гравитационный аналог электромагнитного поля (в действительности, тензора - тензора Максвелла), описываемого парой (Е , В ), оказывается весьма плодотворной. В этом случае ВЕЙЛЬ служит своего рода мерой гравитационного поля. «Источником» для ВЕЙЛЯ является ЭНЕРГИЯ - подобно тому, как источником для электромагнитного поля (Е , В ) является (? , j ) - набор из зарядов и токов в теории Максвелла. Эта точка зрения будет полезна нам в главе 7.

Может показаться весьма удивительным, что при столь существенных различиях в формулировке и основополагающих идеях, оказывается довольно трудно найти наблюдаемые различия между теориями Эйнштейна и теорией, выдвинутой Ньютоном двумя с половиной столетиями раньше. Но если рассматриваемые скорости малы по сравнению со скоростью света с , а гравитационные поля не слишком сильны (так, что скорости убегания гораздо меньше с , см. главу 7, «Динамика Галилея и Ньютона»), то теория Эйнштейна по существу дает те же результаты, что и теория Ньютона. Но в тех ситуациях, когда предсказания этих двух теорий расходятся, прогнозы теории Эйнштейна оказываются точнее. К настоящему времени был проведен целый ряд весьма впечатляющих экспериментальных проверок, которые позволяют считать новую теорию Эйнштейна вполне обоснованной. Часы, согласно Эйнштейну, в гравитационном поле идут чуть медленнее. Ныне этот эффект измерен непосредственно несколькими способами. Световые и радиосигналы действительно изгибаются вблизи Солнца и слегка запаздывают для наблюдателя, движущегося им навстречу. Эти эффекты, предсказанные изначально общей теорией относительности, на сегодняшний день подтверждены опытом. Движение космических зондов и планет требуют небольших поправок к ньютоновским орбитам, как это следует из теории Эйнштейна - эти поправки сегодня также проверены опытным путем. (В частности, аномалия в движении планеты Меркурия, известная как «смещение перигелия», беспокоившая астрономов с 1859 года, была объяснена Эйнштейном в 1915 году.) Возможно, наиболее впечатляющим из всего следует считать серию наблюдений над системой, называемой двойным пульсаром , которая состоит из двух небольших массивных звезд (возможно, двух «нейтронных звезд», см. гл.7 «Черные дыры»). Эта серия наблюдений очень хорошо согласуется с теорией Эйнштейна и служит прямой проверкой эффекта, полностью отсутствующего в теории Ньютона, - испускания гравитационных волн . (Гравитационная волна представляет собой аналог электромагнитной волны и распространяется со скоростью света с .) Не существует проверенных наблюдений, которые противоречили бы общей теории относительности Эйнштейна. При всей своей странности (на первый взгляд), теория Эйнштейна работает и по сей день!

Из книги Современная наука и философия: Пути фундаментальных исследований и перспективы философии автора Кузнецов Б. Г.

Из книги Митьковские пляски автора Шинкарёв Владимир Николаевич

Общая теория митьковской пляски 1. НЕДАЛЕКИЕ ИСТОЛКОВАТЕЛИ Ни для кого уже не секрет, что танцы, а, точнее, пляски являются наиболее широко распространенным видом творчества у митьков; это бесспорно. Спорны истолкования феномена митьковской пляски.Недалекие

Из книги Современная наука и философия: Пути фундаментальных исследований и перспективы философии автора Кузнецов Б. Г.

Теория относительности, квантовая механика и начало атомного века В 20– 30-е годы нашего столетия часто говорили о более глубоком воздействии квантовых идей, о более радикальном характере выводов из принципа неопределенности и из квантовой механики в целом по сравнению

Из книги Философский словарь разума, материи, морали [фрагменты] автора Рассел Бертран

107. Общая теория относительности Общая теория относительности (ОТО) – опубликованная в 1915 году, через 10 лет после появления специальной теории (СТО) – была прежде всего геометрической теорией гравитации. Эту часть теории можно считать прочно утвердившейся. Однако, она

Из книги Краткая история философии [Нескучная книга] автора Гусев Дмитрий Алексеевич

108. Специальная теория относительности Специальная теория ставит перед собой задачу сделать законы физики одинаковыми по отношению к любым двум системам координат, движущимся друг относительно друга прямолинейно и равномерно. Здесь необходимо было принять во внимание

Из книги Любители мудрости [Что должен знать современный человек об истории философской мысли] автора Гусев Дмитрий Алексеевич

12.1. Со скоростью света… (Теория относительности) Появление второй научной картины мира было связано в первую очередь со сменой геоцентризма гелиоцентризмом. Третья научная картина мира отказалась от какого-либо центризма вообще. По новым представлениям Вселенная стала

Из книги Физика и философия автора Гейзенберг Вернер Карл

Теория относительности. Со скоростью света Появление второй научной картины мира было связано в первую очередь со сменой геоцентризма гелиоцентризмом. Третья научная картина мира отказалась от какого-либо центризма вообще. По новым представлениям Вселенная стала

Из книги Далекое будущее Вселенной [Эсхатология в космической перспективе] автора Эллис Джордж

VII. ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ Теория относительности всегда играла в современной физике особо важную роль. В ней впервые была показана необходимость периодического изменения основополагающих принципов физики. Поэтому обсуждение тех проблем, которые были подняты и

Из книги Как-то раз Платон зашел в бар… Понимание философии через шутки автора Каткарт Томас

17.2.1. Общая теория относительности Эйнштейна (ОТО) / космология Большого взрыва В 1915 году Альберт Эйнштейн опубликовал полевые уравнения ОТО, связывающие кривизну пространства–времени с распределенной в пространстве–времени энергией: R?? - ?Rg?? = 8?Т??. В упрощенном

Из книги Хаос и структура автора Лосев Алексей Федорович

17.5.2.3. Текучее время в физике: специальная теория относительности, общая теория относительности, квантовая механика и термодинамика Беглый обзор четырех областей современной физики: специальной теории относительности (СТО), общей теории относительности (ОТО), квантовой

Из книги Удивительная философия автора Гусев Дмитрий Алексеевич

IX Теория относительности Что тут можно сказать? Каждый человек понимает этот термин по-своему. Димитрий: Мой друг, твоя проблема в том, что ты слишком много думаешь.Тассо: По сравнению с кем?Димитрий: Например, по сравнению с Ахиллесом.Тассо: А по сравнению с

Из книги Новый ум короля [О компьютерах, мышлении и законах физики] автора Пенроуз Роджер

ОБЩАЯ ТЕОРИЯ ЧИСЛА § 10. Вступление.Число является настолько основной и глубокой категорией бытия и сознания, что для его определения и характеристики можно брать только самые первоначальные, самые отвлеченные моменты того и другого. Математика- наука о числе-есть уже

Из книги Возвращение времени [От античной космогонии к космологии будущего] автора Смолин Ли

Со скоростью света. Теория относительности Появление второй научной картины мира было связано в первую очередь со сменой геоцентризма гелиоцентризмом. Третья научная картина мира отказалась от какого-либо центризма вообще. По новым представлениям Вселенная стала

Из книги Язык, онтология и реализм автора Макеева Лолита Брониславовна

Специальная теория относительности Эйнштейна и Пуанкаре Напомним принцип относительности Галилея, который гласит, что физические законы Ньютона и Галилея останутся совершенно неизменными, если от покоящейся системы отсчета мы перейдем в другую, движущуюся равномерно

Из книги автора

Глава 14 Теория относительности и возвращение времени Итак, признание реальности времени открывает новые подходы к пониманию того, как Вселенная выбирает законы, а также способы разрешения затруднений квантовой механики. Однако нам предстоит еще преодолеть серьезное

Из книги автора

2.4. Теория онтологической относительности и реализм Из тезиса о неопределенности перевода и идеи онтологических обязательств вытекает онтологическая относительность, которая прежде всего означает, что референция является непостижимой, что мы не можем знать, к чему

← Вернуться

×
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:
Я уже подписан на сообщество «sinkovskoe.ru»