Диаграмма состояния al mg. Диаграмма состояния системы алюминий – магний (Al-Mg)

Подписаться
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:

В настоящее время разрабатываются новые славы на основе алюминия, позволяющие еще больше расширить сферу применения этих материалов. Так, для проекта экологичного самолета, работающего на жидком водороде (его температура –253 о С) потребовался материал, который при таких низких температурах не охрупчивается. Разработанный в России сплав О1420 на основе алюминия, легированного литием и магнием, удовлетворяет этим требованиям. Кроме того, за счет того, что оба легирующих элемента в этом сплаве легче алюминия, удается понизить удельный вес материала, и соответственно, полетную массу машин. Сочетая хорошую прочность, присущую дюралям, и пониженную плотность, сплав кроме того обладает высокой коррозионной стойкостью. Таким образом, современная наука и технология идет по пути создания материалов, сочетающих максимально возможный набор полезных качеств.

Необходимо также отметить, что в настоящее время одновременно с традиционной буквенно-цифровой существует новая цифровая маркировка алюминиевых сплавов – см. рис. 3 и табл. 10.

Рисунок 3 – Принцип цифровой маркировки алюминиевых сплавов

Таблица 10

Примеры обозначений с помощью новой маркировки

Легирующие элементы

Маркировка

Традиционная

Al (чистый)

Список литературы

1. Колачев Б.А., Ливанов В.А., Благин В.И. Металловедение и термическая обработка цветных металлов и сплавов. М.: Металлургия, 1972.-480 с.

2. Лахтин Ю.М., Леонтьева В.П. Материаловедение. М.: Машиностроение, 1990.-528 с.

3. Гуляев А.П. Металловедение. М.: Металлургия, 1986.-544 с.

4. Энциклопедия неорганических материалов. Том 1.: Киев: Гл.ред.укр.сов.энц., 1977.-840 с.

5. Энциклопедия неорганических материалов. Том 2.: Киев: Гл.ред.укр.сов.энц., 1977.-814 с.

6. Материаловедение и технология материалов. Фетисов Г.П., Карпман М.Г., Матюнин В.М. и др. М.- В.Ш., 2000.- с.182

Приложение 1

Диаграмма состояния Al-Mg (a) и зависимость механических свойств

сплавов от содержания магния (б)

Приложение 2

Диаграмма состояния Al - Cu :

штриховая линия – температура закалки сплавов

Приложение 3

Диаграмма состояния Al Si (а) и влияние кремния

на механические свойства сплавов

Введение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ………4

1 Алюминий. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . …...4

2 Сплавы на основе алюминия. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . …...5

2.1 Деформируемые алюминиевые сплавы,

не упрочняемые термической обработкой. . . . . . . . . . . . . . . . . . . . . . . . .......6

2.2 Деформируемые алюминиевые сплавы,

упрочняемые термической обработкой. . . . . . . . . . . . . . . . . . . . . . . . . . . .......7

2.3 Литейные алюминиевые сплавы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ......11

2.4 Сплавы, получаемые методом порошковой металлургии………...……..…..14

Заключение………………………………………………….………………..……..16

Список литературы……………………….………………………………………...17

Приложение 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . …. . . . . . . . . . . . . . . . . . . ….19

Приложение 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . ….. 20

Приложение 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . ….21

Кафедра теоретических основ материаловедения

В зависимости от способа производства промышленные алюминиевые сплавы делятся на спеченные, литейные и деформируемые (рис.1).

Литейные сплавы претерпевают эвтектическое превращение, а деформируемые – нет. Последние в свою очередь бывают термически неупрочняемыми (сплавы в которых нет фазовых превращений в твердом состоянии) и деформируемые, термически упрочняемые (сплавы, упрочняемые закалкой и старением).

Алюминиевые сплавы обычно легируют Си, Mg, Si, Мn, Zn, реже Li, Ni, Ti.

Деформированные алюминиевые сплавы, неупрочняемые термической обработкой

К этой группе сплавов относятся технический алюминий и термически неупрочняемые свариваемые коррозионностойкие сплавы (сплавы алюминия с марганцем и магнием). Сплавы АМц относятся к системе Аl – Ми (рис.1).

Рис.1. Диаграмма состояний “алюминий – легирующий элемент”:

1–деформируемые, термически неупрочняемые сплавы;

2–деформируемые, термически упрочняемые сплавы.

Рис.2. Диаграмма состояния “алюминий – марганец”:

–концентрация Mn в промышленных сплавах.

Рис.3. Микроструктура сплава АМЦ

Рис.6. Микроструктура дюралюмина после:

а) закалки в воде с температуры Т2;

б) закалки и искусственного старения при Т3

(справа – схематическое изображение)

Структура сплава Амц состоит из a -твердого раствора марганца в алюминии и вторичных выделений фазы MnAl (рис.3).В присутствии железа вместо MnAl образуется сложная фаза (MnFe) Al, практически нерастворимая в алюминии, поэтому сплав Амц и упрочняется термической обработкой.

Состав данных сплавов имеет очень узкие пределы: 1-1,7% Мп;

0,05 – 0,20% Cu; медь добавляют в целях уменьшения питтинговой коррозии.

Допускается до 0,6–0,7% Fe и. n 0,6-0,7% Si, что приводит к некоторому упрочнению сплавов без существенной потери сопротивления коррозии.

При понижении температуры прочность быстро растет.Поэтому сплавы этой группы нашли широкое применение в криогенной технике.

Сплавы АМг (магналий) относятся к системе А1 – Mg (рис.4). Магний образует с алюминием a -твердый раствор и в области концентраций от 1,4 до 17,4% Mg происходит выделение вторичной b -фазы (MgAl), но сплавы содержащие до 7% Mg, дают очень незначительное упрочнение при термической обработке, поэтому их упрочняют пластической деформацией–нагартовкой.

Сплавы систем А1– Мn. и А1–- Mg используются в отожженном, нагартованном и полунагартованном состояниях. В промышленных сплавах магний содержится в пределах от 0,5 до 12... 13%, сплавы с низким содержанием магния обладают наилучшей способностью к формообразованию, сплавы с высоким содержанием магния имеют хорошие литейные свойства (табл.5) приложения.


На судах из сплавов этой группы изготовлены спасательные боты, шлюпбалки, забортные трапы, дельные вещи и т.п.

Деформированные алюминиевые сплавы, упрочняемые термической обработкой

К этой группе сплавов относятся сплавы высокой и нормальной прочности. Составы некоторых деформируемых термически упрочняемых сплавов приведены в таблице 6 приложения. Типичными деформируемыми алюми-ниевыми сплавами являются дуралюмины (маркируют буквой Д) – сплавы системы А1 – Си – Mg. Очень упрощенно процессы, проходящие при упрочняющей термической обработке дуралюмина можно рассмотреть, используя диаграмму Al – Си (рис.5).

Рис.4. Диаграмма состояния “алюминий – магний”.

‚ – концентрация Mg в промышленных сплавах.

Рис.5. Фрагмент диаграммы состояния “алюминий – медь”:

Т1 – температура оплавления;

Т2 – температура закалки;

Т3 – температура искусственного старения.

Рис.7. Диаграмма состояния “алюминий – кремний”:

а) общий вид;

б) после введения модификатора.

При закалке, которая заключается в нагреве сплава выше линии переменной растворимости, выдержке при этой температуре и быстром охлаждении, фиксируется структура пересыщенного a – твердого раствора (светлый на рис.6а) и нерастворимых включении железистых и марганцовистых соединений (темные). Сплав в свежезакаленном состоянии имеет небольшую прочность s6 = 30 кг/мм3 (300 Мпа); d = 18%; твердость НВ75.

Пересыщенный твердый раствор неустойчив. Наивысшая прочность достигается при последующем старении закаленного сплава. Искусственное старение заключается в выдержке при температуре 150 - 180 градусов. При этом из пересыщенного a – твердого раствора выделяются упрочняющие фазы CuAl2, CuMgAl2, Al12Mn2Cu.

Микроструктура состаренного сплава представлена на рис.6б. Она состоит из твердого раствора и включений различных вышеперечисленных фаз.

Обработка алюминия

Все сплавы алюминия можно разделить на две группы:

Деформируемые алюминиевые сплавы - предназначены для получения полуфабрикатов (листов, плит, прутков, профилей, труб и т. д.), а также поковок и штамповых заготовок путем прокатки, прессования, ковки и штамповки.

а) Упрочняемые термической обработкой:

Дуралюмины, «дюраль» (Д1, Д16, Д20*, сплавы алюминия меди и марганца ) - удовлетворительно обрабатываются резанием в закаленном и состаренном состояниях, но плохо в отожженном состоянии. Дуралюмины хорошо свариваются точечной сваркой и не свариваются сваркой плавлением вследствие склонности к образованию трещин. Из сплава Д16 изготовляют обшивки, шпангоуты, стрингера и лонжероны самолетов, силовые каркасы, строительные конструкции, кузова автомобилей.

Сплав авиаль (АВ) удовлетворительно обрабатывается резанием после закалки и старения, хорошо сваривается аргонодуговой и контактной сваркой. Из этого сплава изготовляются различные полуфабрикаты (листы, профили, трубы и т.д.), используемые для элементов конструкций, несущих умеренные нагрузки, кроме того, лопасти винтов вертолетов, кованные детали двигателей, рамы, двери, для которых требуется высокая пластичность в холодном и горячем состоянии.

Высокопрочный сплав (В95) имеет предел прочности 560-600 Н/мм2, хорошо обрабатывается резанием и сваривается точечной сваркой. Сплав применяется в самолетостроении для нагруженных конструкций (обшивки, стрингеры, шпангоуты, лонжероны) и для силовых каркасов в строительных сооружениях.

Сплавы для ковки и штамповки (АК6, АК8, АК4-1 [жаропрочный]). Сплавы этого типа отличаются высокой пластичностью и удовлетворительными литейными свойствами, позволяющими получить качественные слитки. Алюминиевые сплавы этой группы хорошо обрабатываются резанием и удовлетворительно свариваются контактной и аргонодуговой сваркой.

б) Не упрочняемые термической обработкой:

Сплавы алюминия с марганцем (АМц) и алюминия с магнием (АМг2, АМг3, АМг5, АМг6) легко обрабатываются давлением (штамповка, гибка), хорошо свариваются и обладают хорошей коррозионной стойкостью. Обработка резанием затруднена, поэтому для получения резьбы используют специальные бесстружечные метчики (раскатники), не имеющие режущих кромок.

Литейные алюминиевые сплавы - предназначенные для фасонного литья (как правило, хорошо обрабатываются резанием).

Сплавы алюминия с кремнием (силумины) Al-Si (АЛ2, АЛ4, АЛ9) отличаются высокими литейными свойствами, а отливки - большой плотностью. Силумины сравнительно легко обрабатываются резанием.

Сплавы алюминия с медью Al-Cu (АЛ7, АЛ19) после термической обработки имеют высокие механические свойства при нормальной и повышенных температурах и хорошо обрабатываются резанием.

Сплавы алюминия с магнием Al-Mg (АЛ8, АЛ27) имеют хорошую коррозионную стойкость, повышенные механические свойства и хорошо обрабатываются резанием. Сплавы применяют в судостроении и авиации.

Жаропрочные алюминиевые сплавы (АЛ1, АЛ21, АЛ33) хорошо обрабатываются резанием.

С точки зрения обработки фрезерованием, нарезания резьбы и токарной обработки, алюминиевые сплавы также можно разделить на две группы. В зависимости от состояния (закаленные, состаренные, отожженные) алюминиевые сплавы могут относиться к разным группам по легкости

обработки:

Мягкие и пластичные алюминиевые сплавы, вызывающие проблемы при обработке резанием:

а) Отожженные: Д16, АВ.

б) Не упрочняемые термической обработкой: АМц, АМг2, АМг3, АМг5, АМг6.

Сравнительно твердые и прочные алюминиевые сплавы, которые достаточно просто обрабатываются резанием (во многих случаях, где не требуется повышенная производительность, эти материалы могут обрабатываться стандартным инструментом общего применения, но если требуется повысить скорость и качество обработки, необходимо применять специализированный инструмент):

а) Закаленные и искусственно состаренные: Д16Т, Д16Н, АВТ.

б) Ковочные: АК6, АК8, АК4-1.

в) Литейные: АЛ2, АЛ4, АЛ9, АЛ8, АЛ27, АЛ1, АЛ21, АЛ33.

К сплавам системы Al-Mg относится большая группа широко используемых в промышленности сплавов: АМг0,5; ; ; ; ; ; . Из них изготавливают почти все виды полуфабрикатов: листы, плиты, поковки, штамповки, прессованные изделия (прутки, профили, панели, трубы) и проволоку. Все сплавы рассматриваемой группы хорошо свариваются всеми видами сварки.

Полуфабрикаты из этих сплавов имеют относительно высокий уровень прочностных характеристик по сравнению с другими термически неупрочняемыми сплавами. Так, минимальные значения предела текучести для листового материала (толщина ~2 мм) в отожженном состоянии для указанного ряда сплавов соответственно равны 30, 40, 80, 100, 120,150 и 160 МПа. Временное сопротивление, как правило, в два раза выше предела текучести, что свидетельствует об относительно высокой пластичности этих сплавов. Однако они довольно быстро нагартовываются, что отрицательно влияет на их технологическую пластичность. Последняя значительно понижается с увеличением концентрации магния. Поэтому сплавы с содержанием магния более 4,5 % можно отнести к «полутвердым» и даже «твердым» сплавам.

Отрицательная роль повышенного содержания магния в большей степени проявляется при изготовлении прессованных изделий. Сплавы с высоким содержанием магния прессуются с низкими скоростями (в десятки раз меньшими, чем, например, некоторые сплавы системы Al-Zn-Mg или Al-Mg-Si), что существенно понижает производительность прессовых цехов. Производство катаных полуфабрикатов из сплава АМг6 - процесс трудоемкий. Поэтому в последнее время высоколегированные магналии стали заменять более технологичными сплавами, например, сплавами на основе системы Al-Zn-Mg (1935, 1915, 1911), которые значительно превосходят сплав АМг6 по прочностным свойствам (особенно по пределу текучести) и не уступают ему по многим коррозионным характеристикам.

Низколегированные магналии с содержанием магния до 3 % найдут еще более широкое применение вследствие их высокой коррозионой стойкости и пластичности. Согласно диаграмме состояния сплавов Al-Mg, при температуре эвтектики в алюминии растворяется 17,4 % Mg. При понижении температуры эта растворимость резко снижается и в области комнатных температур составляет примерно 1,4 %.

Таким образом, сплавы с большим содержанием магния в обычных условиях имеют пересыщение по этому элементу (зависящее от марки сплава), и, следовательно, в них должен проявляться эффект старения. Однако структурные изменения, протекающие в этих сплавах в процессе распада твердого раствора, практически не оказывают никакого влияния на уровень прочностных характеристик и в то же время резко изменяют коррозионную стойкость полуфабрикатов. Причина такого аномального поведения заключается в характере распада твердого раствора и фазовом составе выделений. Поскольку для сплавов Al-Mg верхняя температурная граница образования зон ГП (или критическая температура растворимости зон ГП - t K) значительно ниже комнатной температуры, то распад твердого раствора происходит по гетерогенному механизму с образованием переходной (В`) и равновесной (В-Mg 2 Al3) фаз. Эти выделения зарождаются гетерогенно на границах раздела (зерна, интерметаллидные частицы и т. п.), а также дислокациях и поэтому их вклад в процесс упрочнения невелик и полностью компенсируется степенью разупрочнения, обусловленного снижением концентрации магния в твердом растворе. По этой причине на практике и не наблюдается эффекта упрочнения сплавов этой группы при распаде твердого раствора в процессе естественного или искусственного старения пли при различных режимах отжига.

Фаза В в нейтральном водном растворе хлоридов (3 % NaCl) имеет отрицательный потенциал коррозии, равный - 0,930 В. В этом же растворе, но при меньших значениях рН, т. е. в кислой среде, разница потенциалов между фазой и твердым раствором хотя и уменьшается, но остается достаточно большой: (-0,864 В) - - (-0,526 В) =0,338 В. И, наоборот, в щелочной среде (3% NaCl+1% NaOH) алюминий и сплавы алюминия, содержащие 1- 9 % Mg, становятся отрицательнее В-фазы, и разница потенциалов для крайних значений указанной области концентрации магния соответственно составляет +0,24 и +0,18 В. Рассмотренные особенности изменения электрохимических характеристик отдельных структурных составляющих сплавов А1-Mg в зависимости от внешней среды в основном и определяют сопротивление этих сплавов МКК, РСК и КР.

Из изложенного следует, что сплавы с содержанием магния более 1,4% потенциально могут быть чувствительны к одному, двум или всем указанным ранее видам коррозии. Однако большой опыт эксплуатации конструкций и многочисленные эксперименты показывают, что практически сплавы с концентрацией магния, не превышающей 3,5% (AMrl, АМг2 и частично АМг3), не проявляют чувствительности к КР и РСК (рис. 56).

Электронно-микроскопические исследования показывают, что это связано с дискретным распределением частиц В-фазы по границам зерен в связи с малым пересыщением твердого раствора. Поэтому процесс коррозии в нейтральных и кислых средах ограничивается лишь только электрохимическим растворением тех частиц, которые выходят на поверхность сплава, непосредственно контактирующего с электролитом.

Такие сплавы коррозионно устойчивы и в нагартованном состоянии, т. е. хотя нагартовка и ускоряет распад твердого раствора, однако она не изменяет характера распределения выделений на границах зерен. В то же время за счет благоприятного в этом случае влияния структурной анизотропии сопротивление коррозионному питтингу существенно возрастает. Сплавы с содержанием магния более 3,5 % (АМг3, АМг4) и особенно более 5 % (АМг5, АМг6) в определенном структурном состоянии и при определенных условиях внешней среды могут быть чувствительны к МКК и РСК, а также и к КР.

Для сплавов системы Al-Mg электрохимические факторы в коррозионном растрескивании играют значительно большую роль, чем для сплавов других систем. Поэтому предотвращение образования пленки В-фазы по границам зерен целесообразно и для повышения сопротивления КР. В производственных условиях именно такой способ повышения сопротивления КР среднелегированных магналиев нашел широкое распространение.

Для малолегированных сплавов с содержанием магния более 1,4 % использование методов термической и термомеханической обработки, способствующих равномерному распределению В-фазы играет меньшую роль, чем для средне- и высоколегированных. Однако в полунагартованном состоянии, полученном с использованием эффекта НТМО, кроме появления структурной анизотропии, тормозящей распространение коррозии вглубь, положительное влияние оказывает, по-видимому, также более равномерное распределение В-фазы. Например, глубина коррозии на листах из сплава АМг2, подвергнутых ТМО, значительно уменьшается по сравнению с глубиной коррозии на обычных нагартованных листах.

Рост глубины локальных поражений у сплава АМг2 в отожженном состоянии в условиях морской атмосферы можно также частично связать с неоднородностью выделений В-фазы. Таким образом, для сплава АМг2 целесообразно использовать технологию, позволяющую получать равномерное распределение избыточной фазы. Однако и при использовании обычной технологии малое содержание легирующих элементов оказывается решающим фактором в определении коррозионной стойкости этого сплава. Подтверждением этому служит достаточно высокая коррозионная стойкость сплава АМг2 в разных средах.

Характерным примером является поведение магналиев в морской воде. Сплав типа АМг2 после 10 лет испытаний имел коррозионную стойкость, весьма близкую к той, которую он имеет в морской атмосфере (табл. 30).

Сплав типа АМг4 имеет значительно большую глубину коррозионного питтинга в морской воде, чем сплав типа АМг2. Для сплава типа АМг5 максимальная глубина питтинга возрастает еще более резко.

Таким образом, в морской воде существует четкая корреляция между чувствительностью к структурной коррозии (т. е. коррозионному растрескиванию и расслаивающей коррозии) и обычным питтингом. С ростом степени легированности возрастает пересыщение твердого раствора и соответственно чувствительность к структурной коррозии, связанная с тенденцией к избирательному выделению В-фазы. В этой связи для сплавов АМг4, АМг5 и особенно АМг6 возрастает роль технологических факторов, обусловливающих равномерное распределение В-фазы в сплаве.

Одним из эффективных способов повышения коррозионной стойкости среднелегированных магналиев является ТМО. В соответствии с этим максимальное сопротивление РСК и КР может быть достигнуто лишь при формировании в полуфабрикатах полигонизованной структуры в сочетании с равномерным распределением второй фазы. Положительных результатов можно добиться, используя также на окончательной стадии обработки режимы отжигов с температурой ниже линии растворимости магния в алюминии. При этом следует учитывать, что полуфабрикаты с разной степенью рекристаллизации ведут себя по-разному. В настоящее время конструкции изготавливают из отожженных полуфабрикатов с частично (прессованные и горячекатаные полуфабрикаты) и полностью рекристаллизованной (холоднокатаные листы и трубы) структурой. Поскольку в зависимости от характера структуры изменяются корреляционные связи между технологическими параметрами и коррозионными свойствами, рассмотрим влияние отжига раздельно для холодно- и горячедеформированных полуфабрикатов.

Вопрос 1. Вычертите диаграмму состояния системы алюминий-медь. Опишите взаимодействие компонентов в жидком и твердом состояниях, укажите структурные составляющие во всех областях диаграммы состояния и объясните характер изменения свойств сплавов в данной системе с помощью правил Курнакова.

Наиболее важной примесью в дуралюмине является медь.

Диаграмма состояния сплавов А1-Си (рис.1.) относится к диаграммам состояния III типа, когда компоненты образуют твер-дый раствор с

ограниченной растворимостью, уменьшающейся с по-нижением температуры. В сплавах, имеющих диаграмму состояния такого типа, протекает вторичная

кристаллизация, связанная с ча-стичным распадом твердого раствора. Такие сплавы можно под-вергать термической обработке III и IV групп, т. е. закалке

Диаграмма состояния сплавов алюминий - медь.

и ста-рению.Из диаграммы состояния А1 - Си следует, что наибольшая рас-творимость меди в алюминии наблюдается при 548°, когда она составляет

5,7%; при понижении температуры растворимость меди в алю-минии уменьшается и при комнатной температуре составляет 0,5%. Если сплавы с содержанием меди от 0,5 и до 5,7% подвергнуть за-калке с нагревом выше температур фазовых превращений (например, выше точки 5 на диаграмме состояния сплавов А1 - Си), то сплав перейдет в однородный твердый раствор а. После закалки в сплаве будет протекать распад твердого раствора, сопровождающийся выделением избыточной фазы высокой степени дисперсности. Такой фазой в сплавах А1 - Си, является твердое и хрупкое хими-ческое соединение СиА1 2 .

Распад пересыщенного твердого раствора может протекать в течение длительного времени при вылеживании сплава при ком-натной температуре (естественное старение) и более быстро при повышенной температуре (искусственное старение). В результате старения твердость и прочность сплава повышаются, а пластич-ность и вязкость снижаются.

Согласно теории старения , наиболее полно разработанной с помощью правил Курнакова, процесс старения в сплавах протекает в несколько стадий. Упрочнение сплавов, наблюдающееся в результате старения, соответствует периоду выделения избыточных фаз в высокодисперсном состоянии. Происходящие в структуре изменения можно наблюдать только при помощи электронного микроскопа . Обычно эта стадия процесса протекает у закаленных сплавов при естественном старении. При этом твердость и прочность сплава повышаются.

При нагреве закаленных сплавов до сравнительно низких температур, разных для различных сплавов (искусственное старе-ние), протекает вторая стадия, состоящая в укрупнении частиц выделившихся фаз. Этот процесс можно наблюдать при помощи оптического микроскопа. Появление в микроструктуре укрупнен-ных выделений фаз-упрочнителей совпадает с новым изменением свойств - снижением прочности и твердости сплава и повышением его пластичности и вязкости. Старение наблюдается только у спла-вов, которые имеют диаграмму состояния с ограниченной растворимо-стью, уменьшающейся с понижением температуры. Так как большое количество сплавов имеет диаграмму этого типа, то явление старе-ния весьма распространено. На явлении старения основана термиче-ская обработка многих цветных сплавов - алюминиевых, медных и др.

В рассмотренных выше сплавах А1 - Си этот процесс протекает следующим образом. При естественном старении в закаленном сплаве происходит образование зон (дисков) с повышенным содер-жанием меди. Толщина этих зон, называемых зонами Гинье - Престона, равна двум-трем атомным слоям. При нагреве до 100° и выше эти зоны превращаются в так называемую Ө - фазу, являю-щуюся неустойчивой аллотропической модификацией химического соединения СиА1 2 . При температуре выше 250° фаза 9" превращается в фазу Ө (СиА1 2). Дальше происходит укрупнение выделений фазы Ө (СиА1 2). Наибольшую твердость и прочность имеет сплав в первой стадии старения.

В дуралюмине марки Д1 в процессе распада твердого раствора выделяется также фаза Ө, а в дуралюмине марки Д16 таких фаз несколько.

Технология термической обработки деталей из дуралюмина состоит из закалки, проводимой с целью получения пересыщенного твердого раствора, и естественного или искусственного старения. Для закалки детали нагревают до 495° и охлаждают в холодной воде.

Закаленные детали подвергают естественному старению путем выдерживания их при комнатной температуре. После 4-7 суток вылеживания детали приобретают наиболее высо-кую прочность и твердость. Так, предел прочности дуралюмина марки Д1, находящегося в отожженном состоянии, составляет 25 кг/мм 2 , а твердость его равна Н В = 45; после закалки и естест-венного старения предел прочности равен 40 кг/мм 2 , а твердость повышается до Н в = 100.

Время, необходимое для распада твердого раствора, может быть сокращено до нескольких часов путем нагрева закаленного дуралюмина до 100 - 150 ◦ (искусственное старение), однако значения твердости и прочности при искусственном старении несколько ниже, чем при естественном. Несколько снижае5тся и коррозионная устойчивость . Наиболее высокую твердость и прочность после закалки и старения имеют дуралюмины марок Д16 и Д6.Дуралюмины марок ДЗП и Д18 являются сплавами с повышенной пластичностью.

Дуралюмины получили широкое применение в различных отраслях промышленности, особенно в авиастроении, вследствие малого удельного веса и высоких механических свойств после термической обработки.

При маркировке дуралюмининов буква Д обозначает «дуралюмин», А цифра - условный номер сплава.

2. ДИАГРАММА СОСТОЯНИЯ ЖЕЛЕЗОУГЛЕРОДИСТЫХ СПЛАВОВ

Сплавы железа с углеродом условно относят к двухкомпонентным сплавам. В их составе, кроме основных компонентов - железа и углерода , содержатся в небольших количествах обычные примеси- марганец , кремний , сера , фосфор , а также газы - азот , кислород , водород и иногда следы некоторых других элементов. Железо с углеродом образует устойчивое химическое соединение Fe 3 C (93,33% Fe и 6,67% С), называемое кар-бидом железа или цементитом. В применяемых сплавах железа с углеродом (сталях, чугунах) содержание углерода не превышает 6,67%, и поэтому практическое значение имеют сплавы железа с кар-бидом железа (система Fe -Fe 3 C ), в которых вторым компонентом является цементит.

При содержании углерода выше 6,67% в сплавах не будет сво-бодного железа, так как оно все войдет в химическое соединение с углеродом. В этом случае компонентами сплавов будут являться карбид железа и углерод ; сплавы будут относиться ко второй системе Fe 3 C -С, которая исследована недостаточно. Кроме того , железо-углеродистые сплавы с содержанием углерода выше 6,67% обладают большой хрупкостью и практически не применяются.

Сплавы Fe -Fe 3 C (с содержанием С до 6,67%), наоборот, имеют большое практическое значение. На рис. 2 приведена структурная диаграмма состояния сплавов Fe -Fe 3 C , построенная в координатах температура - концентрация. По оси ординат отложены темпера-туры нагрева сплавов, а по оси абсцисс - концентрация углерода в процентах. Левая ордината соответствует 100% содержанию железа, а правая ордината-содержанию углерода 6,67% (или 100%-ной концентрации Fe 3 C ).

На правой ординате отложена температура плавления Fe 3 C , соответствующая 1550° (точка D на диаграмме).

В связи с тем что железо имеет модификации, на левой ординате, кроме температуры плавления железа 1535° (точка А на диаграмме), отложены также температуры аллотропических превращений же-леза: 1390° (точка N ) и 910° (точка G ).

Таким образом, ординаты диаграммы соответствуют чистым компо-нентам сплава (железо и цементит), а между ними располагаются точ-ки, соответствующие сплавам разной концентрации от 0 до 6,67% С

Рис. 2. Структурная диаграмма состояния сплавов Fe - Fe 3 C .

В определенных условиях химическое соединение (цементит) может не образоваться , что зависит от содержания кремния, мар-ганца и других элементов, а также от скорости охлаждения слитков или отливок. При этом углерод выделяется в сплавах в свободном состоянии в виде графита. Двух систем сплавов (Fe -Fe 3 C и Fe 3 C -С) в этом случае не будет. Они заменяются одной системой сплавов Fe -С, не имеющей химических соединений.

2.1 Структурные составляющие железоуглеродистых сплавов.

Микро-скопический анализ показывает, что в железоуглеродистых сплавах образуется шесть структурных составляющих, а именно: феррит, цементит, аустенит и графит, а также перлит и ледебурит.

Ферритом называют твердый раствор внедрения углерода в Fe a . Так как растворимость углерода в Fe « незначительна, то феррит можно считать практически чистым Fe a . Феррит имеет объемно-центрированную кубическую решетку (Кб). Под микроско-пом эта структурная составляющая имеет вид светлых зерен раз-личной величины. Свойства феррита одинаковы со свойствами железа: он мягок и пластичен, предел прочности 25 кг/мм 2 , твердость Н В = 80, относительное удлинение 50%. Пластичность феррита зависит от величины его зерна: чем мельче зерна, тем пластичность его выше. До 768° (точка Кюри) он ферримагнитен, а выше - пара-магнитен.

Цементитом называют карбид железа Fe 3 C . Цементит имеет сложную ромбическую решетку. Под микроскопом эта структурная составляющая имеет вид пластинок или зерен раз-личной величины. Цементит тверд В > 800 ед.) и хрупок, а от-носительное удлинение его близко к нулю. Различают цементит, выде-ляющийся при первичной кристаллизации из жидкого сплава (пер-вичный цементит или Ц 1), и цементит, выделяющийся из твердого раствора Y -аустенита (вторичный цементит или Ц 2). Кроме того, при распаде твердого раствора а (область GPQ на диаграмме состояния) выделяется цементит, называемый в отличие от предыдущих третичным цементитом или Ц 3 . Все формы цементита имеют одинаковое кристаллическое строение и свойства, но различную величину частиц - пластинок или зерен. Наиболее крупными являются частицы первичного цементита, а наиболее мелкими частицы первичного цементита. До 210° (точка Кюри) цементит ферримагнитен, а выше ее - парамагнитен.

Аустенитом называют твердый раствор внедрения углерода в Fe Y . Аустенит имеет гранецентрированную кубическую решетку (К12). Под микроскопом эта структурная составляющая имеет вид светлых зерен с характерными двойными линиями (двой-никами). Твердость аустенита равна Н В = 220. Аустенит парамаг-нитен.

Графит имеет неплотноупакованную гексагональную решетку со слоистым расположением атомов. Под микроскопом эта структурная составляющая имеет вид пластинок различной формы и величины в серых чугунах, хлопьевидную форму в ковких чугунах, шарообразную форму в высокопрочных чугунах. Механические свойства графита чрезвычайно низки.

Все перечисленные четыре структурные составляющие одновре-менно являются также фазами системы сплавов железа с углеродом, так как они однородны - твердые растворы (феррит и аустенит), химическое соединение (цементит) или элементарное вещество (гра-фит).

Структурные составляющие ледебурит и перлит не однородны. Они представляют собой механические смеси, обладающие особыми свойствами (эвтектику и эвтектоид).

Перлитом называют эвтектоидную смесь феррита и цементита. Он образуется из аустенита при вторичной кристалли-зации и содержит 0,8% С. Температура образования перлита 723°. Эту критическую температуру, наблюдаемую только у стали, назы-вают точкой А±. Перлит может иметь пластинчатое строение, если цементит имеет форму пластинок, или зернистое, когда цементит имеет форму зерен. Механические свойства пластинчатого и зерни-стого перлита несколько отличаются. Пластинчатый перлит имеет предел прочности 82 кг/мм 2 , относительное удлинение 15%, твер-дость Н в = 190-^-230. Предел прочности зернистого перлита равен 63 кг/мм 2 , относительное удлинение 20% и твердость Я» = = 1.60-г- 190.

Ледебуритом называют эвтектическую смесь аусте-нита и цементита. Он образуется в процессе первичной кристалли-зации при 1130°. Это наиболее низкая температура кристаллизации в системе сплавов железа с углеродом. Аустенит, входящий в состав ледебурита, при 723° превращается в перлит. Поэтому ниже 723° и вплоть до комнатной температуры ледебурит состоит из смеси перлита и цементита. Он очень тверд в ^ 700) и хрупок. Наличие ледебурита является структурным признаком белых чугунов. Механические свойства железоуглеродистых сплавов изме-няются в зависимости от количества структурных составляющих, их формы, величины и расположения.

Структурная диаграмма состояния Fe -Fe 3 C является сложной диаграммой, так как в сплавах железо - углерод происходят не только превращения , связанные с кристаллизацией, но и превра-щения в твердом состоянии.

Границей между сталями и белыми чугунами является концентрация углерода 2%, а структурным признаком - наличие или отсут-ствие ледебурита. Сплавы с содержанием углерода менее 2% (у кото-рых ледебурита нет) называют сталями, а с содержанием углерода свыше 2% (в структуре которых есть ледебурит) - белыми чугунами.

В зависимости от концентрации углерода и структуры стали я чугуны принято подразделять на следующие структурные группы: доэвтектоидные стали (до 0,8% С); структура - феррит и перлит; эвтектоидная сталь (0,8% С); структура - перлит;

заэвтектоидные стали (свыше 0,8 до 2% С); структура - перлит в вторичный цементит;

доэвтектические белые чугуны (свыше 2 до 4,3% С); структура - ледебурит (распавшийся), перлит и вторичный цементит;

эвтектический белый чугун (4,3% С); структура-ледебурит;

заэвтектические белые чугуны (свыше 4,3 до 6,67% С); структура- ледебурит (распавшийся) и первичный цементит.

Это подразделение, как видно из диаграммы состояния Fe -Fe 3 C , соответствует структурному состоянию этих сплавов, наблюдаемому при комнатной температуре.

Вопрос 3.

Выберите инструментальный твердый сплав для чистового фрезерования поверхности детали из стали 30ХГСА. Дайте характеристику, расшифруйте выбранную марку сплава, опишите особенности структуры и свойства сплава.

Инструменты подразделяются на три группы: режущие (резцы, сверла, фрезы и др.), измерительные (калибры, кольца , плитки и др.), и инструменты для горячей и холодной обработки металлов давлением (штампы, волочильные доски и др.). В зависимости от вида инструментов требования, предъявляемые к сталям для их изготовления, разные.

Основным требованием, предъявляемым к сталям для режущих инструментов, является наличие высокой твердости, не снижающейся при высоких температурах, возникающих в процессе обработки металлов резанием (красностойкости). Твердость для металлорежущих инструментов должна составлять R c = 60÷65. Кроме того, стали для режущих инструментов должны обладать высокой износоустойчивостью, прочностью и удовлетворительной вязкостью.

Наибольшее применение для изготовления режущих инструментов получили быстрорежущие стали. Быстрорежущая сталь является многокомпонентным сплавом и относится к карбидному (ледебуритному) классу сталей. В ее состав, кроме железа и углерода, входят хром , вольфрам и ванадий . Основным легирующим элементом в быстрорежущей стали является вольфрам. Наибольшее распространение получили (табл. 3) марки быстрорежущей стали Р18 (18 % W ) и Р9 (9 % W ).

Высокую твердость R C = 62 и красностойкость быстрорежущая сталь приобретает после термической обработки, состоящей из закалки и многократного отпуска.

Таблица 1

Химический состав быстрорежущей стали

(по ГОСТ 5952-51)

Марка стали

C

W

Cr

V

Mo

Р 18

0,70 – 0,80

17,5 – 19,0

3,8 – 4,4

1,04 – 1,4

≤0,3

Р 9

0,85 – 0,95

8,5 – 10,0

3,8 – 4,4

2,0 – 2,6

≤0,3

На рис.3 приведен график термической обработки быстрорежущей стали Р18.

Мы выбираем ее в качестве инструментального твердого сплава для чистого фрезерования т.к. эта марка стали подходит нам по своим характеристикам.

Термическая обработка быстрорежущей стали имеет ряд особенностей, которые обусловли-ваются ее химическим составом. Нагрев быстрорежущей стали, при закалке производится до высокой температуры (1260-1280°), необхо-димой для того, чтобы растворить в аустените карбиды хрома, воль-фрама и ванадия. До 800-850° нагрев производится медленно, чтобы избежать больших внутренних напряжений в стали вследствие ее малой тепло-проводности и хрупкости, затем производят быстрый нагрев до 1260-.1280° с целью избежания роста зерна аустенита и обезуглерожива-ния. Охлаждение быстрорежущей стали производится в масле. Широкое применение получила также ступенчатая закалка быстро-режущей стали в солях при температуре 500-550°.

Структура быстрорежущей стали после закалки состоит из мар-тенсита (54%), карбидов (16%) и остаточного аустенита (30%). После закалки быстрорежущая сталь подвергается многократному отпуску при 560°. Обычно производят трехкратный отпуск с выдержкой по 1 часу для того, чтобы уменьшить количество остаточного аустенита и повысить твердость стали. Во время вы-держки при температуре отпуска из аустенита выделяются карбиды, а при охлаждении аустенит превращается в мартенсит. Происходит как бы вторичная закалка. Структура быстрорежущей стали после отпуска - мартенсит отпуска, высокодисперсные карбиды и неболь-шое количество остаточного аустенита. Для еще боль-шего снижения количества остаточного аустенита быстрорежущие стали подвергают обработке холодом, которая производится перед отпуском. Весьма эффективно для повышения твердости и износо-стойкости применение низкотемпературного цианирования.

Быстрорежущие стали получили широкое распространение для изготовления различных режущих инструментов; изготовленные из этих сталей инструменты работают со скоростями резания, в 3-4 раза превышающими скорости резания инструментов из углеродистых сталей, и сохраняют режущие свойства при нагреве в процессе резания до 600 º - 620 º .

Вопрос. 4 Выберите наиболее рациональную и экономичную марку стали для изготовления пружины, которая после термической обработки должна получить высокую упругость и твердость не менее 44 …45 НRC Э. Дайте характеристику, укажите состав стали, выберите и обоснуйте режим термообработки. Опишите и зарисуйте микроструктуру и свойства стали после термообработки.

Пружины используют для накопления энергии (пружинные моторчики), для восприятия и амортизации ударов, для компенсации теплового расширения в механизмах клапанного распределения и пр. Деформация пружины может проявляться в форме ее растяжения, сжатия, изгиба или скручивания.

Зависимость между силой Р и деформацией пружины F называется характеристикой пружины.

Согласно справочника конструктора – машиностроения, авт. Анурьев. В.И., выбираем наиболее рациональную и экономичную марку стали:

Сталь – 65Г (марганцевая сталь), имеющую упругость и твердость равную 42…48 HRC Э. по Реквелю. Термическая обработка стали : температура закалки - 830 º С, (среда масло.), отпуск - 480 º С. Предел прочности (δ В) – 100 кг/мм 2 , предел текучести (δ т) – 85 кг/мм 2 , относительное удлинение (δ 5) – 7%, относительное сужение (ψ) – 25%.

Характеристика – ресорно-пружинная сталь, высокого качества с содержанием P – S не более 0,025%. Подразделяется на 2 – категории: 1 – обезуглероженного слоя, 2 – с нормированным обезуглероженным слоем

Вопрос 5. Для изготовления дисков компрессора авиадвигателя применили сплав АК4-1. Дайте характеристику, укажите состав и характеристику механических свойств сплава, способ и природу упрочнения сплава, способы защиты от коррозии.

АК4-1 – сплав на основе алюминия, перерабатываемый в изделие методом деформирования, упрочняемый термической обработкой , жаропрочный.

Состав сплава: Mg – 1.4…1.8%. Cu – 1.9…2.5%. Fe – 0.8…1.3%. Ni – 0.8…1.3%. Ti – 0.02…0.1%, примеси до 0,83%. Предел прочности сплава 430 МПа, предел текучести 0,2 – 280 МПа.

Легирован железом , никелем, медью, и др. элементами образующими упрочняющие фазы

Вопрос 6. Экономические предпосылки применения неметаллических материалов в промышленности. Опишите группы, свойства газонаполненных пластмасс, приведите примеры из каждой группы, их свойства и область применения в конструкциях летательных аппаратов.

В последнее время все более широкое применение в качестве конструкционных материалов находят неметаллические полимерные материалы . Главная особенность полимеров заключается в том, что они обладают рядом свойств не присущих металлам , и могут служить хорошим дополнением к металлическим конструкционным материалам либо быть их заменой, а многообразие физико-химических и механических свойств, присущих различным видам пластмасс, и простота переработки в изделия обуславливают широкое применение во всех отраслях машиностроения, приборостроения, аппаратостроения и быту. Пластические массы отличаются малым удельным весом (от 0,05 до 2,0 г/см 3 ), обладают высо-кими изоляционными свойствами, хорошо противостоят коррозии, отличаются широким диапазоном коэффициента трения и высоким сопротивлением истиранию.

В случае необходимости получения изделий, обладающих анти-коррозийной стойкостью, кислотоупорностью, бесшумностью в ра-боте с одновременным обеспечением легкости конструкции пласти-ческие массы могут служить заменителями черных металлов. Бла-годаря прозрачности и высоким пластическим свойствам некоторых видов пластмасс их широко применяют для изготовления небьюще-гося стекла для автомобильной промышленности. При изготовлении изделий с высокими электроизоляционными свойствами пластмассы заменяют и вытесняют высоковольтный фарфор, слюду, эбонит и прочие материалы. Наконец, паро-, бензо- и газопроницаемость, а также высокая водо- и светостойкость при хорошем внешнем виде обеспечивают широкое применение пластмасс в ряде отраслей про-мышленности.

Из пластмасс изготовляют вкладыши для подшипников, сепара-торы, бесшумные зубчатые колеса , лопасти вентиляторов, лопатки для моечных машин и мешалок, радиоаппаратуру, футляры для радио-приемников и часов, электрическую аппаратуру, дистрибуторы, шлифовальные круги, непромокаемые и декоративные ткани и разно-образные предметы широкого потребления.

Пенопласты представляют собой легкие газонаполненные пластические массы на основе синтетических смол. Пенопласты подразделяются на две группы: 1 – материалы с сообщающимися порами – губки (плотность менее 300 кг/м 3), 2 – материалы с изолированными порами – пены (плотностью более 300кг/м 3).

Свойства пенопластов очень разнообразны: одни обладают твердостью, как стекло , другие – эластичностью, подобно резине. Все пенопласты хорошо поддаются механической обработке столярным инструментом, легко прессуются в нагретом состоянии в изделия сложной формы и склеиваются. В авиастроении пенопласты применяют в качестве заполнителя между двумя обшивками в целях повышения жесткости и прочности конструкции, а также как тепло – и звукоизоляционный материал.

Анализ полученных результатов выбора легирующих элементов для алюминия показывает, что наибольшее упрочнение обеспечивает магний, так как для него характерно наличие двух механизмов упрочнения – твердо-растворный – за счет критерия α (18,9) и с помощью термообработки γ = 0,57. Более высокой технологической пластичностью и жаропрочностью обладают сплавы системы Al-Mn, так как критерии ω и τ для них имеют наибольшее значение. – 0,77 и 0,99, соответственно. Кроме того, в них слабее всего развита пористость, поскольку величина критерия δ минимальна. Однако они не подвергаются упрочняющей термообработке как алюминиево-магниевые сплавы: для них γ = 0,96 вместо 0,57.

Максимальной жидкотекучестью, в соответствии с определением критерия λ, обладают сплавы системы Al-Si, его значение наиболее высокое из рассмотренных легирующих добавок – 7,3 вместо 6,5 у меди и 5,3 – у магния. Силумины обладают достаточно высокой жаропрочностью – τ=0,91, что лишь немногим меньше, чем у марганца. Их существенным недостатком является низкая технологическая пластичность, ω=0,13, вместо 0,77- у марганца и 0,50 – у магния и невозможность термического упрочнения – γ=0,98.

Обобщая вышеизложенное, можно констатировать, что основными деформируемыми сплавами, не подвергающимися термической обработке, являются сплавы системы Al-Mn, термически упрочняемыми - Al-Mg, литейными - Al-Si. Эти результаты хорошо известны, и их ценность заключается в том, что предложенные Б.Б. Гуляевым критерии диаграмм состояния отражают истинное положение вещей и могут быть использованы при выборе легирующих элементов для формирования заданного уровня эксплуатационных и технологических свойств для всех без исключения основ сплавов.

4.4.5 Диаграммы состояния двойных сплавов алюминия

В качестве примера для освоения методики выбора легирующих элементов и комплексов сплавов на основе алюминия использованы наиболее известные, сведения о которых широко изложены в технической и справочной литературе .

Рисунок 4.4. Диаграмма состояния Al-Ga

Рисунок 4.5. Диаграмма состояния Al-Ge

Рисунок 4.6. Диаграмма состояния Al-Li

Рисунок 4.7. Диаграмма состояния Al-Ag

Рисунок 4.8. Диаграмма состояния Al-Cu

Рисунок 4.9. Диаграмма состояния Al-Zn
Рисунок 4.10. Диаграмма состояния Al-Mg
Рисунок 4.11. Диаграмма состояния Al-Mn
Рисунок 4.12. Диаграмма состояния Al-Si

← Вернуться

×
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:
Я уже подписан на сообщество «sinkovskoe.ru»