Функции волокон пуркинье. Волокна пуркинье в сердце

Подписаться
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:

На препарате видны: эндокард (1), миокард (2) и лежащие между ними волокна Пуркинье (3). Последовательно охарактеризуем каждую из этих структур.Эндокард (1) напоминает по строению стенку сосуда.В нём выделяют 4 слоя: эндотелий на базальной мембране; подэндотелиальный слой из рыхлой соединительной ткани; мышечно-эластический слой, включающий гладкие миоциты и эластические волокна; наружный соединительнотканный слой.

Миокард (2) составляют: сократительные кардиомиоциты, объединён Питуициты (1) - мелкие глиальные клетки с многочисленными отростками, образующие строму задней доли. 2. Многочисленные кровеносные сосуды (2), среди которых преобладают капилляры.3. а) Аксоны (3) нейросекреторных клеток гипоталамуса:

ные в функциональные волокна и образующие сердечную мышечную ткань, а также очень тонкие прослойки рыхлой соединительной ткани с капиллярами. При этом функциональные волокна миокарда имеют поперечную исчерченность (благодаря регулярной укладке тонких и толстых миофиламентов в миофибриллах кардиомиоцитов), имеют, кроме того, т.н. вставочные диски - поперечные полоски в местах контакта соседних кардиомиоцитов; отличаются центральным положением ядер (по 1-2 ядра в кардиомиоците), Волокна Пуркинье (3) - компонент проводящей системы сердца. В эту систему входят: синусный узел, от которого идёт пучок Кис-Фляка, и атриовентрикулярный узел Ашоф-Тавара, от которого идёт пучок Гиса, делящийся вначале на две ножки, а затем - на большее количество ветвей.

Относительно мелкие ветви пучков Кис-Фляка и Гиса идут под эндокардом и обозначаются как волокна Пуркинье. Эти волокна состоят из т.н. атипичных кардиомиоцитов. Функция последних - не сокращение, а генерация возбуждений (в узлах) или проведение его (в пучках и в волокнах Пуркинье).Поэтому они отличаются по морфологии от типичных кардиомиоцитов.

В частности, по сравнению с последними, клетки волокон Пуркинье - гораздо более крупные,
более светлые (при окраске гематоксилин-эозином), не имеют поперечной исчерченности, по форме - овальные (а не цилиндрические).

Миокард


На рисунке показано гистологическое строение миокарда. Видно, что волокна сердечной мышцы образуют сеть благодаря разветвлению волокон, которые затем сливаются и разветвляются вновь. Видно также, что волокна сердечной мышцы имеют такую же поперечную исчерченность, что и волокна скелетных мышц. Более того, они содержат типичные миофибриллы, состоящие из актиновых и миозиновых филаментов. Так же, как и в волокнах скелетных мышц, эти филаменты располагаются параллельно и скользят относительно друг друга в процессе сокращения. Однако сердечная мышца имеет ряд существенных отличий от скелетной мышцы. Сердечная мышца как синцитий. Темные зоны, пересекающие волокна сердечной мышцы на рисунке, называют вставочными дисками. Они представляют собой клеточные мембраны, которые отделяют клетки сердечной мышцы друг от друга. Таким образом, волокна миокарда состоят из большого количества отдельных кардиомиоцитов, которые соединены между собой последовательно и параллельно. В области вставочных дисков мембраны клеток сливаются друг с другом таким образом, что формируются высокопроницаемые щелевые контакты (gap junctions), через которые свободно диффундируют ионы. Следовательно, важной функциональной особенностью миокарда является свободное движение ионов во внутриклеточной жидкости вдоль миокардиального волокна, что обеспечивает беспрепятственное распространение потенциалов действия от одной мышечной клетки к другой через вставочные диски. Таким образом, миокард представляет собой функциональное объединение (синцитий) большого количества клеток, настолько тесно взаимосвязанных между собой, что возбуждение только одной клетки приводит к распространению потенциала действия ко всем клеткам миокардиального синцития. Сердце состоит из двух функциональных синцитиев: предсердного синцития, представленного мышечной стенкой обоих предсердий, и желудочкового синцития, представленного мышечной стенкой обоих желудочков. Предсердия отделены от желудочков фиброзной перегородкой, в которой имеются атриовентрикулярные отверстия, снабженные клапанами. Возбуждение не может пройти от предсердного синцития к желудочковому непосредственно через фиброзную ткань. Оно передается только с помощью специального атриовентрикулярного пучка диаметром в несколько миллиметров, состоящего из волокон проводящей системы сердца. Наличие в сердце двух функциональных синцитиальных систем позволяет предсердиям сокращаться раньше, чем начнется сокращение желудочков. Это очень важно для эффективной насосной функции сердца.

№ 15 Тимус

Тимус, как и красный костный мозг, относится к центральным органам кроветворения. В нём происходят заключительные стадии антигеннезависимого созревания Т-лимфоцитов. С поверхности тимус покрыт капсулой (1) из плотной волокнистой соединительной ткани. От неё отходят перегородки (2), разделяющие тимус на дольки (3). В каждой дольке различают две области: на периферии - корковое вещество (4), более тёмное на препарате (поскольку густо заселено тимоцитами); в центре дольки - светлое мозговое вещество (5).В свою очередь, в каждой области имеются два тканевых компонента: лимфоидный и стромальный.

Корковое вещество: лимфоидный компонент

В подкапсулярной области коры находятся интенсивно делящиеся Т-лимфобласты (1) - клетки класса IV - более крупные и светлые, чем зрелые лимфоциты. Они образуются из предшественников Т-лимфоцитов, поступающих сюда из красного костного мозга.

Оставшиеся зрелые Т-лимфоциты попадают в мозговое вещество тимуса и поступают в кровеносные капилляры, находящиеся на границе коркового и мозгового вещества.

Корковое вещество - стромальный компонент

Дольки тимуса разделены междольковой соединительной тканью (2). В самих же дольках роль стромы играют ретикулоэпителиальные, или эпителиоретикулярные клетки (1).

Данные клетки подразделяются на 3 вида: опорные клетки - составляют каркас коркового вещества; часть этих клеток окружают сосуды и участвуют в формировании гематотимусного барьера; секреторные клетки - выделяют факторы, стимулирующие Т-лимфоцитопоэз; клетки-"няньки" - имеют глубокие инвагинации, в которых и происходит развитие Т-клеток. В коре тимуса имеются также вспомогательные (акцессорные) клетки макрофагического ряда (моноцитарного происхождения): макрофаги, дендритные клетки.

№ 16 Лимфатический узел

С выпуклой стороны в узел впадают приносящие лимфатические сосуды.Вогнутая сторона имеет вдавление - ворота узла. Здесь от узла отходят вены и выносящие лимфатические сосуды и входят в узел артерии и нервы. Узел покрыт капсулой (1); от неё отходят внутрь узла трабекулы, образованные (как и капсула) плотной волокнистой соединительной тканью.Между капсулой и трабекулами находятся: лимфоиднаяткань (т.е. ретикулярная ткань, в петлях которой располагаются лимфоциты), а также лимфатические синусы - пространства, выстланные ретикулоэндотелиальными ("береговыми") клетками и служащие для перемещения лимфы через узел. В лимфоидной ткани различают 3 области: корковое вещество (на периферии узла), представленное лимфатическими узелками, или фолликулами (3 ; паракортикальную зону, где лимфоидная ткань расположена диффузно (т.е. неупорядоченно); мозговое вещество (более светлую область в центре узла) - здесь лимфоидная ткань организована в мозговые тяжи

Лимфатические синусы также подразделяют на 3 вида: краевой синус (2 на снимке а) - между капсулой и лимфатическими фолликулами, вокругузелковые синусы - между трабекулами и узелками, мозговые синусы - между трабекулами и мозговыми тяжами.

Корковое вещество (лимфатические узелки)Отличительная черта вторичного узелка - наличие нескольких зон. Среди них: реактивный (или герминативный) центр (4), в котором, в свою очередь, можно выделить 3 зоны: тёмную (в основании фолликула), светлую базальную и светлую апикальную;

В мозговых тяжах (3) находятся, в основном (в ячейках ретикулярной ткани), пролиферирующие проплазмоциты и
сами плазматические клетки. Строма лимфоидной ткани лимфоузла во всех областях представлена ретикулярными клетками, которые вместе с ретикулярными волокнами образуют густую сеть. Стенки лимфатических синусов выстланы ретикулоэндотелиальными ("береговыми") клетками, между которыми во многих местах находятся оседлые макрофаги.

Селезенка

В селезёнке можно выделить 4 основные компонента: капсулу и трабекулы, белую пульпу, красную пульпу и специфическую сосудистую систему.

С поверхности селезёнка покрыта серозной оболочкой, включающей мезотелий (1 на снимке а) и соединительнотканную основу с сосудами и нервами. Глубже располагается капсула (2), от которой вглубь органа отходят многочисленные трабекулы (3).Капсула и трабекулы содержат: плотную волокнистую соединительную ткань (высокое содержании в ней коллагеновых волокон обуславливает оксифилию межклеточного вещества трабекул); большое количество гладких миоцитов (4 на снимке б), обеспечивающих при необходимости выброс из селезёнки депонированной в ней крови ; трабекулярные вены (1 на снимке е) - вены безмышечного типа , чья наружная оболочка оболочка сращена с соединительной тканью трабекул, трабекулярные артерии, имеющие миоциты в t. media. Белая пульпа -лимфоидная ткань, включающая 2 компонента: периартериальные влагалища - скопления Т-лимфоцитов вокруг пульпарных артерий, и лимфатические узелки, или фолликулы, содержащие и В-, и Т-клетки. На препаратах селезёнки обычно видны не сами периартериальные влагалища,а их продолжения в область фолликулов - периартериальные зоны (3) вокруг центральных артерий (2) узелков (которые являются, в свою очередь, продолжением пульпарных артерий). Красная пульпа(2) - содержимое пространства между трабекулами (1) и лимфоидной тканью. Внешне она отличается от белой пульпы меньшей концентрацией лимфоидных элементов и наличием других элементов крови - прежде всего, эритроцитов. В красной пульпе - два компонента. - селезёночные тяжи: здесь в ретикулярной строме расположены форменные элементы крови, макрофаги (разрушающие старые эритроциты и тромбоциты), а также плазмоциты. Второй компонент - венозные синусы: это многочисленные широкие сосуды, начинающие венозную систему селёзёнки и тоже заполненные клетками крови (которые могут переходить через стенку синусов как в одну, так и в другую сторону).

№ 18 Миндалина

Нёбные миндалины относятся к лимфоидной системе слизистых оболочек, а в этой системе - к глоточному лимфоидному кольцу. Каждая миндалина представляет собой несколько складок слизистой оболочки с углублениями (криптами) (1) между ними. В толще слизистой оболочки находятся многочисленные лимфатические фолликулы (4) и лежащие между ними парафолликулярные скопления лимфоцитов.

строма представлена рыхлой соединительной тканью.

В области миндалин (как и в прочих участках ротовой полости и глотки) слизистая оболочка покрыта многослойным плоским неороговевающим эпителием (2). Причём, в просвете крипты часто находятся слущенные эпителиоциты (3). Эпителий миндалин имеет, по крайней мере, две особенности: в некоторых местах он инфильтрирован лимфоцитами (6), а также зернистыми лейкоцитами (последние фагоцитируют микробы); кроме того, в его составе находятся дендритные клетки, которые представляют антигены лимфоцитам.

Лимфатические фолликулы миндалин - В-зона в лимфатических узелках (4) миндалины тоже можно различить следующие области: реактивный центр (5), включающий 3 зоны: тёмную (где стимулированные В-клетки - центробласты - находятся в состоянии мутагенеза).

№ 19 Толстая кожа (кожа пальца)

Кожа любой локализации включает два основных компонента: многослойный плоский ороговевающий эпителий, называемый эпидермисом, и соединительнотканную основу, или дерму.

эпидермисе "толстой" кожи различают 5 слоёв: базальный (1), шиповатый (2), зернистый (3), блестящий (4), роговой (5).

Базальный слой эпидермиса

Все клетки этого слоя (1) лежат на базальной мембране. Последняя на препарате не видна, но отличается резко извилистым ходом - вследствие того, что соединительная ткань дермы вдаётся в эпидермисмногочисленными сосочками.

Клеточный состав рассматриваемого слоя (1) - наиболее разнообразен. - Около 70% приходится на базальные кератиноциты.Другие клетки этого слоя (заметим, что при обычной окраске они не отличимы ни друг от друга, ни от кератиноцитов). - Меланоциты:, десмосомных контактов с соседними клетками не образуют, по форме - многоотростчатые, содержат в цитоплазме меланосомы - мембранные органеллы с гранулами меланина.Клетки Лангерганса (внутриэпителиальные макрофаги): происходят из моноцитов, тоже не образуют десмосомных контактов и имеют многоотростчатый вид; простираются до шиповатого слоя, а отростками - и до зернистого, видимо, играют в эпителии формообразующую функцию, а кроме того, представляют антигены лимфоцитам.Осязательные клетки Меркеля: имеют невральное происхождение, в особенно большом количестве содержатся в коже пальцев; обычно объединяются в осязательные диски Меркеля и воспринимают тактильные раздражения, которые затем передаются окончаниям дендритов чувствительных нервов.

Шиповатый слой эпидермиса. В этом и последующих слоях клетки представлены практически только кератиноцитами.

Зернистый слой (3) - наиболее окрашенный на препарате. Составляющие его кератиноциты расположены в 3-4 слоя,

Блестящий слой (4): кератиноциты вновь расположены в 3-4 ряда, но сильно уплощены и лишены ядер, а также почти всех других органелл,

Роговой слой (5) - является в коже пальца самым толстым.Он состоит из 15-20 слоёв ороговевших безъядерных клеток - роговых чешуек (по форме - светлых призматических ячеек). Последние имеют толстую (роговую) оболочку из кератолинина В дерме различают два слоя: сосочковый (6) - лежит непосредственно под эпидермисом, вдаваясь в него сосочками, и сетчатый слой (7) - более глубокий.

Сосочковый слой образован рыхлой неоформленной соединительной тканью.Поэтому он содержитотносительно много клеток (среди которых - фибробласты, макрофаги, тучные клетки и др.) Сетчатый слой (7) образован другой тканью - плотной неоформленной соединительной.В силу этого, в нём мало клеток (в основном, это фибробласты), а основное пространство занимают толстые пучки коллагеновых волокон (отчего ткань - плотная),
причём, ориентированных в разных направлениях (что делает ткань неоформленной).Присутствуют и эластические волокна.

№ 20 Тонкая кожа (кожа с волосом)

Она включает два основных компонента: многослойный плоский ороговевающий эпителий, называемый эпидермисом, и соединительнотканную основу, или дерму. Эпидермис. - его составе имеются только 4 слоя (а не 5, как в "толстой" коже): базальный (1),шиповатый (2), зернистый (3) и очень тонкий роговой (4).(Таким образом, здесь нет блестящего слоя.)

Дерма. В строении дермы - меньше особенностей. -В ней, как и в "толстой" коже, - 2 слоя того же тканевого состава: непосредственно под эпидермисом - сосочковый слой (5), образованный рыхлой соединительной тканью,и более глубоко - сетчатый слой (6), образованный плотной неоформленной соединительной тканью. Другая особенность, и она уже является принципиальной, - наличие в тонкой коже воло с исвязанных с ними сальных желёз, а также мышц, поднипмающих во лос., потовые железы.

Эпидермис: клеточный состав. Во всех четырёх слоях (1-4) эпидермиса основным или даже единственным типом клеток являются кератиноциты, которые, перемещаясь от базального слоя к роговому, подвергаются терминальной дифференцировке.Кроме них, в базальном слое (1) присутствуют и другие клетки меланоциты - многоотростчатые клетки, содержащие меланосомы - мембранные органеллы с гранулами меланина; клетки Лангерганса (внутриэпителиальные макрофаги) - тоже многоотростчатые клетки, которые простираются до шиповатого слоя, а отростками - до зернистого, и, видимо, играют в эпителии формообразующую функцию, а кроме того, представляют антигены лимфоцитам; и, наконец, осязательные клетки Меркеля,

Кератиноциты: Базальные кератиноциты (1), Шиповатые кератиноциты (2), Зернистые кератиноциты (3), Роговые кератиноциты (корнеоциты, или роговые чешуйки) (4).

Трахея

В стенке трахеи имеются следующие оболочки: слизистая оболочка (I), подслизистая основа (II), фиброзно-хрящевая оболочка (III) и адвентициальная оболочка (IV).

Слизистую оболочку (I) выстилает изнутри многорядный мерцательный эпителий (1). Это разновидность однослойного эпителия, т.е. все входящие в него клетки контактируют с базальной мембраной

Среди основных типов клеток - реснитчатые клетки: ядра (3) образуют верхний ряд ядер, а на апикальной поверхности имеются реснички (3.А).Поэтому и весь эпителий называется реснитчатым, или мерцательным.

Другие основные типы клеток эпителия: а) бокаловидные клетки (4) -имеют грушевидную форму и светлую цитоплазму, продуцируют слизь; ядра лежат в верхнем или среднем ряду; базальные, или короткие вставочные, клетки - являются камбиальными, образуют нижний ряд ядер (1); длинные вставочные клетки - ядра (2) лежат в среднем ряду, эндокриноциты - секретируют в кровь норадреналин, серотонин и пр. вещества; клетки Лангерганса (и, возможно, М-клетки) - будучи производными макрофагов, перерабатывают антигены и представляют продукты переработки лимфоцитам. Под эпителием в трахее расположены две пластинки слизистой оболочки: собственная пластинка (2), образованная рыхлой соединительной тканью с большим количеством эластических волокон, и мышечная пластинка (3), представленная редкими и циркулярно ориентированными миоцитами. подслизистая основа (II). Её особенность - наличие в ней концевых отделов (4) слизисто-белковых желёз трахеи. Фиброзно-хрящевую оболочку (III) трахеи образуют крупные и не замкнутые сзади кольца из гиалинового хряща, а также покрывающая их со всех сторон надхрящница. Адвентициальная оболочка (IV) трахеи образована рыхлой соединительной тканью, в которой много сосудов (5) и жировых клеток (6).

№ 22 Легкое чье?

Стенка крупного бронха состоит из нескольких оболочек. Самая внутренняя из них - слизистая оболочка; она включает: многорядный мерцательный эпителий (I.A), собственную пластинку (I.Б) (богатую эластическими волокнами) и выраженную мышечную пластинку (I.В).Вот клеточный состав эпителия крупных бронхов: реснитчатые клетки - ядра лежат в верхнем ряду, бокаловидные клетки - светлые, секретируют слизь; длинные вставочные клетки - средний ряд ядер; базальные (стволовые) клетки - нижний ряд ядер, а также клетки, присутствующие в небольших количествах, - эндокриноциты, клетки Лангерганса. Вторая оболочка крупного бронха - подслизистая основа (II): здесь в рыхлой соединительной ткани находятся слизисто-белковые железы (II.A). Третья оболочка - фиброзно-хрящевая (III). В крупных бронхах её образуют отдельные, но достаточно крупные пластинки гиалинового хряща, окружённые надхрящницей (III.A).Между хрящами надхрящница переходит в фиброзные пластинки из плотной оформленной соединительной ткани. Наружная оболочка - адвентициальная (IV). Она непосредственно переходит в соединительную ткань лёгочной паренхимы. Средний бронх. Слизистая оболочка. Эпителий (I.A) - вновь многорядный мерцательный. Собственная пластинка (I.Б) - без особенностей, зато мышечная пластинка (I.B) выражена лучше, чем в крупном бронхе. В подслизистой основе (II) по-прежнему расположены железы (II.A),только теперь они расположены не только перед хрящевыми пластинками,
но и между ними. фиброзно-хрящевая оболочка (III) представлена в данном бронхе лишь мелкими островками гиалинового или эластического хряща. Адвентициальная оболочка - обычная; Мелкий бронх. нет двух внутренних оболочек -подслизистой основы с железами и фиброзно-хрящевой оболочки (т.е. совсем нет хрящевых островков). Остаются лишь две другие оболочки: слизистая и адвентициальная (IV). Во-вторых, эпителий (I.A) слизистой оболочки является не многорядным, а двухрядным мерцательным.Терминальная бронхиола. эпителий является не двухрядным, а однорядным мерцательным; в его составе уже нет бокаловидных клеток, а вместо них появляются клетки Клара - крупные клетки, которые обезвреживают токсические вещества и секретируют ферменты, предупреждающие слипание стенок бронхиол; мышечная пластинка и складчатость внутренней поверхности; выражена слабо, адвентициальная оболочка - очень тонкая. Респираторные отделы лёгкого (ацинусы). однорядный кубический реснитчатый эпителий (I.A), тонкий слой рыхлой соединительной ткани, отдельные гладкие миоциты (I.Б).Состав эпителия: секреторные клетки Клара; реснитчатые клетки, каёмчатые (щёточные) клетки.альвеолы: имеют вид тонкостенных пузырьков разнообразной формы. Состав стенки: однослойный плоский эпителий (на базальной мембране).

№ 23 Легкое кошки

Легкое(малое ув.)

1)Альвеолы

2)Межальвеолярные перегородки

3)Респираторная бронхиола

5)Кровеносные сосуды

6)Утолщения в стенках между альвеолами «Пуговка»

7)Альвеолярные ходы

8)Альвеолярные мешки

Ацинус – Респираторный отдел, включающий в себя: Респираторные бронхиолы 1-ого,2-ого и 3-ого порядков; Альвеолярные ходы; Альвеолярные мешочки; Альвеолы.

Респираторные бронхиолы – главная особенность, в их стенку открываются альвеолы.

Состав: однорядный кубический эпителий, тонкая пластинка соед. Ткани, отдельные гладкие миоциты,.

Альвеолы – ключевой компонент ацинусов, в которых и происходит газообмен. Состоят из: 1 – однослойного плоского эпителия (альвеоциты 1-ого и 2-ого порядка), 2 – РВСТ.

· Альвеоциты 1-ого порядка – составляют 95% от всех и осуществляют газообмен через аэрогематический барьер

· Альвеоциты 2-ого порядка – являются секреторными, выделяют сурфактант, предотвращающий «слипание» альвеол.

· Альвеолярные макрофаги - фагоцитируют избыток сурфактанта, инородные частицы, клетки крови попавшие в просвет альвеол

· Липофибробласты – трофическая функция, поставляют липиды для синтеза сурфактанта

· Плазматические клетки – синтез иммуноглобулинов, выделяющихся на поверхность сурфактанта

· Тучные клетки – аналог базофилов крови, выделяют гистамин и серотонин, учавствуют в аллергических реакция

Аэрогематический барьер:

1) Сурфактант альвеолы

2) Альвеоциты 1-ого порядка

3) Базальная мембрана альвеолы

4) Интерстиций

5) Базальная мембрана капилляра

6) Эндотелеоцит капилляра

№ 24 Молочная железа

В каждой железе содержится 15-20отдельных желёзок, или долек, которые разделены прослойками соединительной (5) ткани и скоплениями жировых клеток. В лактирующей железе концевые отделы включают два компонента: альвеолы (1) - полые мешочки, заполненные секретом, и отходящие от них млечные альвеолярные ходы (2).Стенка альвеолы образована одним слоем лактоцитов (1.А) - клеток кубической формы, имеющих круглые ядра и лежащих на базальной мембране.Местами в стенке находятся и миоэпителиальные клетки (1.Б): они окружают альвеолу снаружи, охватывая её своими отростками, и отличаются палочковидными ядрами.В просвете альвеол - капли секрета (1.В).

Клетки, образующие млечный альвеолярный ход (2), тоже лежат в один слой.

Млечные альвеолярные ходы переходят в разветвлённые внутридольковые протоки (3), а те - в междольковые протоки (4).Они выстланы кубическим и призматическим эпителием.

№ 26 Гипофиз человека

Гипофиз имеет три доли: переднюю (I), очень узкую промежуточную (II),которая вместе с предыдущей составляет аденогипофиз, а также заднюю долю (III), или нейрогипофиз.При используемой здесь окраске ядра клеток окрашиваются в оранжевый цвет, а коллагеновые волокна - в синий.

все три доли имеют различное строение: в передней (I) преобладают клетки, в промежуточной (II) - обширные прослойки соединительной ткани (и псевдофолликулы), Питуициты (1) - мелкие глиальные клетки с многочисленными отростками, образующие строму задней доли. 2. Многочисленные кровеносные сосуды (2), среди которых преобладают капилляры.3. а) Аксоны (3) нейросекреторных клеток гипоталамуса:

а в задней доле (III) относительно мало и клеток, и стромы.

Передняя доля: компоненты. Соединительнотканная строма. С поверхности гипофиз покрыт капсулой из плотной волокнистой соединительной ткани.От неё вглубь передней доли отходят узкие прослойки рыхлой соединительной ткани (2).В этих прослойках находятся многочисленныесинусоидные капилляры (3).

Последние (наряду с капиллярами средней доли) составляют вторичную капиллярную сеть портальной системы гипофиза, с помощью которой либерины и статины гипоталамуса попадают к своим клеткам-"мишеням" - клеткам железистого эпителия аденогипофиза, а гормональные продукты этого эпителия выходят в кровь.

клетки железистого эпителия (1), или секреторные клетки, - основной компонент передней доли.

Средняя доля вырабатывает 2 гормона: меланоцитостимулирующий гормон и липотропин.

После этого секрет выделяется в пространство между клеток, что приводит к образованию характерных структур - псевдофолликулов, или фолликулоподобных кист (1).Стенки последних образованы слоем секреторных клеток (1.А). Между псевдофолликулами расположены обширные прослойки соединительной ткани (2).

В задней доле гипофиза нет секреторных клеток. это лишь место, куда спускаются аксоны из супраоптического и паравентрикулярных ядер гипоталамуса и где гормоны этих ядер (АДГ и окситоцин) через аксовазальные синапсы попадают в кровь большого круга кровообращения. Имеются же следующие три компонента.- Питуициты (1) - мелкие глиальные клетки с многочисленными отростками, образующие строму задней доли. Многочисленные кровеносные сосуды (2), среди которых преобладают капилляры. Аксоны (3) нейросекреторных клеток гипоталамуса:

№ 27 Щитовидная железа

Щитовидная железа состоит из нескольких долей. Снаружи железа покрыта соединительнотканной капсулой, от которой отходят прослойки, делящие железу на дольки. В дольках же находятся железистые (секреторные) клетки, которые образуют структуры двух видов. - Фолликулы (1): это преобладающие структуры железы; их стенку составляет один слой клеток на базальной мембране, внутри фолликулов содержится гомогенный коллоид (2).Экстрафолликулярный эпителий (3): это компактные скопления клеток вне фолликулов. нередко в препарате щитовидной железы оказывается и паращитовидная железа (I) - одна или несколько. Эндокриноциты: Первый тип клеток - фолликулярные эндокриноциты, или тироциты : они составляют большинство железистых клеток; в фолликуле образуют всю внутреннюю поверхность его стенки; продуцируют йодсодержащие гормоны (тироксин и трийодтиронин). Второй тип клеток - парафолликулярные эндокриноциты , или кальцитониноциты : их доля в общем числе железистых клеток невелика; если они находятся в фолликуле, то тоже (как и тироциты) прилегают к базальной мембране, но не достигают своей апикальной частью просвета фолликула; образуют кальцитонин - гормон, понижающий содержание Са 2+ в крови.

№ 28 Околощитовидная железа

У человека - 4 паращитовидные железы, каждая из которых покрыта соединительнотканной капсулой. От капсулы отходят прослойки рыхлой соединительной ткани (1); они составляют строму железы и содержат многочисленные кровеносные сосуды, среди которых преобладают капилляры. Клетки железистого эпителия называются паратироцитами (3). Паратироциты образуют тяжи и группы, лежащие между указанными прослойками соединительной ткани. Выделяют два вида секреторных клеток (3).

Главные паратироциты: имеют базофильную цитоплазму; образуютпаратгормон , повышающий содержание Са 2+ в крови; в зависимости от содержания секреторных гранул, могут быть светлыми (гранул мало) и тёмными.

Оксифильные паратироциты: по одной версии, эти клетки - лишь одно из функциональных состояний главных паратироцитов; по другой версии, в них образуется антагонист паратгормона - кальцитонин, понижающий содержание Са 2+ в крови (и образующийся также в щитовидной железе.

№ 29 Надпочечник

Снаружи надпочечник покрыт соединительнотканной капсулой (1). От неё отходят тонкие прослойки вглубь железы. В капсуле и прослойках находятся кровеносные сосуды.

Под капсулой в органе различают две части: корковое вещество (2А-2В) - здесь образуются гормоны стероидной природы (кортикостероиды ) и мозговое вещество (3), где синтезируются адреналин и норадреналин.

кора надпочечников подразделяется на три зоны: клубочковую (2А) (самую поверхностную), пучковую (2Б) и сетчатую (2В), которая прилежит к мозговому веществу.

Кора надпочечников

Клубочковая зона (2А): клетки образуют округлые скопления - клубочки, а синтезируют мннералокортикоидный гормон - альдостерон.

Пучковая зона клетки организованы в длинные пучки, ориентированные перпендикулярно поверхности;

Сетчатая зона клетки более мелкие, чем в пучковой зоне; образуют рыхлую сеть вблизи мозгового вещества, продуцируют андрогенный гормон - андростендиол.

Мозговое вещество отличается от соседней сетчатой зоны коры следующими признаками: железистые клетки - крупней и более базофильны, между ними - много синусоидных капилляров и относительно крупных венул.


Похожая информация.


Импульсы, вызывающие сокращения миокарда, возникают и проводятся по проводящей системе сердца. В норме импульсы возникают в синусовом узле, распространяются по обоим предсердиям, а затем через АВ-узел, по пучку Гиса, его ножкам и волокнам Пуркинье проводятся к сократительному миокарду.

Схематическое строение проводящей системы сердца:

1. – синусовый узел;

2. – передний предсердный тракт;

3. – пучек Бахмана;

4. – средний предсердный тракт;

5. – задний предсердный тракт;

6. – атриовентрикулярный узел;

7. – ствол пучка Гиса;

8. – левая ножка пучка Гиса;

9. – передняя ветвь левой ножки пучка Гиса;

10. - передняя ветвь левой ножки пучка Гиса;

11. – правая ножка пучка Гиса;

12. – волокна Пуркинье;

13. – пучки Кента;

14. – волокна Махейна;

15. – пучок Джеймса;

1) Синусовый узел (узел Киса-Флека) расположен субэпикардиально в верхней части правого предсердия (ПП) между устьями полых вен. В синусовом узле идентифицировано 2 вида клеток: Р-клетки (специфические нейроны, обладающие способностью к генерации электрических импульсов для возбуждения миокарда) и Т-клетки (клетки, расположенные по периферии синусового узла, обладающие способностью к проведению электрических импульсов к миокарду предсердий).

Синусовый узел – это автоматический центр I порядка, вырабатывающий 60-80 импульсов в минуту.

Возбуждение синусного узла не отображается на обычной ЭКГ. После латентного периода (несколько сотых долей секунды) импульс из синусного узла достигает миокарда предсердий.

2) При распространении возбуждения по предсердиям:

- тракт Бахмана (передний путь) проходит по передней стенке ПП и у межпредсердной перегородки (МПП) разделяется на 2 ветви: первая к АВ-узлу, вторая к левому предсердию (ЛП) (с задержкой импульсов не 0,02 с);

- тракт Венкебаха (средний путь) проходит по МПП к АВ-узлу;

- тракт Торреля (задний путь) проходит по нижней части МПП к АВ-узлу с распространением волокон к стенке ПП.

В норме распространение возбуждения проходит по более коротким пучкам Бахмана и Венкебаха. Скорость прохождения возбуждения по предсердиям – 1 м/с.

В предсердиях также имеются источники ритма, в норме подавляемые активностью синусного узла. Если же они проявляются, то способны вырабатывать 50-60 импульсов в минуту. Это автоматический цент II порядка.

3) Атриовентрикулярный узел (узел Ашоффа-Тавара), расположен в правой части ПП справа от МПП, радом с устьем коронарного синуса, вдаваясь в перегородку между предсердиями и желудочками. Основная функция АВ-узла – «фильтрация» подходящик к нему импульсов за счет электрофизиологических особенностей его проводящей ткани. Прохождение возбуждения по АВ-узлу длиться в среднем 0,08 с, скорость его – 5-20 см/с. В норме АВ-узел пропускает до 200 импульсов. Нижняя часть АВ-узла, утончаясь переходит в пучок Гиса.



4) Пучок Гиса (АВ-пучок) состоит из двух частей: проксимального отдела («пенетрирующая часть» пучка Гиса), не имеющая контакта с сократительным миокардом и поэтому мало чувствительна к поражению коронарных артерий, и дистального отдела («мембранозная», «ветвящаяся часть» пучка Гиса). Скорость проведения импульсов в пучке Гиса составляет 1 м/с.

5) АВ-соединение (АВ-область) состоит из АВ-узла и прилегающих к нему в нижних отделах предсердий и в начальной части пучка Гиса клеток, обладающих функцией автоматизма.

АВ-соединение – это автоматический центр II порядка со способностью генерации импульсов 40-60 в минуту.

6) Правая и левая ножка пучка Гиса – пучок Гиса разделяется на две ножки (правую и левую), левая образует 2 ветви – переднюю и заднюю. Скорость проведения возбуждения в ветвях и в ножках пучка Гиса – 3-4 м/с.

В ножках пучка Гиса и в их разветвлениях имеются клетки, обладающие функцией автоматизма. Это автоматический центр III порядка, вырабатывающий 15-40 импульсов в минуту.

7) Волокна Пуркинье пронизывают весь миокард. Поступающий по ним импульс вызывает возбуждение и сокращение мышц желудочков сердца. Скорость распространения возбуждения по волокна Пуркинье и миокарду желудочков составляет 4-5 м/с.

Волокна Пуркинье – это автоматический цент III порядка со способностью генерации импульсов 15-30 в минуту.

Таким образом, автоматическим центром (АЦ) I порядка является синусовый узел, АЦ II и III порядка проявляют автоматическую функцию только в патологических условиях. Автоматические центры III порядка становятся водителями ритма только при одновременном поражении АЦ I и II или значительном повышении автоматизма центра III порядка.

В норме только один водитель ритма – синусовый узел – вырабатывает импульсы для возбуждения миокарда.

8. Аномальные дополнительные пути проведения между предсердиями и желудочками – так называемые «обходные АВ-пути проведения возбуждения» - состоят из пучков мышечных клеток (остатков эмбриональных АВ-соединений), напоминающих по структуре миокард предсердий, и могут располагаться практически в любой точке предсердно-желудочковой борозды.

Основные добавочные пути проведения (Кушаковский М.С., 1992):

- пучки Кента ("предсердно-желудочковые соединения») расположены параллельно АВ-соединению справа или слева от него и чаще всего служат анатомическим субстратом синдрома WPW;

- волокна Махейма двух типов (нодовентрикулярное соединение между АВ-узлом и правой стороной межжелудочковой перегородки и нодофасцикулярный тракт, между АВ-узлом и разветвлениями правой ножки пучка Гиса);

- «АВ-узловой шунт» задний межузловой тракт Джеймса (атрионодальный тракт, соединяющий синусовый узел с нижней частью АВ-узла). Считается, что синдром укороченного PQ(PR), или синдром CLC, является следствием проведения возбуждения по пучку Джеймса. В настоящее время предполагается, что тракт Джеймса имеется у всех людей, но обычно не функционирует (Кушаковский М.С., 1992).

Наше сердце - это мышца, которая имеет совершенно уникальный механизм сокращения. Внутри него расположена сложная система специфических клеток (водителей ритма), которая имеет многоуровневую систему контроля работы. В нее в том числе входят и волокна Пуркинье. Они располагаются в миокарде желудочков и отвечают за их синхронное сокращение.

Общая анатомия проводящей системы

Проводящая система сердца условно поделена анатомами на четыре части. К первой части относится синусо-предсердный (синоатриальный) узел. Он представляет собой соединение трех пучков клеток, которые генерируют импульсы с частотой восемьдесят - сто двадцать раз в минуту. Такая скорость сокращений сердца позволяет поддерживать достаточную циркуляцию крови в организме, насыщение ее кислородом и скорость обмена веществ.

Если по каким-то причинам первый водитель ритма не может выполнять свои функции, в дело вступает атриовентрикулярный (предсердно-желудочковый) узел. Он располагается на границе в срединной перегородке. Это скопление клеток задает частоту сокращений в интервале от шестидесяти до восьмидесяти ударов и считается водителем ритма второго порядка.

Следующий уровень проводящей системы - это пучок Гиса и волокна Пуркинье. Они располагаются в межжелудочковой перегородке и оплетают верхушку сердца. Это дает возможность быстро распространять электрические импульсы по миокарду желудочков. Скорость генерирования варьируется от сорока до шестидесяти раз в минуту.

Кровоснабжение

Части проводящей системы, которые располагаются в предсердиях, получают питательные вещества из обособленных источников, отдельно от остального миокарда. Синоатриальный узел питают одна или две мелких артерии, которые проходят в толще стенок сердца. Особенность заключается в наличии непропорционально крупной артерии, которая проходит через середину узла. Это ветка правой Она, в свою очередь, дает много мелких ответвлений, которые образуют плотную артериально-венозную сеть на этом участке ткани предсердия.

И волокна Пуркинье тоже получают питание от ветвей правой венечной артерии (межжелудочковая артерия) или непосредственно от нее самой. В некоторых случаях кровь может поступать в эти структуры от огибающей артерии. Здесь тоже формируется густая сеть капилляров, которые плотно оплетают кардиомиоциты.

Клетки первого типа

Различия клеток, которые входят в проводящую систему, связаны с тем, что они выполняют разные функции. Выделяют три основных типа клеток.

Ведущими водителями ритма являются П-клетки или клетки первого типа. Морфологически, это небольшие мышечные клетки, имеющие крупное ядро и много длинных отростков, переплетенных между собой. Несколько соседних клеток рассматриваются как кластер, объединенный общей базальной мембраной.

Для генерации сокращений во внутренней среде П-клеток расположены пучки миофибрилл. Эти элементы занимают не менее четверти от всего пространства цитоплазмы. Другие органеллы беспорядочно расположены внутри клетки и их меньше, чем в обычных кардиомиоцитах. А трубочки цитоскелета, наоборот, располагаются плотно и поддерживают форму водителей ритма.

Из этих клеток состоит сино-атриальный узел, но остальные элементы, в том числе и волокна Пуркинье (гистология которых будет описана ниже), имеют другое строение.

Клетки второго типа

Они также называются переходными или латентными водителями ритма. Неправильной формы, более короткие, чем обычные кардиомиоциты, но имеют большую толщину, вмещают в себя два ядра, а в клеточной стенке есть глубокие выемки. Органелл в этих клетках больше, чем в цитоплазме П-клеток.

Сократительные нити вытянуты по длинной оси клетки. Они толще и имеют много саркомеров. Это позволяет им быть водителями ритма второго порядка. Располагаются данные клетки в предсердно-желудочковом узле, а пучок Гиса и волокна Пуркинье на микропрепаратах представлены клетками третьего типа.

Клетки третьего типа

Гистологи выделили несколько видов клеток в терминальных отделах проводящей системы сердца. По рассматриваемой здесь классификации, клетки третьего типа буду иметь похожее строение с теми, которые составляют волокна Пуркинье в сердце. Они более объемные, по сравнению с другими водителями ритма, длинные и широкие. Толщина миофибрилл неодинакова на всех участках волокна, но сумма всех сократительных элементов получается больше, чем в обычном кардиомиоците.

Теперь можно сравнить клетки третьего типа с теми, которые составляют волокна Пуркинье. Гистология (препарат, полученный из тканей на верхушке сердца) этих элементов значительно отличается. Ядро имеет практически прямоугольную форму, а сократительные волокна развиты достаточно слабо, имеют много ответвлений и соединяются между собой. Кроме того, они не ориентированы четко по длине клетки и расположены с большими промежутками. Скудное количество органелл, которые расположены вокруг миофибрилл.

Различия в частоте генерируемых импульсов и скорости их проведения, требуют филогенетически разработанного механизма синхронизации процесса сокращения во всех отделах сердца.

Гистологические отличия проводящей системы от кардиомиоцитов

Клетки второго и третьего типа имеют большее количество гликогена и его метаболитов, чем обычные кардиомиоциты. Эта особенность призвана обеспечить в достаточной степени пластическую функцию и покрыть потребности клеток в питательных веществах. Ферменты, отвечающие за гликолиз и синтез гликогена, значительно активнее в клетках проводящей системы. В рабочих клетках сердца наблюдается противоположная картина. Благодаря этой особенности снижение доставки кислорода легче переносят водители ритма, в том числе и волокна Пуркинье. Препарат проводящей системы после обработки химически активными веществами показывает высокую активность с холинэсеразой и лизосомальными ферментами.

  • Кровоснабжение сердца. Питание сердца. Венечные артерии сердца.
  • Положение сердца. Типы положения сердца. Величина сердца.
  • Важную роль в ритмичной работе сердца и в координации деятельности мускулатуры отдельных камер сердца играет так называемая проводящая система сердца. Хотя мускулатура предсердий отделена от мускулатуры желудочков фиброзными кольцами, однако между ними существует связь посредством проводящей системы, представляющей собой сложное нервно-мышечное образование. Мышечные волокна, входящие в ее состав (проводящие волокна), имеют особое строение: их клетки бедны миофиб-риллами и богаты саркоплазмой, поэтому светлее. Они видимы иногда невооруженным глазом в виде светло окрашенных ниточек и представляют менее дифференцированную часть первоначального синцития, хотя по величине превосходят обычные мышечные волокна сердца. В проводящей системе различают узлы и пучки.

    1. Синусно-предсердный узел, nodus sinuatrialis , расположен в участке стенки правого предсердия, соответствующем sinus venosus холоднокровных (в sulcus terminalis, между верхней полой веной и правым ушком). Он связан с мускулатурой предсердий и имеет значение для их ритмичного сокращения.

    2. Предсердно-желудочковый узел, nodus atrioventricularis , расположен в стенке правого предсердия, близ cuspis septalis трехстворчатого клапана. Волокна узла, непосредственно связанные с мускулатурой предсердия, продолжаются в перегородку между желудочками в виде предсердно-желудочкового пучка, fasciculus atrioventricularis (пучок Гиса) . В перегородке желудочков пучок делится на две ножки - crus dextrum et sinistrum , которые идут в стенки соименных желудочков и ветвятся под эндокардом в их мускулатуре. Предсердно-желудочковый пучок имеет весьма важное значение для работы сердца, так как по нему передается волна сокращения с предсердий на желудочки, благодаря чему устанавливается регуляция ритма систолы - предсердий и желудочков.

    Следовательно, предсердия связаны между собой синусно-предсердным узлом, а предсердия и желудочки - предсердно-желудочковым пучком. Обычно раздражение из правого предсердия передается с синусно-предсердного узла на предсердно-желудочковый, а с него по предсердно-желудочковому пучку на оба желудочка.

    ПРОВОДЯЩАЯ СИСТЕМА СЕРДЦА (systema conducens cardiacum , LNH; син. сердечная проводящая система ) - комплекс анатомических образований (узлов, пучков и волокон), обладающих способностью генерировать импульс сердечных сокращений и проводить его ко всем отделам миокарда предсердий и желудочков, обеспечивая их координированные сокращения.

    Анатомия

    Рис. 1. Схематическое изображение проводящей системы сердца: 1 - ветви правой ножки атриовентрикулярного пучка; 2 - правая ножка атриовентрикулярного пучка; 3 - атриовентрикулярный узел; 4 - передний межузловой пучок; 5 - задний межузловой пучок; 6 - пучки, направленные к ушку правого предсердия и нижней полой вене; 7 - синусно-предсердный узел; 8 - пучок, идущий к верхней полой вене; 9 - задний межвенозный пучок (обозначен пунктиром); 10 - пучок, идущий к левому предсердию и устьям легочных вен; 11 - пучок, идущий к ушку левого предсердия; 12 - атриовентрикулярный пучок; 13 - левая ножка атриовентрикулярного пучка.

    В П. с. с. выделяют две взаимосвязанные части: синусно-предсердную и атриовентрикулярную (предсердно-желудочковую). К синусно-предсердной части относят синусно-предсердный узел (nodus sinuatrialis) с отходящими от него пучками сердечных проводящих миоцитов. Атриовентрикулярная часть представлена атриовентрикулярным узлом (nodus atrioventricularis), пучком Гиса, или атриовентрикулярным пучком (предсердно-желудочковый пучок, Т.; fasc. atrioventricularis) с его левой и правой ножками и периферическими разветвлениями - проводящими волокнами Пуркинье (myofibrae conducentes purkinjienses). На рис. 1 представлена схема проводящей системы сердца.

    Эмбриология

    Формирование основных элементов П. с. с. у эмбриона начинается на стадии трубчатого сердца, в, к-ром, по данным Венинка (А. С. G. Wenink, 1976), кроме будущего сократительного миокарда, имеются еще четыре морфологически специализированных мышечных кольца: бульбовентрикулярное, атриовентрикулярное, синоатриальное и трункобульбарное. Из этих колец в процессе петлеобразования и формирования камер сердца развиваются все компоненты П. с. с. Бульбовентрикулярное кольцо участвует в образовании атриовентрикулярного пучка и его ножек, атриовентрикулярное - в формировании атриовентрикулярного узла и пучка, синоатриальное кольцо дает начало синусно-предсердному и атриовентрикулярному узлам. Из трункобульбарного кольца формируются структуры, функционирующие только в сердце эмбрионов.

    Распространенная ранее теория Молла (F. P. Mall, 1912), согласно к-рой П. с. с. представляет остаток аурикулярного канала, в настоящее время признана несостоятельной.

    Синусно-предсердный узел (nodus sinuatrialis), описанный в 1906 г. Кисом и Флеком (A. Keith, М. Flack), является генератором импульсов возбуждения сердечных сокращений (см. Автоматия). Он расположен на верхней поверхности правого предсердия между устьем верхней полой вены и ушком правого предсердия. Узел всегда выявляется макроскопически. Длина его 8-26 мм, ширина 4-13 мм, толщина 1-3 мм. Связанные с узлом пучки сердечных проводящих миоцитов проводят возбуждение к миокарду различных отделов предсердий и атриовентрикулярному узлу. Выделяют пучки, направленные к верхней и нижней полым венам, задний межвенозный пучок, описанный в 1906-1907 гг. Венкебахом (К. F. Wenckebach), передний и задний межузловые пучки, последний был описан в 1909 г. Торелем (Ch. Thorel). Пучок, проводящий возбуждение от узла к левому предсердию и устьям легочных вен, описал в 1913 г. Ю. Тандлер, а пучок, направленный к ушку левого предсердия, обнаружил в 1916 г. Бахманн (J. G. Bachmann). Размеры и положение пучков индивидуально изменчивы, они не всегда выявляются макроскопически, хотя всегда могут быть обнаружены с помощью гистологических методов исследования (см.).

    Рис. 2. Макропрепарат сердца с отпрепарированной левой ножкой пучка Гиса (полость левого желудочка вскрыта): левая ножка (1) пучка Гиса разделяется на переднюю (2), две промежуточные (3) и заднюю (4) ветви.

    Атриовентрикулярный узел (nodus atrioventricularis) был описан в 1906 г. Таварой (S. Tawara) и Л. Ашоффом. Он располагается в правом фиброзном треугольнике у передневерхней части устья синуса полых вен ниже прикрепления перегородочной створки трехстворчатого клапана. Атриовентрикулярный узел, так же как пучок Гиса и его ножки, всегда выявляется макроскопически (рис. 2). Форма узла чаще округлая. Длина его 3-15 мм, ширина 1-7 мм, толщина 0,5-2 мм. От узла отходит пучок Гиса, который проникает через правый фиброзный треугольник в перепончатую часть межжелудочковой перегородки, разделяясь у верхнего края ее мышечной части на левую и правую ножки. Часть пучка на протяжении от узла до начала деления на ножки называют стволом (truncus), длина его 3-20 мм. Положение пучка в межжелудочковой перегородке индивидуально изменчиво. Левая ножка (crus sinistrum) пучка Гиса длиной 5-27 мм и шириной у места отхождения от ствола 1,5-15 мм располагается под эндокардом на левой поверхности межжелудочковой перегородки и разделяется на одном уровне на 2-4 ветви (rr. cruris), которые переходят в проводящие мышечные волокна Пуркинье. Правая ножка (crus dextrum) располагается под эндокардом на правой поверхности межжелудочковой перегородки в виде одного, значительно более тонкого, чем левая ножка, ствола, от к-рого на всем протяжении отходят ветви к миокарду правого желудочка.

    Описаны также добавочные проводящие тракты - пучки Кента, Джеймса, волокна Махейма, которые макроскопически не выявляются.

    Кровоснабжение

    Синусно-предсердный узел получает артериальную кровь из ветви синусно-предсердного узла (r. nodi sinuatrialis), отходящей чаще от правой коронарной (венечной, Т.) артерии, реже от огибающей ветви (r. circumflexus) левой коронарной артерии. Капиллярная сеть, образованная артериолами, отходящими от ветви синусно-предсердного узла, ориентирована по ходу волокон. Посткапиллярные венулы, образующие густую сеть, формируют 1-3 вены диаметром до 0,5 мм, впадающие в вены стенки верхней полой вены, в вены ушка правого предсердия. Пучки сердечных проводящих миоцитов, связанные с синусно-предсердным узлом, васкуляризируются от близлежащих ветвей коронарных артерий. Кровь в атриовентрикулярный узел поступает из ветви атриовентрикулярного узла (r. nodi atrioventricularis), отходящей чаще от правой коронарной артерии и очень редко от огибающей ветви (r. circumflexus) левой коронарной артерии. Отток венозной крови из узла происходит по посткапиллярам и венулам в дренирующие вены, идущие к венечному синусу сердца (sinus coronarius) и к средней вене сердца (v. cordis media). К стволу атриовентрикулярного пучка и его ножкам подходят мелкие артерии и артериолы, идущие от артерии, снабжающей кровью атриовентрикулярный узел, а также от первой перегородочной межжелудочковой ветви (r. mterventricularis septalis I) и передней межжелудочковой ветви (r. interventricularis anterior) левой коронарной артерии. Плотность артериол в атриовентрикулярном узле в 10 раз меньше, чем в пучке. Венозный отток из узла и пучка осуществляется по мелким венам к большой вене сердца (v. cordis magna). Артериолы и венулы в атриовентрикулярном пучке расположены параллельно сердечным проводящим миоцитам. По данным Ван-дер-Хауарта, Струбандта, Верхаге (L. G. Van der Hauwaert, R. Stroobandt, L. Verhaeghe, 1972), анастомозы между сосудистыми образованиями П. с. с. и сосудами межжелудочковой перегородки отсутствуют.

    Лимфоотток

    Лимф. сосуды и капилляры в атриовентрикулярном узле обнаружил в 1909 г. Карран (E. J. Curran), а в 1976 г. Элиш ка и Элишкова (О. Eliska, М. Eliskova) нашли их в синусно-предсердном узле. По лимф. сосудам лимфа оттекает из П. с. с. к трахеобронхиальным или средостенным лимф. узлам.

    Иннервация

    П. с. с. иннервируется многочисленными симпатическими, парасимпатическими и чувствительными нервными волокнами интракардиального нервного сплетения (см. Внутрисердечная нервная система ; Сердце , анатомия).

    Гистология

    В состав образований П. с. с., помимо специализированных кардиомиоцитов, входят нервные элементы (нервные стволы различной толщины, состоящие из миелиновых и безмиелиновых нервных волокон, нервные окончания), соединительная ткань с сосудами. В отличие от сократительного миокарда для П. с. с. характерно количественное преобладание соединительнотканных и нервных элементов над мышечными и сосудистыми. По данным Труэкса (R. Truex) с соавт. (1974), кардиомиоциты П. с. с. при общепринятых гистол. окрасках выглядят светлее, чем клетки сократительного миокарда и отличаются от них по размерам. С помощью электронно-микроскопических исследований установлено, что в этих клетках хорошо развиты комплекс Гольджи (см. Гольджи комплекс), локализующийся около ядра или субсарколеммально, зернистая и незернистая эндоплазматическая сеть (см. Эндоплазматический ретикулум), рибосомы (см.); имеются мелкие округлые митохондрии (см.), небольшое количество лизосом (см.), содержатся гранулы гликогена. Характерной особенностью специализированных кардиомиоцитов является наличие туннелевидных инвагинаций сарколеммы, содержащих соединительнотканные и нервные элементы, выраженных субсарколеммальных цистерн, комплекса миофиламентов с полирибосомами. В зависимости от размера, формы клеток, количества и положения миофибрилл выделяют четыре типа специализированных кардиомиоцитов. Клетки I, II, III типов обнаружены в составе П. с. с. практически у всех млекопитающих, в т. ч. и у человека. Они имеют меньший размер, чем клетки сократительного миокарда. К клеткам I типа относят кардиомиоциты веретеновидной формы, которые по сравнению с кардиомиоцитами сократительного миокарда содержат меньшее количество неправильно ориентированных миофибрилл. Кардиомиоциты II типа имеют неправильную отростчатую форму, содержат примерно такое же количество миофибрилл, как и клетки сократительного миокарда, но в отличие от последнего миофибриллы в кардиомиоцитах II типа расположены беспорядочно.

    К кардиомиоцитам III типа относят клетки веретеновидной формы с малым количеством упорядоченно расположенных вдоль длинной оси клетки миофибрилл и большим количеством гранул гликогена. Клетки IV типа (клетки Пуркинье) встречаются лишь у некоторых видов животных. У большинства млекопитающих и человека имеются клетки, подобные клеткам Пуркинье, которые сходны с клетками Пуркинье по функциональным показателям.

    Разные части П. с. с. содержат различные типы специализированных кардиомиоцитов. Синусно-предсердный узел состоит из клеток I и II типов, атриовентрикулярный узел - из клеток II и III типов, пучок Гиса содержит клетки всех типов, ножки этого пучка и его концевые разветвления состоят из клеток III типа и клеток, подобных клеткам Пуркинье, или только из последних.

    Различают несколько видов контактов между кардиомиоцитами П. с. с. С помощью вставочных дисков и нексусов контактируют между собой гл. обр. клетки II типа, а также клетки III типа. Между клетками I типа эти контакты редки, для них характерны простые контакты. Простые контакты встречаются также и между всеми другими типами кардиомиоцитов П. с. с.

    Функциональное значение

    П. с. с. определяет частоту, последовательность и силу сокращений сердца. Пусковым механизмом сокращения миокарда является импульс возбуждения, возникающий в специализированных пейсмекерных (см. Пейсмекер) кардиомиоцитах I типа, входящих в состав синусно-предсердного узла. Этот импульс возникает в узле через равные промежутки времени от 60 до 80 раз в 1 мин. В норме синусно-предсердный узел является водителем сердечного ритма. Из узла импульс возбуждения распространяется со скоростью 0,8-1 м/сек по пучкам сердечных проводящих миоцитов к кардиомиоцитам сократительного миокарда предсердий и к атриовентрикулярному узлу. В проведении импульса по пучкам участвуют медленнопроводящие кардиомиоциты II типа. Из атриовентрикулярного узла импульс возбуждения со скоростью 1 - 1,5 м/сек проходит по быстропроводящим кардиомиоцитам III типа и пуркиньеподобным клеткам пучка Гиса и его ножек и затем со скоростью 3-5 м/сек- по их ветвям и проводящим волокнам Пуркинье к кардиомиоцитам сократительного миокарда желудочков сердца (см. также Сердце , физиология) .

    Патология

    Пороки развития П. с. с. могут возникать вследствие нарушения формирования межжелудочковой перегородки, при этом двойной контакт бульбовентрикулярного и атриовентрикулярного колец может привести к образованию двух (переднего и заднего) раздельных атриовентрикулярных узлов. Аномальные связи между другими специализированными мышечными кольцами приводят к возникновению ряда дополнительных проводящих структур, описанных в 1976 г. Венинком у некоторых животных и человека: ретроаортального узла, узлоподобных структур в межпредсердной перегородке, проводящих элементов атриовентрикулярного кольца. Исследования Андерсона (R. Н. Anderson) с соавт. (1977) показали, что нарушение нормальной связи предсердного и желудочкового миокарда при отделении атриовентрикулярного узла от одноименного пучка может привести к врожденной полной блокаде сердца, а наличие дополнительных проводящих путей (пучок Кента) между предсердиями и желудочками, идущих в обход атриовентрикулярного пучка, может способствовать развитию синдрома Вольффа - Паркинсона - Уайта (см. Вольффа-Паркинсона-Уайта синдром). При наличии пучка Джеймса, соединяющего миокард предсердия со стволом атриовентрикулярного пучка, или волокон Махейма, соединяющих ствол атриовентрикулярного пучка с миокардом желудочков, могут развиваться различные формы синдрома преждевременного возбуждения желудочков.

    Приобретенная патология П. с. с. может возникать при функциональных или органических ее повреждениях (воспалении, ишемии, некрозе, дистрофии). В зависимости от уровня, степени и характера поражения П. с. с. развиваются различного типа нарушения нормальной координации сокращений между различными участками миокарда или отделами сердца (см. Аритмии сердца , Блокада сердца , Мерцательная аритмия , Пароксизмальная тахикардия , Сердце , патология, Экстрасистолия),

    Библиография: Братанов В. С. Индивидуальные и возрастные особенности топографии предсердно-желудочковой проводящей системы человека, Вестн. хир., т. 105, № 10, с. 22, 1970; Михайлов С. С. и Ч укбар А. В. Топография элементов проводящей системы сердца человека, Арх. анат., гистол, и эмбриол., т. 44, № 6, с. 56, 1982; У м о-в и с т В. Н. Проводящая система при врожденных дефектах перегородок сердца, Киев, 1973, библиогр.; X у б у-тия Б. И., Ермолова 3. С. и Телятников С. С. Хирургическая анатомия проводящей системы сердца, Грудн. хир., № 1, с. 41, 1975; Ч е р в о-в а И. А. и Павлович Е. Р. Морфология основных отделов проводящей системы сердца крысы, Арх. анат., гистол, и эмбриол., т. 77, № 8, с. 67, 1979; А п-d er son R. Н. а. о. Congenitally complete heart block, developmental aspects, Circulation, v. 56, p. 90, 1977; В 1 о о г С. М. Cardiac pathology, Philadelphia, 1978; Brechenmacher C. Atrio-His bundle tracts, Brit. Heart J.* v. 37, p. 853, 1975; В u г с h e 1 1 H. B. In support of Kent, J. thorac. cardiovasc. Surg., v. 79, p. 637, 1980; The conduction system of the heart, Structure, function and clinical implications, ed. by H. J. Wel-lens a. o., p. 55, Leiden, 1976; D a-v i e s M. J. Pathology of conducting tissue of the heart, L., 1971; E 1 i s k a O. a. E 1 i s k о у a M. Venous circulation of the human cardiac conduction system, Brit. Heart J., v. 42, p. 508, 1979; они ж e, Lymphatic drainage of the ventricular conduction system in man and in the dog, Acta anat., v. 107, p. 205, 1980; Gardner E. a. O’ R a h i 1 1 у R. The nerve supply and conducting system of the human heart at the end of the embryonic period proper, J. Anat., v. 121, p. 571, 1976; Michailow S. Neue anatomische Forschungsergebnisse vom Nerven- und Reizleitungssystem des Herzens, S. 84, Stuttgart, 1974; Navaratnam V. The human heart and circulation, L.- N. Y., 1975; Osterwalder B. a. Schneider J. Morphologische Untersuchungen am menschlichen Reizleitungs, в кн.: Probleme der Medizin in der Ud SSR, hrsg. v. V. Parin u. L. Staroselsij, system, Schweiz, med. Wschr., S. 953, 1976; Sherf L. a. James Th. N. Fine structure of cells and their histologic organization within internodal pathways of the heart, clinical and electrocardiographic implications, Amer. J. Cardiol., v. 44, p. 345, 1979; Van der Hauwaert L. G., Stroobandt R. a. Yerhaeghe L. Arterial blood supply of the atrioventricular node and main bundle, Brit. Heart J., v. 34, p. 1045, 1972; Wenink A. C. G. Development of the human cardiac conducting system, J. Anat., v. 121, p. 617, 1976.

    С. С. Михайлов, И. А. Червова.

    ← Вернуться

    ×
    Вступай в сообщество «sinkovskoe.ru»!
    ВКонтакте:
    Я уже подписан на сообщество «sinkovskoe.ru»