Пути развития апоптоза. Апоптоз - функции, механизмы

Подписаться
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:

Апоптоз - явление программируемой клеточной смерти, сопровождаемой набором характерных цитологических признаков (маркеров апоптоза) и молекулярных процессов, имеющих различия у одноклеточных и многоклеточных организмов.

Апоптоз - форма гибели клетки, проявляющаяся в уменьшении её размера, конденсации и фрагментации хроматина, уплотнении наружной и цитоплазматической мембран без выхода содержимого клетки в окружающую среду.

Регуляция апоптоза

Апоптоз это генетически контролируемая смерть клетки.

Апоптоз может регулироваться:

внешними факторами;

автономными механизмами.

Воздействие внешних факторов . Апоптоз может регулироваться действием многих внешних факторов, которые ведут к повреждению ДНК. При невосстановимом повреждении ДНК путем апоптоза происходит элиминация потенциально опасных для организма клеток. В данном процессе большую роль играет ген супрессии опухолей р53. К активации апоптоза также приводят вирусные инфекции, нарушение регуляции клеточного роста, повреждение клетки и потеря контакта с окружающими или основным веществом ткани. Апоптоз – это защита организма от персистенции поврежденных клеток, которые могут оказаться потенциально опасными для многоклеточного организма.

Автономный механизм апоптоза . При развитии эмбриона различают три категории автономного апоптоза: морфогенетический, гистогенетический и филогенетический.

Морфогенетический апоптоз участвует в разрушении различных тканевых зачатков. Примерами являются: азрушение клеток в межпальцевых промежутках;

гибель клеток приводит к разрушению избыточного эпителия при слиянии небных отростков, когда формируется твердое небо.

гибель клеток в дорсальной части нервной трубки во время смыкания, что необходимо для достижения единства эпителия двух сторон нервной трубки и связанной с ними мезодермы. Нарушение морфогенетического апоптоза в этих трех локализациях приводят к развитию синдактилии, расщеплению твердого неба и spina bifida соответственно.

Гистогенетический апоптоз наблюдается при дифференцировке тканей и органов, что наблюдается, например, при гормональнозависимой дифференцировке половых органов из тканевых зачатков. Так, у мужчин клетками Сертоли в яичках плода синтезируется гормон, который вызывает регрессию протоков Мюллера (из которых у женщин формируются маточные трубы, матка и верхняя часть влагалища) путем апоптоза.

Филогенетический апоптоз участвует в удалении рудиментарных структур у эмбриона, например, пронефроса.

49.Понятие о канцерогенезе. Современные представления об онкогенах и их роли в опухлевом процессе.

Канцерогенез - сложный патофизиологический процесс зарождения и развития опухоли.

Онкоген - это ген, кодирующий белок, который, в случае нарушения регуляции, может вызвать образование злокачественной опухоли. Мутации, вызывающие активацию онкогенов, повышают шанс того, что клетка превратится в раковую клетку. Считается, что гены-супрессоры опухолей (ГСО) предохраняют клетки от ракового перерождения, и, таким образом, рак возникает либо в случае нарушения работы генов-супрессоров опухолей, либо при появлении онкогенов (в результате мутации или повышения активности протоонкогенов, см.ниже).

Многие клетки при появлении в них мутаций вступают в апоптоз, но в присутствии активного онкогена могут ошибочно выживать и пролиферировать. Для злокачественного перерождения клетки под действием многих онкогенов требуется дополнительная стадия, например, мутация в другом гене, факторы внешней среды (например, вирусные инфекции).

Все гены которые могут отвечать за онкогенез делят: мутаторные гены, вирусные онкогены, Протоонкогены - это обычный ген, который может стать онкогеном из-за мутаций или повышения экспрессии. Опухлевые супрессоры.

Точечные мутации, амплификация – умножение числа копий.

Папова вирусы (кольцевая ДНК) не внедряются. Ретровирусы (цепь РНК).

При реализации апоптоза условно можно выделить четыре стадии.

Инициация -> Программирование -> Реализация программы -> Удаление погибшей клетки

Стадии апоптоза Стадия инициации

На этой стадии информационные сигналы рецептируются клеткой . Патогенный агент либо сам является сигналом, либо обусловливает генерацию сигнала в клетке и его проведение к внутриклеточным регулятор-ным структурам и молекулам.

Инициирующие апоптоз стимулы могут быть трансмембранными или внутриклеточными.

Трансмембранные сигналы подразделяют на отрицательные, положительные и смешанные.

- Отрицательные сигналы : отсутствие или прекращение воздействия на клетку факторов роста, цитокинов, регулирующих деление и созревание клетки, а также гормонов, контролирующих развитие клеток. В норме действие названных выше групп БАВ на мембранные рецепторы обеспечивает подавление программы гибели клеток и нормальную их жизнедеятельность. Напротив, их отсутствие или снижение эффектов «освобождает» программу апоптоза. Так, для нормальной жизнедеятельности ряда нейронов необходимо постоянное наличие нейротрофических факторов. Их устранение или снижение эффектов на нервные клетки может привести к включению программы смерти нейрона. - Положительные сигналы в итоге генерируют запуск программы апоптоза . Так, связывание ФИО (FasL) с его мембранным рецептором CD95 (Fas) активирует программу смерти клетки. - Смешанные сигналы являются комбинацией воздействий сигналов первой и второй групп. Так, апоптозу подвергаются лимфоциты, простимулированные митогеном, но не проконтактировавшие с чужеродным Аг. Погибают и те лимфоциты, на которые воздействовал Аг, но не получившие других сигналов, например митогенного или от HLA.

Среди внутриклеточных стимулов апоптоза зарегистрированы избыток Н+, свободные радикалы липидов и других веществ, повышенная температура, внутриклеточные вирусы и гормоны, реализующие свой эффект через ядерные рецепторы (например, глюкокортикоиды).

Апоптоз: стадия инициации.

Стадия программирования

Стадия программирования (контроля и интеграции процессов апоптоза) представлена на рисунке.

На этой стадии специализированные белки либо реализуют сигнал к апоптозу путём активации исполнительной программы (её эффекторами являются цистеиновые протеазы - каспазы и эндонуклеазы), либо блокируют потенциально летальный сигнал.

Выделяют два (не исключающих друг друга) варианта реализации стадий программирования : 1) путём прямой активации эффекторных каспаз и эндонуклеаз (минуя геном клетки) и 2) опосредованной через геном передачи сигнала на эффекторные каспазы и эндонуклеазы.

Прямая передача сигнала осуществляется через адапторные белки, гранзимы и цитохром С.

Адапторные белки . В качестве адапторного белка выступает, например, каспаза-8. Так реализуют своё действие цитокины Т-лимфоцитов-киллеров в отношении чужеродных клеток, ФНО и другие лиганды CD95.

Цитохром С . Выделяясь из митохондрий, цитохром С вместе с белком Apaf-1 и каспазой-9 формирует комплекс активации (апоптосому) эффекторных каспаз. Каспаза-8 и каспаза-9 активируют эффекторные каспазы (например, каспазу-3), которые участвуют в протеолизе белков.

Гранзимы . Эти протеазы выделяют цитотоксические Т-лимфоциты, протеазы проникают в клетки-мишени через цитоплазматические поры, предварительно сформированные перфоринами. Гранзимы активируют аспартатспецифи-ческие цистеиновые протеазы клетки-мишени, подвергающейся апоптозу.

Прямая передача сигнала наблюдается обычно в безъядерных клетках, например в эритроцитах.

Апоптоз: стадия программирования.

Опосредованная передача сигнала подразумевает репрессию генов, кодирующих ингибиторы апоптоза, и активацию генов, кодирующих промоторы апоптоза.

Белки-ингибиторы апоптоза (например, продукты экспрессии антиапоптозных генов Bcl-2, Bcl-XL) блокируют апоптоз (например, путём уменьшения проницаемости мембран митохондрий, тем самым уменьшая вероятность выхода в цитозоль одного из пусковых факторов апоптоза - цитохрома С).

Белки-промоторы апоптоза (например, белки, синтез которых контролируется генами Bad, Box, антионкогенами Rb или /т53) активируют эффекторные кас-пазы и эндонуклеазы.

Под термином «апоптоз» следует понимать физиологический процесс гибели клеток, который запускается в ответ на действие физиологических сигналов или обеспечивается включением особой генетической программы. Морфологически этот процесс характеризуется уплотнением хроматина, разделением ДНК на фрагменты и изменением структуры клеточной мембраны. В итоге клетка разрушается и фагоцитируется без признаков воспаления, что практически не влияет на окружающие ткани.

Биологическая роль

Запрограммированная гибель клетки чрезвычайно важна для нормального функционирования организма.

Запрограммированная гибель клетки играет важную роль в нормальной жизнедеятельности живых организмов, она обеспечивает:

  • развитие в период эмбриогенеза;
  • регуляцию численности клеток и их состава в зрелом организме;
  • дифференцировку клеток;
  • уничтожение старых клеток, прекращающих выполнять свои функции;
  • гормональные перестройки;
  • подавление опухолевого роста;
  • выбраковку клеток с генетическими дефектами;
  • элиминацию чужеродных агентов (вирусов, бактерий, грибов и др.).

Нарушение регуляции гибели клеток приводит к развитию:

  • вирусных инфекций;
  • нейродегенеративных заболеваний ( , );
  • патологии крови ( , ).

Следует отметить, что при некоторых из них функция апоптоза снижена, а при других, наоборот, повышена.

  • Считается, что подавление апоптоза имеет большое значение для прогрессирования опухолей. Раковые клетки могут приобретать устойчивость к нему за счет усиленной экспрессии антиапоптотических факторов или в результате мутаций в генах.
  • Снижение апоптоза наблюдается при аутоиммунных процессах, когда аутоагрессивные Т-клетки не уничтожаются иммунной системой. Это приводит к повреждению собственных тканей организма.
  • Усиление апоптоза также негативно сказывается на состоянии здоровья человека. С этим может быть связана усиленная гибель костномозговых клеток-предшественниц красного и белого кроветворного ростка, следствием которой является апластическая анемия.

Таким образом апоптоз выступает общим механизмом гибели клеток, как при физиологических, так и при патологических процессах.

Механизмы развития

Запрограммированная гибель клеток проходит с последовательной сменой 3 стадий:

  1. Индукторная.
  2. Эффекторная.
  3. Деградация.

На первой стадии происходит рецепция сигнала и начальные этапы его передачи. Это осуществляется с помощью рецепторного механизма под действием внешних факторов или путем внутренней активации.

Рецепторы, запускающие апоптоз, получили название рецепторов смерти. Они имеют внутри себя специальные домены, взаимодействие с которыми индуцирует особые внутриклеточные сигналы.

Внутренний путь активации этого процесса связан с изменениями, происходящими в митохондриях. Он чувствителен к недостатку факторов роста, гормонов или цитокинов. Также влиять на него может:

  • гипоксия;
  • переохлаждение;
  • инвазия вирусов;
  • облучение;
  • свободные радикалы.

Все эти факторы способны вызывать перестройку внутренней мембраны митохондрий, в результате которой открываются поры и высвобождаются проапоптотические вещества. По своей структуре это белки, которые запускают каспазозависимый путь апоптоза и индуцируют разделение ДНК на фрагменты с конденсацией периферических участков хроматина.

В эффекторную стадию происходит активация главных ферментов апоптоза – каспаз. Они обладают протеолитической активностью и расщепляют белки по аспарагиновому остатку. В результате их деятельности в клетке происходит массивное разрушение белка и развиваются необратимые изменения.

На последней стадии реализуются основные механизмы гибели клетки. При этом активируется эндонуклеазы, деятельность которых приводит к деградации ДНК. После этого происходит реорганизация цитоскелета и преобразование клетки в апоптотические тельца, на поверхности которых появляются маркеры для фагоцитоза. На последнем этапе такие клетки поглощаются макрофагами.

Регуляция апоптоза


Нарушение апоптоза - один из факторов, повышающих риск развития СПИДа.

Каждый из механизмов апоптоза имеет свою регуляцию:

  • Митохондриальный путь регулируется белками из семейства Bcl-2. Они влияют на проницаемость мембраны митохондрий и могут ослаблять или стимулировать апоптоз. Это осуществляется путем контроля высвобождения цитохрома С.
  • Регуляция рецепторного механизма гибели клетки происходит путем контроля активности каспаз.

Апоптоз позволяет организму поддерживать физиологическое равновесие и противостоять различным внешним воздействиям. Так, каждый день в организме человека в результате запрограммированной гибели отмирают десятки миллиардов клеток, однако эти потери быстро компенсируются за счет клеточной пролиферации. Суммарная масса клеток, которые ежегодно подвергаются разрушению при апоптозе, равна массе тела человека.

Определение апоптоза. Апоптоз – феномен наследственно запрограммированной смерти клеток. Каждая клетка при своем рождении как бы запрограммирована на самоуничтожение. Условие ее жизни – блокирование этой суицидальной программы.

Апоптоз реализуется для клеток:

Старых, отживших свой срок;

Клеток с нарушениями дифференцировки;

Клеток с нарушениями генетического аппарата;

Клеток, пораженных вирусами.

Морфологические признаки апоптоза.

Сморщивание клетки;

Конденсация и фрагментация ядра;

Разрушение цитоскелета;

Буллезное выпячивание клеточной мембраны.

Особенность апоптоза – апоптоз не вызывает воспаления в окружающих тканях.Причина - сохранность мембраны и → изоляция повреждающих факторов цитоплазмы до полного завершения процесса (О 2 - , Н 2 О 2 , лизосомальные ферменты). Эта особенность – важная позитивная черта апоптоза, в отличие от некроза. При некрозе мембрана повреждается (или разрывается) сразу же. Поэтому при некрозе содержимое цитоплазмы высвобождается (О 2 - , Н 2 О 2 , лизосомальные ферменты). Возникает повреждение соседних клеток и воспалительный процесс. Важная черта апоптоза - удаление умирающих клеток происходит без развития воспаления.

Процесс апоптоза - может быть разделен на 2 (две) фазы:

1. Формирование и проведение апоптических сигналов – фаза принятия решения.

2. Демонтаж клеточных структур – эффекторная фаза.

1-я фаза – принятия решения (=формирование и принятие апоптических сигналов). Это фаза принятия стимулов для апоптоза. В зависимости от характера стимулов, может быть 2 (два) типа сигнальных путей:

1) повреждение ДНК в результате радиации, действия токсических агентов, глюкокортикоидов и т.д.

2) активация рецепторов «региона клеточной смерти» . Рецепторы «региона клеточной смерти» - это группа рецепторов на мембранах любых клеток, которые воспринимают проапоптические стимулы. Если количество и активность таких рецепторов увеличивается, то увеличивается количество апоптически гибнущих клеток. К рецепторам «региона клеточной смерти» относятся: а) TNF-R (связывается с фактором некроза опухолей и активирует апоптоз); б) Fas-R (к); в) CD45-R (связывается с антителами и активирует апоптоз).

В зависимости от типа сигнала, существует 2 (два) основных способа апоптоза: а) в результате повреждения ДНК;

б) в результате самостоятельной активации рецепторов «региона клеточной смерти» без повреждения ДНК.

2-я фаза – эффекторная (=демонтаж клеточных структур. Основные фигуранты эффекторной фазы:

Цистеиновые протеазы (каспазы);

Эндонуклеазы;

Сериновые и лизосомальные протеазы;

Протеазы, активированные Ca ++ (кальпейн)

Но! Среди них основные эффекторы демонтажа клеточных структур – каспазы.

Классификация каспаз - 3 (три) группы:

Эффекторные каспазы - каспазы 3, 6, 7.

Индукторы активации эффекторных каспаз – каспазы 2, 8, 9, 10. = активаторы цитокинов – каспазы 1, 4, 5, 13.

Эффекторные каспазы – каспазы 3, 6, 7. Это непосредственные исполнители апоптоза. Эти каспазы находятся в клетке в неактивном состоянии. Активированные эффекторные каспазы начинают цепь протеолитических событий, целью которых является «демонтаж» клетки. Их активируют индукторы активации эффекторных каспаз.

Индукторы активации эффекторных каспаз – каспазы 2, 8, 9, 10. Основные индукторы – каспазы 8 и 9 . Они активируют эффекторные каспазы. Механизм – расщепление аспарагиновых оснований с последующей димеризацией активных субъединиц. Эти каспазы при обычном состоянии в клетках неактивны, существуют в форме прокаспаз.

Активация тех или иных индукторов зависит от типа сигнального пути:

1. При повреждении ДНК задействован сигнальный путь № 1, активируется каспаза № 9.

2. При активации рецепторов клеточной смерти задействован сигнальный путь № 2, активируется каспаза № 8.

Сигнальный путь № 1 (связан с повреждением ДНК)

Повреждение ДНК

Активация гена р53 и продукция соответствующего белка

Активация проапоптических генов семейства BCL-2 (BAX и BID)

Образование белков этих генов

Активация каспазы 9

Активация каспазы 3

Сигнальный путь № 2

(связан с активацией «региона клеточной смерти»)

Лиганд + рецепторы «региона клеточной смерти»

Активация каспазы № 8

Независимая активация каспазы № 3

Активация других каспаз и протеаз

Регуляция апоптоза. Исследования последних лет привели к созданию модели апоптоза. По этой модели каждая клетка при своем рождении запрограммирована на самоуничтожение. Следовательно, условием ее жизни является блокирование этой суицидальной программы. Основная задача регуляции апоптоза – держать эффекторные каспазы в неактивном состоянии, но быстро переводить их в активную форму в ответ на минимальное действие соответствующих индукторов.

Отсюда, понятие ингибиторов и активаторов апоптоза.

Ингибиторы апоптоза (=антиапоптические факторы). К наиболее серьезным ингибиторам апоптоза относятся ростовые факторы. Другие: нейтральные аминокислоты, цинк, эстрогены, андрогены, некоторые белки.

Пример: Белки семейства IAP – подавляют активность каспаз 3 и 9. Запомнить: один из этих белков (Survin) обнаружен в опухолевых клетках. С ним связывают резистентность опухолевых клеток к химиотерапии

Активаторы апоптоза (=проапоптические факторы). Это проапоптические гены и их продукция: а) гены семейства BCL-2 (BAX и BID); б) гены Rb и P53 (запускают апоптоз, если клетка задержана механизмом checkpoint.

Резюме. Патогенез многих заболеваний, в том числе и опухолевых, связан со снижением способности клеток подвергаться апоптозу. Отсюда накопление поврежденных клеток и формирование опухоли.

ПАТОФИЗИОЛОГИЯ КЛЕТОЧНОГО ДЕЛЕНИЯ

Основное отличие деления здоровой и опухолевой клетки:

Деление здоровой клетки регулируется паракринным и эндокринным способом. Клетка подчиняется этим сигналам и делится только в том случае, если организм нуждается в образовании новых клеток данного вида.

Деление опухолевой клетки регулируется аутокринным способом. Опухолевая клетка сама образует митогенные стимуляторы и сама же делится под их влиянием. Она не отвечает на паракринные и эндокринные стимулы.

Существует 2(два) механизма опухолевой трансформации клеток:

1. Активация онкогенов.

2. Инактивация генов-супрессоров.

АКТИВАЦИЯ ОНКОГЕНОВ

Прежде всего 2 (два) главных понятия: = протоонкогены;

Онкогены.

Протоонкогены – это нормальные, неповрежденные гены, которые контролируют деление здоровой клетки.

К протоонкогенам относятся гены, контролирующие образование и работу:

1. Ростовых факторов.

2. Мембранных рецепторов к ростовым факторам, например тирозинкиназных рецепторов.

3. Ras-белков.

4. MAP-киназ, участниц МАР-киназного каскада.

5. Транскрипционных факторов AP-1.

Онкогены – поврежденные протоонкогены. Процесс повреждения протоонкогена и трансформация его в онкоген называется активация онкогена.

Механизмы активации онкогена.

1. Включение (вставка) промотора. Промотор – это участок ДНК, с которым связывается РНК-полимераза протоонкогена. Необходимое условие – промотор должен находится в непосредственной близости с протоонкогеном. Отсюда варианты: а) промотор - ДНК-копия онкорнавирусов; б) «прыгающие гены» - участки ДНК, способные перемещаться и встраиваться в разные участки генома клетки.

2. Амплификация – увеличение числа протоонкогенов или появление копий протоонкогенов. Протоонкогены в норме обладают небольшой активностью. При увеличении числа или появлении копий их общая активность значительно возрастает и это может привести к опухолевой трансформации клетки.

3. Транслокация протоонкогенов. Это перемещение протоонкогена в локус с функционирующим промотором.

4. Мутации протоонкогенов.

Продукция онкогенов. Онкогены образуют свои белки. Эти белки называются «онкобелки».

Синтез онкобелков называется «экспрессия активных клеточных онкогенов».

Онкобелки – в основе своей есть аналоги белков протоонкогенов: ростовых факторов, Ras-белков, МАР-киназ, транскрипционных факторов. Но есть количественные и качественные отличия онкогенов от белков протоонкогенов.

Отличия онкобелков от нормальной продукции протоонкогенов:

1. Увеличение синтеза онкобелков по сравнению с синтезом белков протоонкогенов.

2. Онкобелки имеют структурные отличия от белков протоонкогенов.

Механизм действия онкобелков.

1. Онкобелки соединяются с рецепторами для факторов роста и образуют комплексы, постоянно генерирующие сигналы к делению клетки.

2. Онкобелки повышают чувствительность рецепторов к факторам роста или понижают чувствительность к ингибиторам роста.

3. Онкобелки могут сами действовать как факторы роста.

ИНАКТИВАЦИЯ ГЕНОВ-СУПРЕССОРОВ

Гены-супрессоры: Rb и р53.

Их продукция – соответствующие белки.

Инактивация генов-супрессоров (наследственное или приобретенное) ведет к пропуску в митоз клеток с поврежденной ДНК, размножению и накоплению этих клеток. Это – возможная причина формирования опухоли.

ОПУХОЛЕВЫЙ РОСТ: ОПРЕДЕЛЕНИЕ, ПРИЧИНЫ УВЕЛИЧЕНИЯ КОЛИЧЕСТВА ЗЛОКАЧЕСТВЕННЫХ ЗАБОЛЕВАНИЙ

Опухоль – патологическое разрастание, отличающееся от других патологических разрастаний наследственно закрепленной способностью к неограниченному неконтролируемому росту.

Другие патологические разрастания – гиперплазия, гипертрофия, регенерация после повреждения.

Причины увеличения количества злокачественных заболеваний среди населения:

1. Увеличение продолжительности жизни.

2. Улучшение качества диагностики → увеличение выявляемости онкологических заболеваний.

3. Ухудшение экологической обстановки, увеличение содержания канцерогенных факторов в окружающей среде.

ДОБРОКАЧЕСТВЕННЫЕ И ЗЛОКАЧЕСТВЕННЫЕ ОПУХОЛИ

Единой классификации опухолей до сих пор не создано. Причина:

1. Большое разнообразие признаков, характерных для различных опухолей.

2. Недостаточность знания их этиологии и патогенеза.

В основе современных классификаций - главные морфологические и клинические признаки опухолей.

На основе клинической характеристики все опухоли делят на доброкачественные и злокачественные.

Доброкачественные опухоли:

1. Клетки опухоли морфологически идентичны или похожи на нормальные клетки-предшественники.

2. Степень дифференцировки опухолевых клеток – достаточно высокая.

3. Скорость роста – медленная, в течение многих лет.

4. Характер роста – экспансивный, т.е. во время роста опухоли соседние ткани раздвигаются, иногда сдавливаются, но обычно не повреждаются.

5. Отграниченность от окружающих тканей – четкая.

6. Способность к метастазированию – отсутствует.

7. Отсутствие выраженного неблагоприятного воздействия на организм. Исключение: опухоли, расположенные вблизи жизненно важных центров. Пример: опухоль головного мозга, сдавливающая нервные центры.

Злокачественные опухоли.

1. Клетки опухоли морфологически отличаются от нормальной клетки-предшественницы (часто до неузнаваемости).

2. Степень дифференцировки опухолевых клеток – низкая.

3. Скорость роста – быстрая.

4. Характер роста – инвазивный, т.е. опухоль прорастает в соседние структуры. Способствующие факторы:

Приобретение опухолевыми клетками способности отшнуровываться от опухолевого узла и активно перемещаться;

Способность опухолевых клеток продуцировать «канцероагрессины». Это белки, которые проникают в окружающие нормальные ткани и стимулируют хемотаксис для опухолевых клеток.

Уменьшение сил клеточной адгезии. Это облегчает отшнуровку опухолевых клеток от первичного узла и их последующее движение.

Уменьшение контактного торможения.

5. Отграниченность от окружающих тканей – нет.

6. Способность к метастазированию – выражена.

7. Воздействие на организм – неблагоприятное, генерализованное.

» был впервые применен в 1972 г. Kerr, Wyllie et Currie для описания особой морфологической формы генетически запрограммированной гибели клеток, отличающейся от некроза.

Апоптоз является гомеостатическим механизмом, поддерживающим постоянство клеточной популяции в тканях, а также защитным механизмом при иммунных реакциях или при повреждении клеток при заболеваниях и при воздействии инфекционных агентов.

Апоптоз обусловлен процессами, которые вызывают активацию группы цистеиновых протеаз, называемых «каспазы», каскадный комплекс которых обуславливает в конечном итоге гибель клеток.

Поскольку клетки при апоптозе не освобождают свое содержимое в окружающие ткани и быстро фагоцитируются макрофагами, воспалительная реакция обычно отсутствует. Следует отметить, что пикноз и кариорексис не являются исключительным признаком апоптоза и могут быть частью цитоморфологического спектра при некрозе.

Ионизирующее излучение , химиопрепараты приводят к повреждению ДНК в клетках, что вызывает их гибель посредством в53-зависимого пути. Воздействие воспалительных агентов в малых дозах (гипоксия, радиация, повышение температуры) индуцирует апоптоз, вызывая некроз при воздействии в больших дозах.

При некрозе потеря клеточной мембраны приводит к освобождению цитоплазматического содержимого в окружающие ткани, посылая сигналы хемотаксиса, приводящего к клеточному воспалению. Хемотаксические факторы подразделяются на две категории: короткого и дальнего действия, формирующие навигационные сигналы в локальной области тканей, приводящие к миграции макрофагов из циркуляции.

Кроме того, радикально изменяется плазматическая мембрана апоптотических клеток: изменяется ее проницаемость, топология липидов с потерей фосфолипидной асимметрии, окисления и восстановления анионных фосфолипидов, фосфатидилсеринов с выходом их из клетки.

Изменяется также расположение углеводов на мембране, и различные белки (включая кальретикулин, аннексин 1), большие субъединицы инициирующего трансляцию фактора 3, ДНК, переносятся к поверхности апоптотических клеток и взаимодействуют (прямо или косвенно) с фагоцитами.

Такое изменение расположения макромолекул на поверхности апоптотических клеток является ключевым моментом во взаимодействии с фагоцитами. В процессе апоптоза происходит также потеря ингибиторных молекул (CD31 и CD47) с поверхности клеток (механизм «не ешь меня») с последующим взаимодействием апоптотических клеток с фагоцитами. Ниже схематически представлено большинство молекул, вовлеченных во взаимодействие между фагоцитами и апоптотичес-кими клетками (рис. 6).

Рис. 6. Молекулы, вовлеченные во взаимодействие между фагоцитами и апоптотическими клетками

Примечание: ABCA, АТФ-связывающиий кассетный транспортер A1; ACAMPs, апоптотические клеточно-связанные молекулярные партнеры; ASGP-R, рецептор асиалогликопротеина; 2GPI, 2 гликопротеин1; 2GPI-R, 2GPI-рецептор; интегрины, включая CR3 иCR4 ; BAI1, ангиогенный мозгово-специфический ингибитор; C1q, первый компонент комплемента; CHO, карбогидраты; CRP, С-реактивный белок; CRT, кальретикулин; CH3CR1, рецептор фракталькина; Del-1, эндотелиальный развивающий локус-1; FKN, фракталькин; GA, G-протеин-связанный LPC рецептор; Gas-6, фактор остановки роста-6; iC3b, инактивирующий комплемент фрагмент C3b; ICAM-3 (CD50), молекула-3 внутриклеточной адгезии; Lox-1, рецептор окисленного липопротеина низкой плотности; LPC, лизофосфатидил холин; MER, миелоидная эпителиальная репродуктивная тирозин киназа; MFG-E8, глобулин молочного жира эпидермального ростового фактора-8; Ox-PL, окисленный фосфолипид; P2Y2, G-протеин-связанный ядерный рецептор; PE, фосфатидилэтаноламин; PS, фосфатидилсерин; SAP, сывороточный амилоидный протеин; SHPS-1, гомолог2 доменсодержащего протеина субстрата-1 тирозин киназы; SR-AI, удаляющий рецептор (мусорщик) AI; SR-BI, удаляющий рецептор BI; TIM-1/4, молекулы Т-клеточного иммуноглобулина и муцин-содержащего домена; TSP-1, тромбоспондин-1.

Изменения клеток при апоптозе

Для клетки, подвергшейся апоптозу, характерно следующее.

Сжатие клетки. Клетка уменьшается в размерах, цитоплазма уплотняется; органеллы, которые выглядят нормальными, располагаются более компактно. Предполагается, что нарушение формы и объема клетки происходит в результате активации в апоптотических клетках трансглютаминазы.

Этот фермент вызывает прогрессивное образование перекрестных связей в цитоплазматических белках, что приводит к формированию своеобразной оболочки под клеточной мембраной.

Конденсация хроматина

Это наиболее характерное проявление апоптоза. Хроматин конденсируется по периферии, под мембраной ядра, при этом образуются четко очерченные плотные массы разной формы и размеров.

Ядро может разрываться на несколько фрагментов. Конденсация хроматина обусловлена расщеплением ядерной ДНК в местах, связывающих отдельные нуклеосомы, что приводит к образованию большого количества фрагментов, в которых число пар оснований составляет 180-200.

При электрофорезе фрагменты дают характерную картину лестницы (клеваж ДНК). Фрагментация ДНК в нуклеосомах происходит под действием кальций чувствительной эндонуклеазы.

Эндонуклеаза в некоторых клетках находится постоянно; в тимоцитах она активируется появлением в цитоплазме свободного кальция, а в других клетках синтезируется перед началом апоптоза.

Формирование апоптотических телец

В апоптотической клетке первоначально формируются глубокие впячивания поверхности с образованием полостей, что приводит к фрагментации клетки и формированию окруженных мембраной апоптотических телец, состоящих из цитоплазмы и плотно расположенных органелл с фрагментами ядра или без таковых.

Апоптотические тельца быстро разрушаются в лизосомах макрофагов, а окружающие клетки либо мигрируют, либо делятся, чтобы заполнить освободившееся после гибели клетки пространство. Фагоцитоз апоптотических телец макрофагами или другими клетками активируется рецепторами на данных клетках: они захватывают и поглощают эти тельца.

В табл. 5 приводятся сравнительные данные по морфологическим изменениям при апоптозе и некрозе

Таблица 5. Морфологические изменения при апоптозе и некрозе

Геном человека содержит около 13 каспаз, их количество зависит от генетического полиморфизма. Каспазы присутствуют в цитоплазме в виде проэнзимов и активируются до полностью функциональных протеаз путем расщепления энзима на малую и большую субъединицы и дальнейшего отщепления от их N-концевых доменов.

Затем субъединицы собираются в тетрамер с двумя активными центрами. Расщепление прокаспаз могут осуществлять различные протеазы, в том числе и другие каспазы. По выполняемой каспазами функции их разделяют на две группы: инициаторные каспазы (8, 9 и 10) и эффекторные каспазы (3, 6, и 7). После того, как каспазы из первой группы активируют эффекторные каспазы, процесс апоптоза оказывается необратимым.

Расщепление каспазами ряда ключевых субстратов приводит к фрагментации ДНК и деструкции клетки. Для активации каспаз существует несколько путей, два из которых наиболее изучены и привлекают большое внимание в последнее время. Эти два пути апоптоза обычно обозначаются как внешний и внутренний путь.

Ниже представлено схематическое изображение разных путей апоптоза


Рис. 7. Схемы внешнего и внутреннего путей апоптоза, а также перфорин/гранзимного пути, который действует по каспазонезависимому пути. Результаты всех путей приводят к цитоморфологическим изменениям, включая сморщивание клеток, конденсацию хроматина, образование цитоплазматических и апоптотических телец, что в итоге приводит к фагоцитозу апоптотических телец

Внутренний путь апоптоза (intrisic pathway)

При активации каспаз по внутреннему пути (intrinsic pathway) центром инициации апоптоза являются митохондрии. Стимуляция внутреннего пути продуцирует внутриклеточные сигналы, которые могут действовать как положительно, так и отрицательно.

Негативные сигналы включают отсутствие факторов роста, гормонов и цитокинов, что ведет к нарушениям супрессии программы клеточной смерти, активируя апоптоз. Другие положительные стимулы включают радиацию, токсины, гипоксию, гипертермию, вирусные инфекции и свободные радикалы.

Все эти стимулы вызывают изменения внутренней мембраны митохондрий, результатом чего является открытие пор митохондриальной проницаемости, потеря митохондриального мембранного потенциала и освобождение двух наиболее больших групп проапоптотических протеинов. В митохондрии сходятся многие сигналы, вызывающие повреждение ДНК, нарушения микротрубочек, факторов роста, что вызывает освобождение из этих органелл в цитозол цитохрома с и других апоптогенных белков.

В цитозоле цитохром с связывается с белком, активирующим каспазы, апоптотическим протеазе -активирующим фактором 1 (Apafl). Apafl играет роль арматуры, на которой происходит аутокаталитический процессинг каспазы-9. В результате зависимого от гидролиза аденозинтрифосфата (АТФ) конформационного изменения Apaf1 приобретает способность связывать цитохром с.

Связав цитохром с, Apafl претерпевает дальнейшее конформационное изменение, способствующее его олигомеризации в гептаметрический комплекс и открывающее доступ каспазоизменяющего домена (CARD) Apafl для прокаспазы-9, которая также содержит CARD-домен.

В результате формируется мультипротеиновая структура, известная как «апоптосома». Связь Apafl с прокаспазой-9 обусловлена CARDs посредством гомотипического соединения (CARD-CARD). Активация апоптосомо-ассоциированной протеазы каспазы-9 инициирует протеолитический каскад, который активирует клеваж каспазы-9 и активирует прокаспазу-3.

Другая группа проапоптотических протеинов, апоптоз-индуцирующих факторов (AIF), эндонуклеазы G и CAD (каспазоактивируемая ДНКаза), освобождаются из митохондрий в процессе апоптоза. AIF фрагментирует ДНК и обуславливает конденсацию периферического ядерного хроматина.

Эндонуклеаза G перемещается в ядро, где расщепляет ядерный хроматин, образуя фрагменты олигонуклеосомальной ДНК. AIF и эндонуклеаза G действуют по каспазонезависимому пути. CAD последовательно освобождается из митохондрий и перемещается в ядро, где приводит к фрагментации олигонуклеосомальной ДНК и распространенной конденсации хроматина.

Контроль и регулирование данного митохондриального пути осуществляется белками семейства Bcl-2. Протеин гена-супрессора р53 играет критическую роль в регуляции белков семейства Bcl-2. Семейство белков Bcl-2 контролирует проницаемость митохондриальной мембраны и может действовать проапоптотически или антиапоптотически. Хотя геном человека содержит 25 членов этого семейства, только 6 из них являются антиапоптотическими.

Семейство белков Bcl-2 можно разделить на три основные группы:

1. Антиапоптогенные молекулы, такие как Bcl-2, Bcl-XL, Mcl-1, Bcl-W, Bfl-1, Bcl-B. Все они обладают антиапоптозной активностью, имеют четыре группы гомологичных последовательностей - ВН1, ВН2, ВН3 и ВН4 домены, хотя у некоторых из них домен ВН4 отсутствует. Эти молекулы представляют мембранные белки, находящиеся в митохондрии, эндоплазматическом ретикулуме и в ядерной мембране.
2. Проапоптогенные молекулы Bax, Bad, Bak, Mtd(Bok) и Diva имеют гомологичные последовательности ВН1, ВН2 и ВН3, а ВН4 домен у них отсутствует.
3. Проапоптогенные белки, содержащие только ВН3 домен: Bik, Bid, Bim, Hrk (DR5), Blk, Bnip3, Bnip3L.

Они в основном локализованы в цитозоле или связаны с цитоскелетом.
ВН1 -3 домены играют важную роль в формировании гетеро-и гомодимеров между проапоптогенными и антиапоптогенными членами семейства, и клеточные уровни этих димеров играют определяющую роль в судьбе клетки.

Гетеродимеризация происходит путем взаимодействия ВН3 домена проапоптогенного белка с гидрофобным комплексом, образованным ВН1, ВН2 и ВН3 доменами антиапоптогенных белков.
Домены ВН1, ВН2 и ВН4 необходимы для антиапоптогенной активности белка, в то время как ВН3 домен необходим для протоапоптогенной активности.

Функция белка Bcl-2 может быть дополнена возможностью посттрансляционной модификации с помощью фосфорилирования. Близкий ген, Bcl-x кодирует два белка, различающихся сплайсингом РНК, Bcl-xL и Bcl-xS. Так же как Bcl-2, белок Bcl-xL ингибирует апоптоз, в то время как белок Bcl-xS оказывает негативный эффект на функцию Bcl-2 и Bcl-xL.

Повышенная экспрессия генов этих белков может приводить к устойчивости к большинству вызывающих апоптоз стимулов, так как к этим белкам сходится множество путей апоптоза. Гиперэкспрессия некоторых антиапоптотических протеинов доказана при различных гематологических новообразованиях. Например, повышение уровня белка Bcl-2 в результате t(14; 18), вовлекающей ген BCL2, наблюдается в 80-90% случаев фолликулярной неходжкинской лимфомы.


Рис. 8. Схема апоптоза с участием всех ключевых факторов

Примерно 1/3 пациентов с диффузной В-крупноклеточной лимфомой имеют патологическое повышение уровня Bcl-2 (часто в ассоциации с t(14;18) или амплификацией гена), что коррелирует со снижением продолжительности жизни, несмотря на проведение комбинированной химиотерапии с включением ритуксимаба (анти-CD20 антител).

Большинство пациентов с ХЛЛ содержат повышенный уровень Bcl-2, ассоциированный с гипометилированием гена BCL2. В противоположность генетическим изменениям, активирующим антиапоптотические гены BCL2 и MCL1, при лейкозах и лимфомах с нестабильными микросателлитами часто происходят мутации, инактивирующие проапоптотический ген BAX.

Баланс между проапоптотическими и антиапоптотическими регуляторами апоптоза является основным механизмом, обеспечивая выживаемость длительно живущих клеток и замену ими короткоживущих клеток в различных тканях, включая костный мозг, тимус и периферические лимфоидные ткани. Дисбаланс этих протеинов в конечном итоге приводит к избирательным преимуществам в выживании клеток, что приводит к развитию новообразований.

Номенклатура основных белков внутреннего пути апоптоза приведена в табл. 6.

Таблица 6. Номенклатура основных белков внутреннего пути апоптоза

Внешний путь апоптоза (extrinsic pathway)

При внешнем пути апоптоза вначале происходит трансмембранное освобождение посредством фактора некроза опухоли (ФНО) рецептора смерти. Гибель клеток посредством внешнего пути апоптоза, в частности, химиорезистентных клеток, часто происходит при нарушениях по внутреннему пути, что дает преимущества при воздействии цитостатиков, ионизирующего излучения при выключении апоптоза клеток по митохондриальному пути.

Семейство цитокинов ФНО состоит у человека из 18 членов. Некоторые из рецепторов семейства ФНО передают сигналы преимущественно для выживания клеток путем связывания внутриклеточного опухолевого рецептор-ассоциированного фактора (TRAF), семейства адаптерных белков. Блокирование этих рецепторов представляет новую стратегию в терапии лимфоидных опухолей. Другие члены семейства ФНО напрямую включают апопотоз, в частности, те, которые содержат «домен смерти» в их цитозольной части.

Стратегия для применения вызывающих апоптоз лиганд семейства ФНО включает: рекомбинантные лиганды, экспрессируемые только экстрацеллюлярной частью мембранных протеинов; моноклональные антитела, которые связывают рецепторы и включают апоптоз.

Подгруппа рецепторов семейства ФНО имеет цитоплазматический домен, состоящий из 80 аминокислот, именуемый «домен смерти» (DD), который при внутриклеточном взаимодействии с белками-адаптерами привязывает эти рецепторы к специфическим каспазам. Домен смерти играет основную роль в передаче сигнала смерти с поверхности клетки по внутриклеточному пути.

Связавшись с лигандом, рецепторы семейства ФНО образуют кластеры цитозольного DD на мембране, изменяя каспазосвязанный адаптерный протеин. Образующееся соединение адаптерного Fas-ассоциированного протеина с доменом смерти (FADD) состоит из DD и содержащего эффектор домена смерти (DED). DED в составе FADD связывает DED-содержащие прокаспазы (в частности, каспазы 8 и 10), формируя «смерть-индуцирующий сигнальный комплекс» (DISC), в результате чего происходит активация каспаз.

После активации каспазы-8 включается заключительная фаза апоптоза. Апоптоз, обусловленный рецептором смерти, может ингибироваться протеином c-FLIP (протеин, ингибирующий FLICE), который связывается с FADD и каспазой-8, делая их неэффективными.

Ниже представлена схема пути активации каспаз.


Рис. 9. Пути активации каспаз

Наличие дополнительных путей апоптоза включает:

1) путь апоптоза, индуцированный цитотоксическими лимфоцитами (CTL) и натуральными киллерами (NK), при котором сериновая протеаза гранзим В проникает внутрь клетки;
2) путь стресса эндоплазматического ретикулума (ER) с вовлечением каспазы-12;
3) р53-индуцированный путь, опосредoванный р53-индуцированным доменом смерти (PIDD), который связывает адапторный протеин ICH-1/протеин-3 (CED-3) домена смерти с доменом смерти, как активатором каспазы-2.

Номенклатура основных белков внешнего пути апоптоза приведена в табл. 7.

Таблица 7. Номенклатура основных белков внешнего пути апоптоза

Перфорин-гранзимный путь апоптоза (perforin-granzime pathway)

Цитотоксические Т-лимфоциты способны уничтожать клетки-мишени посредством внутреннего пути и FasL/FasR взаимодействия, что является основным способом апоптоза, вызываемого цитотоксическими лимфоцитами. Но они способны также осуществлять свой цитотоксический эффект в отношении опухолевых или инфицированных вирусом клеток посредством нового пути. Он осуществляется посредством секреции молекул перфорина.

Полимеризуясь, перфорин образует в цитоплазматической мембране клетки-мишени трансмембранные каналы с последующим проникновением в клетки ФНО-в и гранзимов А и В - смеси сериновых протеаз. Гранзим В активирует прокаспазу-10 и может расщеплять ингибитор каспазактивируемой ДНКазы, а также использовать митохондриальный путь для амплификации сигнала смерти и вызывать освобождение цитохрома с.

Кроме того, гранзим В может напрямую активизировать каспазу-3, что может индуцировать заключительную фазу апоптоза. Таким образом, митохондриаль-ный путь и прямая активация каспазы-3 являются основными путями индуцированного гранзимом В уничтожения клеток.

Гранзим А также вызывает апоптоз, активируя каспазонезависимый путь апоптоза. Он расщепляет посредством активации ДНКазы продукт гена тумор-супрессора, вызывая апоптоз опухолевых клеток. Инактивация этого белка ведет к апоптозу вследствие блокирования восстановления ДНК и структуры хроматина.

Внешний и внутренний пути апоптоза заканчиваются в экзекутивной (исполнительной) фазе. Эта фаза начинается с активации экзекутивных («казнящих») каспаз, которые активируют цитоплазматические эндонуклеазы с деградацией ядерного материала, и активируют протеазы с последующей деградацией ядерных протеинов и протеинов цитоскелета. Каспаза-3 является наиболее важной экзекутивной каспазой и может активироваться любой каспазой (каспаза-8, каспаза-9 или каспаза-10).

Номенклатура основных белков экзекутивного пути апоптоза представлена в табл. 8.

Таблица 8. Номенклатура основных белков экзекутивного пути апоптоза

Е.В. Зуховицкая, А.Т. Фиясь

← Вернуться

×
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:
Я уже подписан на сообщество «sinkovskoe.ru»