Сенсорные зоны коры располагаются в. Физиология коры больших полушарий мозга

Подписаться
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:

Формами механической асфиксии являются утопление и удушение.
Длительность умирания под водой зависит от состояния человека перед утоплением (опьянение, травмы черепа и др.). Выделяют два типа утонувших - «синий» и «бледный».

Первый тип утопления - «синий» наблюдается при медленном утоплении - в этом случае происходит значительная аспирация воды в трахеобронхиальное дерево. Он отличается выраженным цианозом кожных покровов, выделением большого количества пенистых масс изо рта и носа.

Второй - «бледный» тип утопления наблюдается в тех случаях, когда у пострадавшего происходит почти одновременно рефлекторная остановка дыхания и кровообращения (в результате испуга, раздражения дыхательных путей небольшим количеством воды, резкого внезапного охлаждения и т.д.). В таких случаях кожные покровы пострадавших бледны.

Знание описанных механизмов развития патологии при утоплении позволяет правильно оценить состояние пострадавшего. Так, для «бледных» утонувших период клинической смерти может удлиняться до 10-12 минут (а в холодной воде иногда даже дольше), а для «синих» равняется только 3-5 минутам.

Патогенез утопления в пресной и морской воде значительно различается. Пресная вода быстро проникает в кровеносное русло, что приводит к увеличению массы циркулирующей крови, гемолизу, гипонатриемии и гипопротеинемии. Это обуславливает развитие отека легких с устойчивым пенообразованием, трудно поддающимся лечению.

Морская вода, поступая в легкие, в кровь не проникает. В этом случае жидкая часть крови выходит из капилляров в альвеолы, что приводит к гемоконцентрации и отеку легких .

Выделяют три разновидности утопления. Утопление может быть первичным мокрым, сухим и вторичным. Кроме утопления, иногда наступает смерть в воде, вызванная различными травмами, сердечными заболеваниями, мозговыми нарушениями и так далее.

Утопление возможно при самых разных обстоятельствах:

1. От травмы, полученной в воде.
2. При внезапной остановке сердца.
3. При нарушении мозгового кровообращения.
4. Спазм гортани и невозможности вдоха и выдоха:
— от страха;
— резкого при внезапном попадании в очень холодную воду.

Виды утопления.

Первичное (истинное) утопление.

Это наиболее частый вид утопления. Утопающий не сразу погружается в воду, а пытается удержаться на поверхности, в панике он начинает делать лихорадочные и беспорядочные движения руками и ногами. Является наиболее частой разновидностью несчастных случаев на воде.

При нем жидкость попадает в дыхательные пути и легкие, а потом поступает в кровь. При вдохе утопающий заглатывает большое количество воды, которая переполняет желудок, попадая при этом и в легкие. Человек теряет сознание и погружается на дно. Кислородное голодание — гипоксия — придает коже синюшный цвет, поэтому этот вид утопления еще называют «синим».

Когда пострадавшие тонут в пресной воде, быстро происходит разведение крови водой, увеличивается общий объем циркулирующей крови, разрушаются эритроциты, нарушается баланс солей в организме. Вследствие чего резко снижается содержание кислорода в крови. После спасения утопающего и оказания ему первой помощи часто отмечают явления отека легких, при котором изо рта идет кровавая пена.

Утопление в морской воде по воздействию на организм пострадавшего сильно отличается от утопления в пресной. У морской воды концентрация солей выше, чем у плазмы человеческой крови. В результате попадания морской воды в организм человека количество солей в крови увеличивается и развивается ее сгущение. При истинном утоплении в морской воде быстро развивается отек легких, а изо рта выделяется белая «пушистая» пена.

«Сухое» утопление.

Также встречается довольно часто. При этой разновидности утопления происходит рефлекторный спазм голосовой щели. Вода не попадает в нижние дыхательные пути, но наступает удушье. Обычно это происходит у детей и женщин, а также, когда пострадавший попадает в грязную или хлорированную воду. При таком утоплении вода в большом количестве попадает в желудок.

Вторичное или «бледное» утопление.

Происходит из-за остановки сердца, когда пострадавший попадает в холодную воду, что именуется ледяным . В основе этого лежит рефлекторная реакция организма на попадание воды в дыхательное горло или в ухо, когда имеется повреждение барабанной перепонки. Для вторичного утопления характерен выраженный спазм периферических кровеносных сосудов. Отек легких, как правило, не развивается. Такие утопления происходят, когда человек не пытается или не может бороться за свою жизнь и быстро идет ко дну.

Это часто случается во время кораблекрушений на море, переворота лодок, плотов, когда человек погружается в воду в состоянии панического страха. Если вода еще и холодная, то это может привести к раздражению глотки и гортани, что в свою очередь часто приводит к внезапной остановке сердца и дыхания. Такой тип утопления может произойти и в случае, если у человека, находящегося в воде, произошла травма головы или он уже попал в воду с ней. В таком случае происходит быстрая потеря сознания. Кожные покровы отличаются повышенной бледностью, отсюда и название типа.

Спасение утопающих.

При спасении утопающего нельзя хватать его за волосы или за голову. Самый надежный и безопасный способ — захватить его под мышки, повернуть к себе спиной и плыть к берегу, стараясь, чтобы голова пострадавшего была над водой.

Состояние пострадавших при утоплении.

Связано с продолжительностью нахождения под водой, с видом утопления и степенью охлаждения организма. В легких случаях сознание сохранено, но отмечаются возбуждение, дрожь, повторная рвота. При длительном пребывании в воде, при истинном или «сухом» утоплении сознание нарушено или вообще отсутствует, пострадавшие сильно возбуждены, могут быть судороги, а кожа синюшная. При вторичном утоплении отмечается выраженная бледность кожи, зрачки расширены. У пострадавших клокочущее учащенное дыхание.

При утоплении в морской воде быстро развивается отек легких, учащается сердцебиение. Когда утопление длительное и вторичное, пострадавший может быть извлечен из воды в состоянии клинической или биологической смерти. Истинное утопление в пресной воде способно осложняться нарушением работы почек в виде появления крови в моче. В течение первых суток может возникнуть воспаление легких. При выраженном распаде эритроцитов в организме развивается острая почечная недостаточность.

Неотложная помощь при утоплении.

Вне зависимости от вида утопления помощь должна быть оказана немедленно, иначе наступают необратимые изменения мозга. При истинном утоплении это происходит в течение 4-5 минут, в остальных случаях через 10-12 минут. Первая помощь на берегу будет разной при синем и бледном утоплении. В первом случае необходимо в первую очередь быстро удалить воду из дыхательных путей. Для этого, стоя на одном колене, уложить пострадавшего на согнутую вторую ногу так, чтобы на нее опиралась нижняя часть грудной клетки, а верхняя часть туловища и голова свешивались вниз.

После этого надо одной рукой открыть рот пострадавшего, а другой похлопать его по спине или плавно надавить на ребра со стороны спины. Повторять эти действия необходимо до прекращения бурного вытекания воды. Затем произвести искусственное дыхание и закрытый массаж сердца. При бледном типе утопления нужно сразу же искусственное дыхание, а при остановке сердца — закрытый массаж. Иногда в дыхательных путях утонувшего оказываются крупные инородные тела, которые застревают в гортани, вследствие чего дыхательные пути становятся непроходимыми или развивается стойкий спазм голосовой щели. В этом случае производят трахеостомию.

При любом типе утопления категорически нельзя поворачивать голову пострадавшего, так как это может нанести дополнительную травму при возможном переломе позвоночника. Чтобы голова не двигалась, с обеих ее сторон положите валики из плотно скрученной одежды, а при необходимости переверните пострадавшего, при этом один из оказывающих помощь должен поддерживать голову, не давая ей двигаться самостоятельно.

Реанимацию, в частности, искусственное дыхание, необходимо продолжать, даже если у пострадавшего появляется самостоятельное дыхание, но имеются признаки отека легких. Искусственное дыхание проводят и тогда, когда у пострадавшего имеется нарушение дыхания (т. е. его частота – более 40 в 1 минуту, неритмичное дыхание и резкое посинение кожных покровов). Если дыхание сохранено, то больному нужно дать подышать парами нашатырного спирта. Если спасение пострадавшего прошло успешно, но его бьет озноб, надо растереть кожу, обернуть его теплыми сухими одеялами. Нельзя применять грелки при отсутствии или нарушении сознания.

При тяжелых видах утопления пострадавшего требуется доставить в отделение реанимации. Во время перевозки должна быть продолжена искусственная вентиляция легких. Врач «скорой медицинской помощи» или реанимационного отделения стационара при нарушенном дыхании и отеке легких у пострадавшего производит введение дыхательной трубки в трахею и ее подключение к прибору или аппарату искусственной вентиляции легких.

Предварительно в желудок пострадавшего вводят зонд. Это предотвратит попадание содержимого желудка в дыхательные пути. Транспортировать больного нужно в положении лежа на боку, с опущенным подголовником носилок. Опасно преждевременно прекращать искусственную вентиляцию легких. Даже если у человека появляются самостоятельные дыхательные движения, это не означает восстановления нормального дыхания, особенно при отеке легких.

При утоплении в пресной воде пострадавшему в больничных условиях при резком посинении, набухании шейных вен иногда производят кровопускание. При выраженном распаде эритроцитов внутривенно переливают раствор натрия гидрокарбоната, эритроцитарную массу, плазму крови. Для уменьшения отека вводят мочегонные средства, например фуросемид. Снижение уровня белка в организме является показанием для переливания концентрированного альбумина.

При развитии отека легких на фоне артериальной гипертонии внутривенно вводят 2,5 % раствор бензогексония или 5 % раствор пентамина, растворы глюкозы. Применяют большие дозы гормонов: гидрокортизона или преднизолона. Для предупреждения пневмонии назначают антибиотики. Для успокоения при двигательном возбуждении внутривенно вводят 20 % растворы оксибутирата натрия, 0,005 % раствор фентанила или 0,25 % раствор дроперидола.

По материалам книги «Быстрая помощь в экстренных ситуациях».
Кашин С.П.


Новая кора (неокортекс) представляет собой слой серого вещества общей площадью 1500-2200 см 2 , покрывающий большие полушария конечного мозга. Она составляет около 40% массы головного мозга. В коре имеется около 14 млрд. нейронов и около 140 млрд. глиальных клеток. Кора головного мозга является филогенетически наиболее молодой нервной структурой. У человека она осуществляет высшую регуляцию функций организма и психофизиологические процессы, обеспечивающие различные формы поведения.

Структурно-функциональная характеристика коры

Кора больших полушарий состоит из шести горизонтальных слоев, расположенных в направлении с поверхности в глубь.

I. Молекулярный слой имеет очень мало клеток, но большое количество ветвящихся дендритов пирамидных клеток, формирующих сплетение, расположенное параллельно поверхности. На этих дендритах образуют синапсы афферентные волокна, приходящие от ассоциативных и неспецифических ядер таламуса.

II. Наружный зернистый слой составлен в основном звездчатыми и частично малыми пирамидными клетками. Волокна клеток этого слоя расположены преимущественно вдоль поверхности коры, образуя кортикокортикальные связи.

III. Наружный пирамидный слой состоит преимущественно из пирамидных клеток средней величины. Аксоны этих клеток, как и зернистые клетки II слоя, образуют кортикокортикальные ассоциативные связи.

IV. Внутренний зернистый слой по характеру клеток и расположению их волокон аналогичен наружному зернистому слою. На нейронах этого слоя образуют синаптические окончания афферентные волокна, идущие от нейронов специфических ядер таламуса и, следовательно, от рецепторов сенсорных систем.

V. Внутренний пирамидный слой образован средними и крупными пирамидными клетками, причем гигантские пирамидные клетки Беца расположены в двигательной коре. Аксоны этих клеток образуют эфферентные кортикоспинальные и кортикобульбарный двигательные пути.

VI. Слой полиморфных клеток образован преимущественно веретенообразными клетками, аксоны которых образуют кортикоталамические пути.

Афферентные и эфферентные связи коры

В слоях I и IV происходят восприятие и обработка поступающих в кору сигналов. Нейроны II и III слоев осуществляют кортикокортикальные ассоциативные связи. Покидающие кору эфферентные пути формируются преимущественно в V – VI слоях. Более детально деление коры на различные поля проведено на основе цитоархитектонических признаков (формы и расположения нейронов) К.Бродманом, который выделил 11 областей, включающих в себя 52 поля, многие из которых характеризуются функциональными и нейрохимическими особенностями. По Бродману лобная область включает 8, 9, 10, 11, 12, 44, 45, 46, 47 поля. В прецентральную область входят 4 и 6 поле, в постцентральную – 1, 2, 3, 43 поля. Теменная область включает в себя поля 5, 7, 39, 40, а затылочная 17 18 19. Височная область состоит из очень большого количества цитоархитектонических полей: 20, 21, 22, 36, 37, 38, 41, 42, 52.

Рис.1. Цитоархитектонические поля коры головного мозга человека (по К.Бродману): а – наружная поверхность полушария; б – внутренняя поверхность полушария.

Гистологические данные показывают, что элементарные нейронные цепи, участвующие в обработке информации, расположены перпендикулярно поверхности коры. В моторной и различных зонах сенсорной коры имеются нейронные колонки диаметром 0,5-1,0 мм, которые представляют собой функциональное объединение нейронов. Соседние нейронные колонки могут частично перекрываться, а также взаимодействовать друг с другом по механизму латерального торможения и осуществлять саморегуляцию по типу возвратного торможения.

В филогенезе роль коры большого мозга в анализе и регуляции функций организма и подчинение себе нижележащих отделов ЦНС возрастает. Этот процесс называется кортиколизацией функций.

Проблема локализации функций имеет три концепции:

· Принцип узкого локализационизма – все функции помещены в одну, отдельно взятую структуру.

· Концепция эквипотенциализма – различные корковые структуры функционально равноценны.

· Принцип многофункциональности корковых полей.

Свойство мультифункциональности позволяет данной структуре включаться в обеспечение различных форм деятельности, реализуя при этом основную, генетически присущую ей функцию. Степень мультифункциональности различных корковых структур неодинакова: например, в полях ассоциативной коры она выше, чем в первичных сенсорных полях, а в корковых структурах выше, чем в стволовых. В основе мультифункциональности лежит многоканальность поступления в кору мозга афферентного возбуждения, перекрытие афферентных возбуждений, особенно на таламическом и корковым уровнях, модулирующее влияние различных структур (неспецифического таламуса, базальных ганглиев) на корковые функции, взаимодействие корково-подкорковых и межкорковых путей проведения возбуждения.

Одним из наиболее крупных вариантов функционального разделения новой коры головного мозга является выделение в ней сенсорной, ассоциативной и двигательной областей.

Сенсорные области коры больших полушарий

Сенсорные области коры – это зоны, в которые проецируются сенсорные раздражители. Сенсорные области коры иначе называют: проекционной корой или корковыми отделами анализаторов. Они расположены преимущественно в теменной, височной и затылочной долях. Афферентные пути в сенсорную кору поступают преимущественно от специфических сенсорных ядер таламуса (вентральных, задних латерального и медиального). Сенсорная кора имеет хорошо выраженные II и IVслои и называется гранулярной .

Зоны сенсорной коры, раздражение или разрушение которых вызывает четкие и постоянные изменения чувствительности организма, называются первичными сенсорными областями . Они состоят преимущественно из мономодальных нейронов и формируют ощущения одного качества. В первичных сенсорных зонах обычно имеется четкое пространственное (топографическое) представительство частей тела, их рецепторных полей. Вокруг первичных сенсорных зон находятся менее локализованные вторичные сенсорные зоны , полимодальные нейроны которых отвечают на действие нескольких раздражителей.

Важнейшей сенсорной областью является теменная кора постцентральной извилины и соответствующая ей часть парацентральной дольки на медиальной поверхности полушарий (поля 1-3), которую обозначают как первичная соматосенсорная область (S I). Здесь имеется проекция кожной чувствительности противоположной стороны тела от тактильных, болевых, температурных рецепторов, интероцептивной чувствительности и чувствительности опорно-двигательного аппарата от мышечных, суставных и сухожильных рецепторов. Проекция участков тела в этой области характеризуется тем, что проекция головы и верхних отделов туловища расположена в нижнелатеральных участках постцентральной извилины, проекция нижней половины туловища и ног – в верхнемедиальных зонах извилины, проекция нижней части голени и стоп – в коре парацентральной дольки на медиальной поверхности полушарий. При этом проекция наиболее чувствительных участков (язык, губы, гортань, пальцы рук) имеет относительно большие зоны по сравнению с другими частями тела (см.рис.2). Предполагается, что в зоне тактильной чувствительности языка расположена и проекция вкусовой чувствительности.

Кроме S I выделяют вторичную соматосенсорную область меньшую размером (S II). Она расположена на верхней стенке боковой борозды, на границе ее пересечения с центральной бороздой. Функции S II изучены плохо. Известно, что локализация поверхности тела в ней менее четкая, импульсация сюда поступает как от противоположной стороны тела, так и от «своей» стороны, предполагают ее участие в сенсорной и моторной координации двух сторон тела.

Другой первичной сенсорной зоной является слуховая кора (поля 41, 42), которая расположена в глубине латеральной борозды (кора поперечных височных извилин Гешля). В этой зоне в ответ на раздражение слуховых рецепторов кортиева органа формируются звуковые ощущения, изменяющиеся по громкости, тону и другим качествам. Здесь имеет четкая топическая проекция: в разных участках коры представлены различные участки кортиева органа. К проекционной коре височной доли относится также центр вестибулярного анализатора в верхней и средней височных извилинах (поля 20 и 21). Обработанная сенсорная информация используется для формирования «схемы тела» и регуляции функций мозжечка (височно-мостомозжечковый путь).

Рис.2. Схема чувствительного и двигательного гомункулусов. Разрез полушарий во фронтальной плоскости: а – проекция общей чувствительности в коре постцентральной извилины; б – проекция двигательной системы в коре прецентральной извилины.

Еще одна первичная проекционная область новой коры расположена в затылочной коре - первичная зрительная область (кора части клиновидной извилины и язычковой дольки, поле 17). Здесь имеет топическое представительство рецепторов сетчатки, и каждой точке сетчатки соответствует свой участок зрительной коры, при этом зона желтого пятна имеет большую зону представительства. В связи с неполным перекрестом зрительных путей в зрительную область каждого полушария проецируются одноименные половины сетчатки. Наличие в каждом полушарии проекции сетчатки обоих глаз является основой бинокулярного зрения. Раздражение коры 17-го поля приводит к возникновению световых ощущений. Около поля 17 расположена кора вторичной зрительной области (поля 18 и 19). Нейроны этих зон полимодальны и отвечают не только на световые, но и на тактильные, слуховые раздражители. В данной зрительной области происходит синтез различных видов чувствительности и возникают более сложные зрительные образы и их опознавание. Раздражение этих полей вызывает зрительные галлюцинации, навязчивые ощущения, движения глаз.

Основная часть информации об окружающей среде и внутренней среда организма, поступившая в сенсорную кору, передается для дальнейшей ее обработки в ассоциативную кору.

Ассоциативные области коры

Ассоциативные области коры включают участки новой коры, расположенные рядом с сенсорными и двигательными зонами, но не выполняющие непосредственно чувствительных и двигательных функций. Границы этих областей обозначены не достаточно четко, неопределенность преимущественно связана со вторичными проекционными зонами, функциональные свойства которых являются переходными между свойствами первичных проекционных и ассоциативных зон. У человека ассоциативная кора составляет 70% неокортекса.

Основной физиологической особенностью нейронов ассоциативной коры является полимодальность: они отвечают на несколько раздражителей с почти одинаковой силой. Полимодальность (полисенсорность) нейронов ассоциативной коры создается за счет, во-первых, наличия кортикокортикальных связей с разными проекционными зонами, во-вторых, за счет главного афферентного входа от ассоциативных ядер таламуса, в которых уже произошла сложная обработка информации от различных чувствительных путей. В результате этого ассоциативная кора представляет собой мощный аппарат конвергенции различных сенсорных возбуждений, позволяющих произвести сложную обработку информации о внешней и внутренней среде организма и использовать ее для осуществления высших психофизиологических функций. В ассоциативной коре выделяют три ассоциативные системы мозга: таламотеменную, таламолобную и таламовисочную.

Таламотеменная система представлена ассоциативными зонами теменной коры (поля 5, 7, 40), получающими основные афферентные входы от задней группы ассоциативных ядер таламуса (латеральное заднее ядро и подушка). Теменная ассоциативная кора имеет эфферентные выходы на ядра таламуса и гипоталамуса, моторную кору и ядра экстрапирамидной системы. Основными функциями таламотеменной системы являются гнозис, формирование «схемы тела» и праксис. Под гнозисом понимают функцию различных видов узнавания: формы, величины, значения предметов, понимание речи, познание процессов, закономерностей. К гностическим функциям относится оценка пространственных отношений. В теменной коре выделяют центр стереогнозиса, расположенный сзади от средних отделов постцентральной извилины (поля 7, 40, частично 39) и обеспечивающий способность узнавания предметов на ощупь. Вариантом гностической функции является формирование в сознании трехмерной модели тела («схемы тела»), центр которой расположен в поле 7 теменной коры. Под праксисом понимают целенаправленное действие, центр его находится в надкраевой извилине (поля 39 и 40 доминантного полушария). Этот центр обеспечивает хранение и реализацию программы двигательных автоматизированных актов.

Таламолобная система представлена ассоциативными зонами лобной коры (поля 9-14), имеющими основной афферентный вход от ассоциативного медиодорсального ядра таламуса. Главной функцией лобной ассоциативной коры является формирование программ целенаправленного поведения, особенно в новой для человека обстановке. Реализация этой общей функции основывается на других функциях таламолобной системы: 1) формирование доминирующей мотивации обеспечивающей направление поведения человека. Эта функция основана на тесных двусторонних связях лоьной коры с лимбической системой и ролью последней в регуляции высших эмоций человека, связанных с его социальной деятельностью и творчеством.; 2) обеспечение вероятностного прогнозирования, что выражается изменением поведения в ответ на изменения обстановки окружающей среды и доминирующей мотивации; 3) самоконтроль действий путем постоянного сравнения результата действия с исходными намерениями, что связано с созданием аппарата предвидения (акцептора результата действия).

При повреждении префронтальной лобной коры, где пересекаются связи между лобной долей и таламусом, человек становится грубым, нетактичным, ненадежным, у него появляется тенденция к повторению каких-либо двигательных актов, хотя обстановка уже изменилась и надо выполнять другие действия.

Таламовисочная система изучена не достаточно. Но если говорить о височной коре, то надо отметить, что некоторые ассоциативные центры, например стереогнозиса и праксиса, включают в себя и участки височной коры (поле 39). В височной коре расположен слуховой центр речи Вернике, находящийся в задних отделах верхней височной извилины (поля 22, 37, 42 левого доминантного полушария). Этот центр обеспечивает речевой гнозис – распознавание и хранение устной речи, как собственной, так и чужой. В средней части верхней височной извилины (поле 22) находится центр распознавания музыкальных звуков и их сочетаний. На границе височной, теменной и затылочной долей (поле 39) находится центр чтения письменной речи, обеспечивающий распознавание и хранение образов письменной речи.

Двигательные области коры

В двигательной коре выделяют первичную и вторичную моторные области.

В первичной моторной коре (прецентральная извилина, поле 4) расположены нейроны, иннервирующие мотонейроны мышц лица, туловища и конечностей. В ней имеется четкая топографическая проекция мышц тела. При этом проекции мышц нижних конечностей и туловища расположены в верхних участках прецентральной извилины и занимают сравнительно небольшую площадь, а проекция мышц верхних конечностей, лица и языка расположены в нижних участках извилины и занимают большую площадь (см.рис.2). Основной закономерностью топографического представительства является то, что регуляция деятельности мышц, обеспечивающих наиболее точные и разнообразные движения (речь, письмо, мимика), требует участия больших по площади участков двигательной коры. Двигательные реакции на раздражение первичной моторной коры осуществляются с минимальным порогом (высокая возбудимость), и представлены элементарными сокращениями мышц противоположной стороны тела (для мышц головы сокращение может быть билатеральным). При поражении этой области коры утрачивается способность к тонким координированным движениям рук, особенно пальцев.

Вторичная двигательная кора (поле 6) расположена на латеральной поверхности полушарий, впереди прецентральной извилины (премоторная кора). Она осуществляет высшие двигательные функции, связанные с планированием и координацией произвольных движений. Кора поля 6 получает основную часть эфферентной импульсации базальных ядер и мозжечка и участвует в перекодировании информации о программе сложных движений. Раздражение коры поля 6 вызывает более сложные координированные движения, например, поворот головы, глаз и туловища в противоположную сторону, содружественные сокращения мышц-сгибателей или мышц-разгибателей на противоположной стороне. В премоторной коре расположены двигательные центры, связанные с социальными функциями человека: центр письменной речи в заднем отделе средней лобной извилины (поле 6), центр моторной течи Брока в заднем отделе нижней лобной извилины (поле 44), обеспечивающий речевой праксис, а также музыкальный моторный центр (поле 45), определяющий тональность речи, способность петь.

Афферентные и эфферентные связи моторной коры

В моторной коре лучше, чем в других зонах коры, выражен слой, содержащий гигантские пирамидные клетки Беца. Нейроны двигательной коры получают афферентные входы через таламус от мышечных, суставных и кожных рецепторов, а также от базальных ядер и мозжечка. Основной эфферентный выход двигательной коры на стволовые и спинальные моторные центры формируют пирамидные клетки V слоя. Пирамидные и сопряженные с ними вставочные нейроны расположены вертикально по отношению к поверхности коры и образуют нейронные двигательные колонки. Пирамидные нейроны двигательной колонки могут возбуждать или тормозить мотонейроны стволовых и спинальных центров. Соседние колонки в функциональном плане перекрываются, а пирамидные нейроны, регулирующие деятельность одной мышцы, расположены обычно не в одной, а в нескольких колонках.

Основные эфферентные связи двигательной коры осуществляются через пирамидные и экстрапирамидные пути, которые начинаются от гигантских пирамидных клеток Беца и менее крупных пирамидных клеток V слоя коры прецентральной извилины (60% волокон), премоторной коры (20% волокон) и постцентральной извилины (20% волокон). Крупные пирамидные клетки имеют быстропроводящие аксоны и фоновую импульсную активность около 5 Гц, которая при движении увеличивается до 20-30 Гц. Эти клетки иннервируют крупные (высокопороговые) ά-мотонейроны в двигательных центрах ствола и спинного мозга, регулирующих физические движения. От мелких пирамидных клеток отходят тонкие медленнопроводящие миелиновые аксоны. Эти клетки имеют фоновую активность около 15 Гц, которая во время движения увеличивается или уменьшается. Они иннервируют мелкие (низкопороговые) ά-мотонейроны в стволовых и спинальных двигательных центрах, регулирующие тонус мышц.

Пирамидные пути состоят из 1 млн волокон кортикоспинального пути, которые начинаются от коры верхней и средней трети прецентральной извилины, и 20 млн волокон кортикобульбарного пути, который начинается от коры нижней трети прецентральной извилины. Волокна пирамидного пути оканчиваются на ά-мотонейронах двигательных ядер III - VII и IX - XII черепных нервов (кортикобульбарный путь) или на спинальных двигательных центрах (кортикоспинальный путь). Через двигательную кору и пирамидные пути осуществляются произвольные простые движения и сложные целенаправленные двигательные программы, например, профессиональные навыки, формирование которых начинается в базальных ганглиях и мозжечке и заканчивается во вторичной моторной коре. Большинство волокон пирамидных путей осуществляют перекрест, однако небольшая часть волокон остается неперекрещенными, что способствует компенсации нарушенных функций движения при односторонних поражениях. Через пирамидные пути осуществляет свои функции и премоторная кора: двигательные навыки письма, поворот головы, глаз и туловища в противоположную сторону, а также речь (речедвигательный центр Брока, поле 44). В регуляции письма и особенно устной речи имеется выраженная асимметрия больших полушарий мозга: у 95% правшей и 70% левшей устная речь контролируется левым полушарием.

К корковым экстрапирамидным путям относят кортикорубральные и кортикоретикулярные пути, начинающиеся приблизительно от тех зон, которые дают начало пирамидным путям. Волокна кортикорубрального пути оканчиваются на нейронах красных ядер среднего мозга, от которых далее идут руброспинальные пути. Волокна кортикоретикулярных путей оканчиваются на нейронах медиальных ядер ретикулярной формации моста (от них идут медиальные ретикулоспинальные пути) и на нейронах ретикулярных гигантоклеточных ядер продолговатого мозга, от которых начинаются латеральные ретикулоспинальные пути. Через эти пути осуществляется регуляция тонуса и позы, которые обеспечивают точные целенаправленные движения. Корковые экстрапирамидные пути являются компонентом экстрапирамидной системы головного мозга, к которой относятся мозжечок, базальные ганглии, моторные центры ствола. Экстрапирамидная система осуществляет регуляцию тонуса, позы равновесия, выполнение заученных двигательных актов, таких как ходьба, бег, речь, письмо. Поскольку кортикопирамидные пути отдают свои многочисленные коллатерали структурам экстрапирамидной системе, то обе системы работают в функциональном единстве.

Оценивая в общем плане роль различных структур головного и спинного мозга в регуляции сложных направленных движений, можно отметить, что побуждение (мотивация) к движению создается в лимбической системе, замысел движения – в ассоциативной коре больших полушарий, программы движений – в базальных ганглиях, мозжечке и премоторной коре, а выполнение сложных движений происходит через двигательную кору, моторные центры ствола и спинного мозга.

Межполушарные взаимоотношения в мозге

Межполушарные взаимоотношения у человека проявляются в двух формах – функциональной асимметрии больших полушарий и совместной их деятельности.

Функциональная асимметрия полушарий является важнейшим психофизиологическим свойством головного мозга человека. Выделяют психическую, сенсорную и моторную межполушарную функциональную асимметрии мозга. При исследовании психофизиологических функций было показано, что в речи словесный информационный канал контролируется левым полушарием, а несловесный канал (голос, интонация) – правым. Абстрактное мышление и сознание связаны, преимущественно, с левым полушарием. При выработке условного рефлекса в начальной фазе доминирует правое полушарие, а во время упрочения рефлекса – левое. Правое полушарие осуществляет обработку информации одновременно, синтетически, по принципу дедукции, лучше воспринимаются пространственные и относительные признаки предмета. Левое полушарие производит обработку информации последовательно, аналитически, по принципу индукции, лучше воспринимает абсолютные признаки предмета и временные отношения. В эмоциональной сфере правое полушарие обуславливает преимущественно отрицательные эмоции, контролирует проявления сильных эмоций, в целом оно более «эмоционально». Левое полушарие обуславливает в основном положительные эмоции, контролирует проявление более слабых эмоций.

В сенсорной сфере роль правого и левого полушарий лучше всего проявляется при зрительном восприятии. Правое полушарие воспринимает зрительный образ целостно, сразу во всех подробностях, легче решает задачу различения предметов и опознания визуальных образов предметов, которое трудно описать словами, создает предпосылки конкретно-чувственного мышления. Левое полушарие оценивает зрительный образ расчленено, аналитически, при этом каждый признак анализируется раздельно. Легче опознаются знакомые предметы и решаются задачи сходства предметов, зрительные образы лишены конкретных подробностей и имеют высокую степень абстракции; создаются предпосылки логического мышления.

Моторная асимметрия выражается, прежде всего, в право-леворукости, которая контролируется моторной корой противоположного полушария. Асимметрия других групп мышц имеет индивидуальный, а не видовой характер.

Рис.3. Асимметрия полушарий мозга.

Парность в деятельности больших полушарий обеспечивается наличием комиссуральной системы (мозолистого тела, передней и задней, гиппокампальной и хабенулярной комиссур, межталамического сращения), которые анатомически соединяют два полушария головного мозга. Иначе говоря, оба полушария связаны не только горизонтальными связями, но и вертикальными. Основные факты, полученные с помощью электрофизиологических методик, показали, что возбуждение из участка раздражения одного полушария передается через комиссуральную систему не только в симметричный участок другого полушария, но и в несимметричные участки коры. Исследование метода условных рефлексов показало, в процессе выработки рефлекса происходит «перенос» временной связи в другое полушарие. Элементарные же формы взаимодействия двух полушарий могут осуществляться через четверохолмие и ретикулярную формацию ствола.

Рис.4. Основные зоны коры больших полушарий.

Рис.5. Речевые зоны коры.



Если рассматривать стуктурную организацию коры больших полушарий, то можно выделить несколько полей, имеющих различное клеточное строение.

Различают три основные группы полей в коре:

Первичные

Вторичные

Третичные.

Первичные поля , или ядерные зоны анализаторов, непосредственно связаны с органами чувств и органами движения.

Например, поле болевой, температурной, кожно-мышечной чувствительности в задней части центральной извилины, зрительное поле в затылочной доле, слуховое поле в височной доле и двигательное поле в передней части центральной извилины.

Первичные поля они раньше других созревают в онтогенезе.

Функция первичных полей: анализ отдельных раздражений, поступающих в кору от соответствующих рецепторов.

При разрушении первичных полей возникают так называемая корковая слепота, корковая глухота и т. п.

Вторичные поля , или периферические зоны анализаторов, расположены рядом с первичными и связаны через них с органами чувств.

Функция вторичных полей: обобщение и дальнейшая обработка поступающей информации. Отдельные ощущения синтезируются в них в комплексы, обусловливающие процессы восприятия.

При поражении вторичных полей человек видит и слышит, но не способен осознать, понять значение увиденного и услышанного.

Первичные и вторичные поля имеются и у человека, и у животных.

Третичные поля , или зоны перекрытия анализаторов, находятся в задней половине коры - на границе теменной, височных и затылочной долей и в передних частях лобных долей. Они занимают половину всей площади коры больших полушарий и имеют многочисленные связи со всеми ее частями. В третичных полях оканчивается большинство нервных волокон, соединяющих левое и правое полушария.

Функция третичных полей: организация согласованной работы обоих полушарий, анализ всех воспринятых сигналов, их сравнение с ранее полученнойнформацией, координация соответствующего поведения, программирование двигательной активности.

Эти поля есть только у человекаи созревают позже других корковых полей.

Развитие третичных полей у человека связывают с функцией речи. Мышление (внутренняя речь) возможно только при совместной деятельности анализаторов, объединение информации от которых происходит в третичных полях.

При врожденном недоразвитии третичных полей человек не в состоянии овладеть речью и даже простейшими двигательными навыками.

Рис. Структурные поля коры больших полушарий

С учетом расположения структурных полей коры больших полушарий можно выделить функциональные части: сенсорные, моторные и ассоциативные зоны.

Все сенсорные и моторные зоны занимают менее 20% поверхности коры. Остальная кора составляет ассоциативную область.

Ассоциативные зоны

Ассоциативные зоны - это функциональные зоны коры головного мозга. Они связывают вновь поступающую сенсорную информацию с полученной ранее и хранящейся в блоках памяти, а также сравнивают между собой информацию, получаемую от разных рецепторов (см. рис. ниже).

Каждая ассоциативная область коры связана с несколькими структурными полями. В состав ассоциативных зон входит часть теменной, лобной и височной долей. Границы ассоциативных зон нечеткие, ее нейроны участвуют в интеграции различной информации. Здесь идет высший анализ и синтез раздражений. В результате формируются сложные элементы сознания.

Рис. Борозды и доли коры больших полушарий

Рис. Ассоциативные зоны коры больших полушарий:

1. Ассоциативная двигательная зона (лобная доля)

2. Первичная двигательная зона

3. Первичная соматосенсорная зона

4. Теменная доля больших полушарий

5. Ассоциативная соматосенсорная (кожно-мышечная) зона (теменная доля)

6.Ассоциативная зрительная зона (затылочная доля)

7. Затылочная доля больших полушарий

8. Первичная зрительная зона

9. Ассоциативная слуховая зона (височные доли)

10. Первичная слуховая зона

11. Височная доля больших полушарий

12. Обонятельная кора (внутренняя поверхность височной доли)

13. Вкусовая кора

Похожая информация:

Поиск на сайте:

Высшим отделом ЦНС является кора большого мозга (кора боль-ших полушарий). Она обеспечивает совершенную организацию по-ведения животных на основе врожденных и приобретенных в онто-генезе функций.

3. Третичная (ассоциативная) зона имеет мультисенсорные нейроны. Информация переработана до значимой. Система способна к пластической перестройке, длительному хранению следов сенсорного действия.

Структурные поля коры больших полушарий

При нарушении страдают форма абстрактного отражения действительности, речь, целенаправленное поведение.

Дата публикования: 2015-02-03; Прочитано: 1220 | Нарушение авторского права страницы

Высшим отделом ЦНС является кора большого мозга (кора боль-ших полушарий).

Физиология коры мозга. Сенсорные, двигательные и ассоциативные зоны коры мозга

Она обеспечивает совершенную организацию по-ведения животных на основе врожденных и приобретенных в онто-генезе функций.

В коре головного мозга выделяют: древнюю, старую и новую кору. Древняя и старая кора объединяются с некоторыми близлежащими ядрами и образуют лимбическую систему. Толщина новой коры — 3 мм, включает много извилин, площадь новой коры 2500 см2, 3 вида структур коры головного мозга: нервные клетки, отростки нервных клеток, нейроглия.

В составе коры головного мозга — различные по строению нейроны — звездчатые, большие и малые пирамидные, веретенообразные, корзинчатые и другие.

В функциональном отношении все нейроны подразделяются на:

1. афферентные (звездчатые клетки) — к ним идут импульсы от специфических путей и возникают специфические ощущения. Они передают импульсы к вставочным и эфферентным нейронам. Группа полисенсорных нейронов — получает импульсы от ассоциативных ядер зрительных бугров;

2. эфферентные нейроны (большие пирамидные клетки) — импульсы от них идут на периферию и обеспечивают определенный вид деятельности;

3. вставочные нейроны (малые пирамидные, веретенообразные и другие). Вставочные нейроны могут быть возбуждающими и тормозными (большие и малые корзинчатые нейроны, нейроны с кистеобразными аксонами, канделяброобразные нейроны).

Функции отростков нервных клеток:

1. обеспечивают связь в пределах коры головного мозга между выше- и нижележащими клетками;

2. обеспечивают связь в пределах одного полушария коры головного мозга;

3. комиссуральные — выходят из коры головного мозга, проходят через комиссуру и идут в кору головного мозга противоположного полушария;

4. выходят из коры головного мозга и идут в нисходящем направлении, образуя пирамидные и экстрапирамидные пути.

Высшим отделом ЦНС является кора больших полушарий, ее площадь составляет 2200 см2.

Кора больших полушарий имеет пяти-, шестислойное строение. Нейроны представлены сенсорными, моторными (клетками Бетца), интернейронами (тормозными и возбуждающими нейронами).

Кора полушарий построена по колончатому принципу. Колонки – функциональные единицы коры, делятся на микромодули, которые имеют однородные нейроны.

По определению И. П. Павлова, кора больших полушарий – главный распорядитель и распределитель функций организма.

Основные функции коры больших полушарий:

1) интеграция (мышление, сознание, речь);

2) обеспечение связи организма с внешней средой, приспособление его к ее изменениям;

3) уточнение взаимодействия между организмом и системами внутри организма;

4) координация движений (возможность осуществлять произвольные движения, делать непроизвольные движения более точными, осуществлять двигательные задачи).

Эти функции обеспечиваются корригирующими, запускающими, интегративными механизмами.

И. П. Павлов, создавая учение об анализаторах, выделял три отдела: периферический (рецепторный), проводниковый (трех-нейронный путь передачи импульса с рецепторов), мозговой (определенные области коры больших полушарий, где происходит переработка нервного импульса, который приобретает новое качество). Мозговой отдел состоит из ядер анализатора и рассеянных элементов.

Согласно современным представлениям о локализации функций при прохождении импульса в коре головного мозга возникают три типа поля.

1. Первичная проекционная зона лежит в области центрального отдела ядер-анализаторов, где впервые появился электрический ответ (вызванный потенциал), нарушения в области центральных ядер ведут к нарушению ощущений.

2. Вторичная зона лежит в окружении ядра, не связана с рецепторами, по вставочным нейронам импульс идет из первичной проекционной зоны. Здесь устанавливается взаимосвязь между явлениями и их качествами, нарушения ведут к нарушению восприятий (обобщенных отражений).

3. Третичная (ассоциативная) зона имеет мультисенсорные нейроны. Информация переработана до значимой. Система способна к пластической перестройке, длительному хранению следов сенсорного действия. При нарушении страдают форма абстрактного отражения действительности, речь, целенаправленное поведение.

Совместная работа больших полушарий и их асимметрия.

Для совместной работы полушарий имеются морфологические предпосылки. Мозолистое тело осуществляет горизонтальную связь с подкорковыми образованиями и ретикулярной формацией ствола мозга. Таким образом осуществляется содружественная работа полушарий и реципрокная иннервация при совместной работе.

Функциональная асимметрия. В левом полушарии доминируют речевые, двигательные, зрительные и слуховые функции. Мыслительный тип нервной системы является левополушарным, а художественный – правополушарным.

Сенсорные зоны — это функциональные зоны коры головного мозга, которые через восходящие нервные пути получают сенсорную информацию от большинства рецепторов тела.

Первичные сенсорные и моторные зоны занимают менее 10% поверхности коры головного мозга и обеспечивают наиболее простые сенсорные и двигательные функции.

Ассоциативные зоны — это функциональные зоны коры головного мозга. Они связывают вновь поступающую сенсорную информацию с полученой ранее и хранящейся в блоках памяти, а также сравнивают между собой информацию, получаемую от разных рецепторов. Сенсорные сигналы интерпретируются, осмысливаются и при необходимости используются для определения наиболее подходящих ответных реакций, которые выбираются в ассоциативной зоне и передаются в связанную с ней двигательную зону. Таким образом, ассоциативные зоны участвуют в процессах запоминания, учения и мышления, и результаты их деятельности составляют то, что обычно называют интеллектом.

Отдельные крупные ассоциативные области расположены в коре рядом с соответствующимисенсорными зонами. Например, зрительная ассоциативная зона расположена в затылочной зоненепосредственно впереди сенсорной зрительной зоны и осуществляет описанные вышеассоциативные функции, связанные со зрительными ощущениями. Например, звуковая ассоциативная зона анализирует звуки, разделяя их на категории, а затем передает сигналы в более специализированные зоны, такие как речевая ассоциативная зона, где воспринимается смысл услышанных слов.

Двигательные зоны — это функциональные зоны коры головного мозга, посылающие двигательные импульсы к произвольным мышцам по нисходящим путям, которые начинаются в белом веществе больших полушарий.

Дата публикования: 2015-02-03; Прочитано: 1219 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…

Кора мозга – слой серого вещества на поверхности больших полушарий, площадь ≈ 2200 см2, 6 слоев нервных клеток, клетки различные ≈ 14 млд, толщина коры ≈ 2 – 4 мм.

Кора мозга – высший отдел нервной системы, регулирует функции организма, устанавливает связь с внешней средой. Коре мозга присуща ВНД (высшая нервная деятельность) психическая, регулирует поведение человека, направлена на приспособление организма к изменяющимся условиям внешней среды, обеспечивает память, логическое мышление, чтение, письмо, речь.

При патологии коры могут возникнуть: нарушения памяти, узнавания, речи, письма, изменяется поведение человека (агрессивное, не понимает окружающих и др.).

Функциональные зоны коры рассматриваются как:

1. моторные (двигательные);

2. сенсорные (чувствительные): кожной чувствительности, слуховой, зрительной, вкусовой, обонятельной;

Сущность жизни

ассоциативные , осуществляют связь между различными областями коры.

Функции коры.

Кора мозга – сложная система анализаторов, где происходит анализ раздражений.

Различают:

сенсорные (чувствительные) зоны коры;

— двигательные (моторные), которые регулируют все движения человека (работу мышц).

1. В лобных долях коры мозга расположены:

центр письма, анализатор письменной речи, центр одновременного поворота головы и глаз в одну сторону, центр регулирующий работу всех скелетных мышц (у правшей – слева, у левшей – справа), центр речи (т.е. двигательный анализатор).

2. В теменных долях коры мозга расположены:

центр чтения, анализатор письменной речи, центр осязания (температурный, болевой, узнавания предметов на ощупь), центр навыков трудового, спортивного характера, центр кожной чувствительности.

3. В височных долях коры мозга расположены:

Слуховой анализатор,

Центры обоняния, (восприятие запахов, их определение), центры вкуса.

4. В затылочной доле коры мозга расположен зрительный анализатор.

В коре головного мозга расположены центры условных рефлексов, которые обеспечивают приспособление организма к меняющимся условиям внешней среды.

Высшая нервная деятельность (ВНД) – способность мозга к образованию общих понятий, представлений, к отвлеченному логическому мышлению.

  • Представляют из себя центральные (корковые) отделы анализаторов, к ним подходят чувствительные (афферентные) импульсы от соответствующих рецепторов
  • Занимают небольшую часть коры полушарий (до 20%)

v Размер зоны зависит от количества нейронов, воспринимающих раздражение от определённых рецепторов (чем больше клеток, том тоньше анализ раздражений, выше чувствительность участка тела)

v При разрушении сенсорных областей коры наступает нарушение чувствительности (слепота, глухота и др.) при сохранении целостности перферических отделов анализаторов (глаз, уха, кожи и т.д.)

1. Соматосенсорная зона – область кожной (оязание, температура, боль, вибрация, давление, влажность), висцеральной (чувствительность внутренних органов), проприорецептивной (мышечная, суставная, сухожильная чувствительность рецепторов, раздражающихся при движении) – располагается в заднецентральной извилинетеменной доли

v В правое полушария поступают импульсы от левой половины тела, а в левое – от правой

v Самый большой размер имеет имеет сенсорная область кисти руки, затем голосового аппарата и лица.Наименьшее – сенсорные области туловища, бедра, голени, что соответствует их физиологической значимости

2. Сенсорная зрительная зона – локализуется в коре затылочной доли в правом и левом полушарии (в эту зону приходят рецепторы от сетчатки глаза; образует неполный перекрёст); двухстороннее поражение этой зоныведёт к полной потере зрения

Основные зоны коры

Сенсорная слуховая зона – располагается в коре височной доли левого и правого полушария

v К каждому полушарию подходят проводящие пути от рецепторов кортиевого органа улитки как с левой, так и с правой стороны (возникновение и осознание звуковой информации). Обрабатывает чувствительную информацию с вестибулярного аппарата и создаёт ощущение положения тела в пространстве

v При двухстороннем поражении этой зоны наступает полная глухота; при поражении в левом полушарии – музыкальная глухота (узнавание мотивы) и словесная глухота (больной перестаёт распознавать значение слов); раздражение этой зоны или воспаление вызывает слуховые галлюцинации

4. Сенсорная вкусовая зона – локализуется в нижней части заднецентральной извилины теменной доли полушарий (к ней подходят импульсы от вкусовых рецепторов полости рта и языка (как с левой, так и с правой стороны); поражениея этой зоны ведёт к потере или искажению вкусовых ощущений

5. Сенсорная обонятельная зона локализуется в гипокамповой извилине лимбической системы в глубине боковой борозды — островке (к ней подходят импульсы от обонятальных рецепторов слизистой оболочки носовой полости); двухстороннее поражение ведёт к полной потере обоняния (аносмии )

II. Моторные (двигательные) зоны коры больших полушарий (зоны, при раздражении которых возникает движение скелетной мускулатуры) – локализуются в переднецентральной извилине полушарий лобных долей

  • Здесь формируются сигналы, регулирующие произвольные движения скелетных мышц (при раздражении различных участков этой области возникают сокращения отдельных мышц)

v При повреждении области передней центральной извилины наступает обездвиживание – паралич, несмотря на функциональную полоноценность мышц

v Соединяются с сенсорными зонами, вследствие чего при раздражении сенсорной области наряду с ощущением возникает и движение, а вместе с движением возникает ощущение

v Представительство мышц различных частей тела соответствует представительству соматосенсорной зоны в заднецентральной извилине (величина корковой двигательной зоны прапорциональна не массе мышц, а точности движений; особенно велика зона, управляющая движениями кисти руки, языка, мимической мускулатурой лица)

v Двигательные пути от обоих полушарий образуют прекрёст, поэтому при раздражении моторнрной зоны правой стороны коры возникает сокращение мышц левой стороны тела и наоборот

v Импульсы от моторных зон коры полушарий по нисходящим путям поступаю в двигательные нейроны передних рогов серого вещества спинного мозга и только потом в мышцы

  • Моторная и сенсорная зоны, расположенные по обе стороны центральной борозды, представляют собой единое фцнкциональное образование, и их часто объединяют под названием сенсомоторной зоны

Локализация функций в коре головного мозга.

Существует две точки зрения: 1) кора выполняет общие функции; 2) имеются зоны, в которых локализуются определенные функции.

Кора делится на поля, которые объединяются в зоны. Зоны отвечают за определенные функции, поля в этих зонах - за какую-то часть этой функции.

В соответствии с классификацией Бродмана, кора разделена 11 областей и на 52 поля: 1) постцентральная область (1,2,3,43); 2) прецентральная область (4,6); 3) лобная область (8,9,10,11,12,44,45,46,47); 4) островковая область – 13,14,15,16; 5) теменная область – 5,7,40,39; 6) височная область – 20,21,22,36,37,38,41,42,52; 7) затылочная область – 17,18,19; 8) поясная область – 23,31,24,32,33,25; 9) ретросплениальная область – 26,29,30; 10) гиппокампова область – 27,28,34,35,48; 11) обонятельная область – 51, обонятельный бугорок.


Рис. 6 Цитоархитектонические поля по Бродману

А – верхнелатеральная поверхность; Б – медиальная поверхность;

Корковые поля различаются по форме, величине и количеству расположенных в них клеток, общее количество нейронов в коре около 14 млрд.

Экспериментальными исследованиями установлено наличие в коре мозга трех зон, связанных со специфическими функциями и участками тела - двигательных, сенсорных и ассоциативных. Взаимосвязь между зонами позволяет координировать произвольные и непроизвольные формы деятельности, а также психические функции личности.

Павлов рассматривал кору большого мозга как совокупность корковых концов анализаторов. Корковый конец анализатора имеет не строго ограниченные границы, а состоит из ядерной и рассеянной частей. Ядро представляет собой точную проекцию в коре периферических рецепторов данной области и является необходимым для осуществления общего анализа и синтеза. Рассеянные элементы находятся по периферии ядра или могут быть разбросаны далеко от него. В них осуществляются более простые анализ и синтез.

Сенсорные зоны.

Сенсорные зоны занимают участки мозга, связанные с определенными видами чувствительности. В эти зоны поступает сенсорная информация.

Первичные сенсорные зоны - это области сенсорной коры, раздражение или разрушение которых вызывает четкие, постоянные изменения чувствительности организма (ядра анализаторов по Павлову).

Вокруг первичных зон находятся менее локализованные вторичные сенсорные зоны , нейроны которых отвечают на действие нескольких раздражителей.

Рассмотрим основные первичные зоны коры.

1) зона кожно-мышечной чувствительности (соматосенсорная зона )– теменная кора, пост(задне)-центральная извилина, поля 1,2,3,5,7 – к этой зоне приходят проприоцептивные импульсы от скелетных мышц, а также импулься от тактильных, температурных и других рецепторов кожи. Самую большую площадь зоны занимает область кисти, голосового аппарата, головы. Наименьшую площадь занимают представительства туловища, нижних конечностей. При повреждении зоны нарушается кожно-мышечная чувствительность



2) зрительная зона – ядро зрительного анализатора находится на медиальной поверхности затылочной доли полушарий, поля 17, 18, 19 - все зрительные ощущения. Ядро зрительного анализатора правого полушария связано проводящими путями с латеральной половиной сетчатки правого глаза и медиальной половиной сетчатки левого глаза. Ядро зрительного анализатора левого полушария связано с латеральной половиной сетчатки левого глаза и медиальной половиной сетчатки правого глаза.

3) Слуховая зона – ядро слухового анализатора лежит в средней части верхней височной извилины, обращенной к островку; к ним из полушарий подходят проводящие пути от рецепторов органа слуха как левой так и правой стороны. Височная доля, поля 20, 21 (нарушение равновесия), 22 (музыкальная глухость), 41 (информация от улитки - снижение слуха), 37.

4) Обонятельная зона – ядро обонятельного анализатора располагается в пределах основания обонятельного мозга, поле 11.

5) Вкусовая зона - древняя кора, ядро вкусового анализатора по одним данным находится в постцентральной извилине, близко к центрам языка, рта; по другим данным оно находится рядом с корковым концом обонятельного анализатора. Установлено, что расстройство вкуса наступает при поражении 43 поля.

Моторные зоны: двигательных зонах коры возникают импульсы, передающиеся по нисходящим путям к мышцам головы, туловища и конечностей. Ядро двигательного анализатора представлено полями 4 и 6, расположенными в предцентральной извилине и парацентральной извилине. Двигательные зоны каждого из полушарий связаны со скелетной мускулатурой противоположной стороны тела. Выделяют первичную и вторичную области.

1) Первичная область, моторная зона - переднецентральная извилина, 4 поле, работа сложной скелетной мускулатуры, большая часть регулирует работу мышц лица, кисти. При поражении этой зоны утрачивается способность к тонким, координированным движениям конечностей и особенно пальцами рук.

2) Вторичная двигательная зона, премоторная зона - поля 6,8,9,10,11 в лобной доле, сложные двигательные условные рефлексы, тонус скелетных мышц, регуляция работы внутренних органов, осуществляет высшие двигательные функции, связанные с планированием и координацией произвольных движений.

Описанные корковые концы анализаторов осуществляют анализ и синтез сигналов, поступающих из внешней и внутренней среды организма, составляют первую сигнальную систему. Согласно Павлову, в отличие от первой вторая сигнальная система есть только у человека и связана с развитием речи.

Ассоциативные зоны:

Включают участки новой коры большого мозга, которые расположены вокруг проекционных зон и рядом с двигательными зонами. Располагаются между сенсорными зонами - в них возникает возбуждение независимо от вида раздражителя.

Они не выполняют непосредственно чувствительных или двигательных функций. Нейроны этих зон обладают большими способностями к обучению.

Нейроны ассоциативной зоны отвечают не на один, а на несколько раздражителей.

Выделяют две основные ассоциативные системы мозга : таламотеменную и таламолобную.

Таламотеменная система представлена ассоциативными зонами теменной коры. Ее основные функции: гнозис и праксис. Гнозис - функция различных видов узнавания – формы, величины, значения предметов, понимание речи, познание процессов, закономерностей и др.

Праксис – целенаправленное действие, центр праксиса отвечает за хранение и реализация программы двигательных автоматизированных актов.

Таламолобная система представлена ассоциативными зонами лобной коры. Основная функция сводится к инициации базовых системных механизмов формирования функциональных систем целенаправленных поведенческих актов (Анохин).

Корковые концы анализаторов речи. Центры речи:

А) Двигательный центр - в нижней части передней центральной извилины, поле 44-45, 44 - центр Брока – обеспечивает речевой праксис, в этой части речедвигательного анализатора осуществляется анализ движений всех мышц губ, щек, языка, гортани, принимает участие в акте образования устной речи (произношение слов и предложений). Повреждение участка коры этой области (44 поле) приводит к двигательной афазии, т.е. утрате способности произносить слова. 45 – музыкальный моторный центр – обеспечивает тональность речи, способность петь, находится в центральных отделах лобной извилины; поражение 45 поля сопровождается аграмматизмом, т.е. утрате способности к составлению осмысленных предложений из отдельных слов. Центр письменной речи локализуется в заднем отделе средней лобной извилины, обеспечивает автоматизм письма.

Б) Слуховой центр осмысления устной речи - в задней части верхней височной извилины, поле 42, 22 (центр Вернике), 40, 37. При повреждении нарушается понимание смысла слов, но сохраняется говорливостью - амназия.

В) Зрительный центр – располагается в теменной доле, поля 39,40, обеспечивает восприятие письменной речи.

Сенсорные центры речи 2 и3 представлены только в левом полушарии.

← Вернуться

×
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:
Я уже подписан на сообщество «sinkovskoe.ru»