Развитие волновой энергетики в россии. Волновая электростанция Oceanlinx

Подписаться
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:

Волновая энергетика среди всех альтернативных источников энергии считается наиболее эффективной. Специалисты утверждают, что удельная мощность водных масс мирового океана намного превышает потенциал солнечной и ветровой энергии. Несмотря на этот факт, основа волновой энергетики – волновые электростанции значительно уступают по численности своим «альтернативным» конкурентам - ветровым и солнечным.

  • Волновая энергетика: стоимость технологий должна снизиться

Волновая энергетика имеет меньший спрос из-за дороговизны строительства станций на воде, хотя обслуживание волновых электростанций может быть достаточно приемлемым. С этой же проблемой в начале своего пути сталкивалась и , и , и солнечная энергетика. Однако с течением времени эти отрасли претерпели изменения, а появление новых технологий и методов позволило сократить суммы начальных вложений и, как следствие, стоимость единицы энергии. Учитывая тенденции, с которыми происходит развитие альтернативных источников энергии, можно ждать увеличения популяции волновых электростанций. Более того, уже сейчас есть очень интересные примеры таких механизмов.

Islay LIMPET является первой в мире промышленной энергетической волновой установкой. Может поставлять до 500 кВт и подключена к национальной энергосистеме. Claire Pegrum / wikimedia.org (CC BY-SA 2.0)

  • Волновая энергетика: принцип осцилляции

Сначала была придумана волновая электростанция, работающая по принципу осциллирующего столба . Осциллировать - значит колебаться, а в данном случае колебанию подвержен уровень воды в столбе. На берегу устанавливается специальная бетонная камера, расположенная под углом к морской глади так, чтобы в нее затекала вода. Прибывающие волны заполняют полость камеры, тем самым направляя воздух в турбину, генерирующую электроэнергию. Важным преимуществом волновой энергетики на базе принципа осцилляции является их меньшая стоимость по сравнению с офшорными, которые мы рассмотрим ниже.

  • Первая береговая волновая электростанция

Первая береговая волновая электростанция, названная Isley Limpet, была запущена в Шотландии и подключена к общей энергетической сети страны. Несмотря на то что станция проработала 13 лет, в 2013 г. она была выведена из эксплуатации по неизвестным причинам. Воспользовавшись опытом британских коллег, в 2011 г. испанцы соорудили на побережье Бискайского залива такую же станцию, но уже с 16 турбинами. В отличие от своего северного собрата, она действует по сей день. Технология осциллирующего столба также применяется в Португалии и Японии и довольно перспективна, правда, пока что такие генераторы выдают до 500 кВт электричества.

Islay LIMPET размещена на Claddach Farm, Rhinns of Islay, шотландский остров Islay. Peter Church / wikimedia.org (CC BY-SA 2.0)

На данный момент в мире существует всего пара-тройка знаменитых волновых электростанций.

  • Волновая энергетика : принцип колебаний

Также волновые электростанции могут работать за счет колеблющегося тела, находящегося на поверхности воды и двигающегося на волнах. Роль тела могут исполнять буи, соединенные с гидравлическими механизмами, которые приводят в движение генераторы электричества. По данной схеме была сооружена электростанция Pelamis, запущенная в 2008 г. у берегов Португалии, но на данный момент не функционирующая. Она представляла собой «змею», состоящую из нескольких секций, которые двигались на волнах относительно друг друга. Внутри секций, выполненных в виде труб диаметром 3,5 м, находились гидравлические двигатели и генераторы, откуда по кабелю, проложенному по дну океана, на берег поступало электричество. Эта станция была самой мощной из всех водных, существовавших по сей день, но, к сожалению, отсутствие финансирования не позволило ей развиваться дальше.

Электростанция Pelamis, была установлена в Agucadoura Wave Park, Portugal. S.Portland / wikimedia.org (CC-PD-Mark)

  • Волновая энергетика : принцип конвертера

Схожую по мощности установку обещала запустить шотландская компания Aquamarine Power. Она разработала конвертер, названный Oyster, представляющий собой буй в виде створки, закрепленный на дне океана недалеко от берега. Раскачиваясь на волнах, этот механизм по трубам направляет воду на сушу, где она, в свою очередь, раскручивает электрогенератор. Затем вода перегоняется обратно в океан. Многие нашли этот проект перспективным, и компания получила инвестиции в размере 11 млн фунтов. Планировалось создание комплекса таких установок в размере 50 шт., но покупателя на данный проект не нашлось. Пока что в прибрежных водах Шотландии действуют лишь несколько экспериментальных экземпляров.

  • Рентабельны волновые энергоустановки для небольших объектов

Вышеназванные примеры показывают, что ученые упорно ищут способы эффективно и, главное, рентабельно использовать силу морских волн для создания мощной глобальной отрасли волновой энергетики. Однако, как это бывает в начале любых свершений, они сталкиваются с неудачами. Так что на данный момент в мире существует всего пара-тройка знаменитых волновых электростанций. С другой стороны, если не говорить об относительно мощных станциях, то по миру уже функционирует множество установок, питающих электричеством совсем небольшие объекты. Зачастую ими пользуются маяки и прочие береговые сооружения.

OPT’s PB150 PowerBuoy успешно развернута на море в апреле 2011 командой, включающей в себя Global Maritime Scotland Ltd, Port Services (Invergordon) Ltd и OPT, с поддержкой Cromarty Firth Port Authority. Генерирует возобновляемую энергию через волны. Максимальная выходная мощность 150 квт. Ocean Power Technologies / wikimedia.org Free Art License 1.3

  • Проблема дороговизны волновых электростанций пока не решена

Для создания отрасли волновой энергетики практически с нуля ученым придется совладать с серьезными трудностями. Как уже упоминалось, главная проблема - это дороговизна. Помимо того что конструкция станций зачастую слишком затратная, требуются особые материальные усилия для ее установки на воде или на дне моря. Кроме этого, ученым необходимо больше опыта для лучшего выбора места новой станции, в котором течения будут наиболее эффективными. Не обойдется без негативного воздействия на социальные и экологические аспекты проблемы - большое количество механизмов вблизи берега будет мешать рыболовству, а также газообмену вод.

Словом, с будущим волновой энергетики пока не все ясно. Воды морей и океанов - это очень мощный, возобновляемый и экологический чистый источник энергии, но человек пока что недостаточно ловок, чтобы укротить его с малыми потерями.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

. Места с наибольшим потенциалом для волновой энергетики - западное побережье Европы , северное побережье Великобритании и Тихоокеанское побережье Северной , Южной Америки , Австралии и Новой Зеландии , а также побережье Южной Африки [ ] .

История

Первая волновая электростанция

Первая волновая электростанция расположена в районе Агусадора , Португалия , на расстоянии 5 километров от берега. Была официально открыта 23 сентября 2008 года португальским министром экономики. Мощность данной электростанции составляет 2,25 МВт , этого хватает для обеспечения электроэнергией примерно 1600 домов. Первоначально предполагалось, что станция войдёт в эксплуатацию в 2006 году, но развёртывание электростанции произошло на 2 года позже планируемого срока. Проект электростанции принадлежит шотландской компании Pelamis Wave Power, которая в 2005 году заключила контракт с португальской энергетической компанией Enersis на строительство волновой электростанции в Португалии. Стоимость контракта составила 8 миллионов евро.

Параметры электростанции

Электростанция состоит из 3-х устройств под названием Pelamis P-750 (англ.) русск. . Это большие плавающие объекты змеевидного типа, размер каждого:

Мощность одного такого конвертера составляет 750 КВт. Удельные характеристики: мощность 1 кВт/тонну и 650 Вт на м³ конструкции. В электричество превращается примерно 1% энергии волнения. [ ]

Устройство и принцип действия

Pelamis P-750 состоит из секций, между секциями закреплены гидравлические поршни. Внутри каждой секции также есть гидравлические двигатели и электрогенераторы. Под воздействием волн конвертеры качаются на поверхности воды, и это заставляет их изгибаться, за что конструкции стали называть «морскими змеями» («sea-snake») . Движение этих соединений приводит в работу гидравлические поршни, которые, в свою очередь, приводят в движение масло. Масло проходит через гидравлические двигатели. Эти гидравлические двигатели приводят в движение электрические генераторы, которые производят электроэнергию .

Перспективы

В дальнейшем планируется добавить к трём существующем конвертерам ещё 25, что увеличит мощность электростанции с 2,25 МВт до 21 МВт . Такой мощности хватит для обеспечения электроэнергией 15 000 домов и снизит выбросы углекислого газа на 60 000 тонн в год.

Российские разработки

На территории Москвы может быть начато строительства производственного научно-исследовательского предприятия, которое будет разрабатывать модуль поплавковой волновой электростанции. Инвестор планирует строительство опытно-промышленного предприятия, включающего в себя производственную научно-исследовательскую лабораторию.

Другие эксплуатирующиеся и строящиеся волновые электростанции

Преимущества и недостатки волновой энергетики

Существует проблема, связанная с тем, что при создании волновых электростанций штормовые волны гнут и сминают даже стальные лопасти водяных турбин. Поэтому приходится применять методы искусственного снижения мощности, отбираемой от волн.

Преимущества

  • Волновые электростанции могут выполнять роль волногасителей, защищая порты, гавани и берега от разрушения.
  • Маломощные волновые электрогенераторы некоторых типов могут устанавливаться на стенках причалов, опорах мостов, уменьшая воздействие волн на них.
  • Поскольку удельная мощность волнения на 1-2 порядка превышает удельную мощность ветра, волновая энергетика может оказаться более выгодной, чем

Волновая электростанция - это электрическая станция, которая располагается в водной природной среде с целью получения электроэнергии из кинетической энергии водных масс. Океаны обладают колоссальной энергией, но человек пока только начинает ее осваивать. Именно эту задачу и выполняют волновые электростанции.

Принцип работы

Принцип работы волновой электростанции основан на преобразовании кинетической энергии волн в электрическую. Существует несколько способов устройства подобных станций различных по принципу работы и конструкции.

Волновые электростанции в России

В России, как и во всех странах, имеющих выход к морскому побережью, после многих лет затишья, возвращается интерес к источникам энергии, способным восстанавливаться, к ним относятся и волновые электростанции.

Первая в нашей стране электростанция , основанная на преобразовании энергии волн, построена в
2014 году на Дальнем Востоке в Приморском крае на полуострове Гамова. Это универсальная станция, она способна преобразовывать не только энергию направленных водных масс, но и энергию природных приливов и отливов.

Профильные министерства нашей страны, совместно с руководством государства разработали план развития зеленой энергетики до 2020 года, в соответствии с которым альтернативные энергетические источники будут составлять до 5% от общего количества вырабатываемого электричества в стране. Этим планом предусмотрено и дальнейшее развитие волновых электрических станций.

Волновые электростанции в мире

Первая в мире электростанция на волнах появилась в 1985 году в Норвегии, ее мощность составляла 500 кВт.

Первой в мире промышленной электрической станцией, использующей энергию волн для производства
электрической энергии, принято считать Oceanlinx в Австралии. Она начала своё функционирование в 2005 году, потом была произведена ее реконструкция, и в 2009 году станция заработала вновь. Работа станции основана на принципе «осциллирующего водяного столба». Мощность установки сейчас составляет 450 кВт.

Первая коммерческая волновая электростанция начала работу в 2008 году в Агусадоре, Португалия. Это установка-пионер, которая использует непосредственно механическую энергию волны. Работа станции основана на принципе «колеблющегося тела». Разработала проект английская компания Pelamis Wave Power, мощность станции составила 2,3 МВт, и есть возможность увеличения мощности путем монтирования дополнительных секций.

В Великобритании построили самую большую в мире волновую электростанцию Wave Hub, она расположена у полуострова Корнуэлла. Электростанция оборудована 4-мя генераторами мощностью по 150 кВт каждый. Работа станции основана на принципе «колеблющегося тела».

Почему это выгодно?

В существующем мире человек все чаще задумывается о необходимости применения возобновляемых источников энергии при получении электроэнергии. Одним из таких вариантов является энергия морских волн. С учетом того, что мировой океан обладает огромным потенциалом, энергией которого можно обеспечить почти 20% от необходимого количества энергопотребления, то и развитие «зеленой» энергетики как нельзя актуально в наше время.

Это можно объяснить следующим причинами:

  1. Природные богатства планеты находятся на грани истощения, запасы традиционных источников энергии: угля, нефти и газа – подходят к концу.
  2. Атомная энергетика из-за своей потенциальной опасности не получила должного распространения.
  3. «Зеленая» энергетика не вредит окружающей среде и является возобновляемой.
  4. Потенциал волновых электростанций оценивается в 2,0 млн. МВт, что сравнимо по мощности с тысячей работающих атомных станций.

Ученые всего мира продолжают работы по совершенствованию способов преобразования энергии волн океана, и перечисленные выше причины являются важным аргументом для продолжения этих изысканий.

Плюсы и минусы использования

У любого агрегата всегда есть положительные и отрицательные аспекты его использования, и именно соотношение этих параметров определяет целесообразность его применения. Волновые электростанции не являются исключением, рассмотрим все за и против использования этого источника энергии.

К плюсам использования можно отнести:


К минусам данного типа электростанций относятся:

  • Малая мощность вырабатываемой энергии;
  • Не стабильный характер работы, вызванный атмосферными явлениями в окружающей среде;
  • Может создавать опасность для хода судов и промышленного лова рыбы.

Приведенные выше «минусы» использования постепенно утрачивают свою актуальность, ученые и конструкторы продолжают свою работу. Разработка новых, более мощных генераторов, позволяет получать большее количество электрической энергии, при тех же исходных параметрах первичной энергии, которой является энергия волн. Решаются задачи по передаче полученной энергии на большие расстояния.

В нашей стране интерес к волновым преобразователям возник в 20-30гг. XX века. В 1935г. наш великий соотечественник К.Э. Циолковский опубликовал статью «Волнолом и извлечение энергии из морских волн», в которой описал принципиальные схемы трех типов устройств и в настоящее время относящихся к разряду наиболее перспективных. В них без труда узнаем (рис. 2.1) аналоги будущих устройств разработанных Масудой, Кайзером, Коккереллом. Российский ученый К.Э. Циолковский считал, что первые две системы не оригинальны, но относительно новизны последней - контурного плота - не сомневался.

Рис. 2.1.

описанные К.Э. Циолковским: а,б - пневматические; в - контурный плот.

В 70-х годах прошлого века на Черном море испытывалась модель волнового плота. Она имела длину 12 м, ширину поплавков 0,4 м. На волнах высотой 0,5 м и длиной 10 - 15 м установка развивала мощность 150 кВт. (рис.2.2)

Рис. 2.2. Вариант выполнения контурного плота Коккерелла: 1 - колеблющаяся секция; 2 - преобразователь; 3 - тяга; 4 - шарнир.

Детальные лабораторные испытания модели плота в масштабе 1/100 показали, что его эффективность составляет около 45 %. Это ниже, чем у «утки» Солтера, но плот привлекает другим достоинством: близость конструкции к традиционным судостроительным.

В современной России существует множество разработок волновых электростанций, все они реализованы в той или иной степени. Одним из таких проектов является совместная разработка компании ОАО «OceanRusEnergy» и Уральский федеральный университет (УрФУ г. Екатеринбург).

Рис. 2.3.

При создании волнового движения в верхней и нижней точках прохождения волны, маятник совершает возвратно-поступательные движения, аккумулируя потенциальную энергию в пружине. При вращении вала генератора вырабатывается переменный ток. Для создания постоянного тока предусмотрены небольшие выпрямители (например, по схеме Ларионова), что позволяет осуществлять зарядку АКБ (аккумуляторная батарея).

Схема воздействия волны на поплавковый микромодуль волновой микро ЭС (ВГЭС) представлена на рис. 2.4.

волновой электростанция поплавковый микромодуль

Рис. 2.4

При испытаниях модуля ВГЭС имитировалась волновая качка Баренцева моря с периодом колебания волны от 1 до 3,5 секунд, среднегодовой скоростью ветра 7-9 м/с, расчетной гарантированной амплитудой колебаний (высота волны) 20 см и 30 см. Для имитации волн был использован кривошипно-шатунный механизм (КШМ) с продольным движением конечного звена - тяги. КШМ преобразовывал вращение вала двигателя в возвратно-поступательное движение тяги. В качестве привода был выбран асинхронный двигатель мощностью Р=1 кВт и частотой вращения n0 не менее 3000 об/мин. Редуктор был подобран из расчета передаточного отношения Z=25.

Использование в исследовании режимов имитации волн с амплитудой А=20, А=30, и периодом колебаний Т=2, 3, 3.5 с позволило получить необходимые электротехнические значения и характеристики для оценки генерируемой мощности и определить оптимальные и эффективные режимы работы исследуемой поплавковой ВГЭС.

Испытания на стенде проводились в лаборатории волновой энергетики Евроазиатского центра ВИЭ УрФУ. Испытуемый образец ВГЭС представлен на рис. 2.5.

Рис. 2.5.

Пример электротехнических параметров генерирующего модуля при постоянном токе(DC) представлен на графике.

График показателя мощности ВГЭС при амплитуде колебаний 0,2м и периоде 1 с.

Результаты экспериментов с имитацией волн разной амплитуды и периода колебаний волн Т показали, что генерируемая мощность одного модуля ВГЭС составляет 15-60 Вт. Увеличение мощности до уровня, нескольких кВт, решается за счет использования нескольких микромодулей ВГЭС, объединенных в единый кластер (рис.2.6)

Рис. 2.6.

Дальнейшее наращивание мощности ВГЭС до нескольких десятков и сотен кВт может быть реализовано путем сборки большего числа микромодулей в кластеры ВИЭ на базе волновых микромодулей (рис. 2.7).

Рис. 2.7.

Заключение

В случае непосредственного использования электроэнергии, вырабатываемой волновой станцией, для хозяйственных нужд ее нельзя рассматривать как самостоятельный источник. Непостоянство во времени и пространстве, сезонный характер самого ресурса требуют иметь в резерве какой-то дополнительный источник электроэнергии, либо подключать волновую электростанцию к энергосети, позволяющей за счет сторонних источников компенсировать снижение мощности из-за уменьшения волнения, либо, наконец, использовать аккумулирование энергии.

Еще одна трудность при создании волновых преобразователей - обеспечение их живучести в случае экстремальных волновых нагрузок, значительно превышающих расчетные режимы эксплуатации. Среднее значение мощности, для Северной Атлантики составляет примерно 50 кВт/м. Во время сильного шторма эта величина может достичь значения 2 МВт/м при высоте волн 15 м. Наблюдавшиеся в этом же районе максимальные волны (так называемые «пятидесятилетние волны») имели высоту до 34 м. Для этого района считается целесообразным разрабатывать устройства, рассчитанные на нормальную работу в диапазоне мощностей 50--150 кВт/м. Таким образом, чтобы противостоять штормам средней силы преобразователи энергии волн должны иметь установленную мощность, значительно превышающую среднюю. Это не спасает их от сильных штормов. Здесь предложено несколько вариантов защиты. Например, в случае такого шторма преобразователь может быть затоплен. Другой вариант -- так рассчитывать преобразователи, чтобы с увеличением волнения выше оптимального их эффективность падала. Однако, в любом случае возникают серьезные трудности при обслуживании, передаче энергии, удержании на якоре. Возникают даже совершенно новые проблемы. Например, срыв с якоря одного из точечных преобразователей может привести к разрушению соседних с ним устройств. Выбрасывание же на берег аварийных устройств может привести к опасности разрушения береговых сооружений.

Трудности создания энергетики на преобразовании энергии волн достаточно велики. Их преодоление потребует еще многих усилий разработчиков и ученых. В настоящее время в мире уже эксплуатируется около 400 автономных навигационных буев, использующих энергию воды. Однако уже в этом столетии прогнозируется возможное получение от океанских волн мощности не менее 10 ГВт (мощность Красноярской ГЭС около 12 ГВт).

Преимущества волновой энергии состоят в том, что она достаточно сильно сконцентрирована, доступна для преобразования и на любой момент времени может прогнозироваться в зависимости от погодных условий. Создаваясь под действием ветра, волны хорошо сохраняют свой энергетический потенциал, распространяясь на значительные расстояния. Например, крупные волны, достигающие побережья Европы, зарождаются во время штормов в центре Атлантики и даже в Карибском море.

Энергия волн – энергия, которую волны переносят по поверхности воды. Это неисчерпаемый источник, пригодный для получения электричества. Для преобразования энергии волны в электроэнергию сооружают электростанции волновые. Их монтируют непосредственно в воду.

В перспективе волновая генерация может за год выдать 4 ТВт в прибрежных зонах и до нескольких десятков ТВт в открытом море.

Природа явления

Волнообразование – есть результат воздействия солнечных лучей. Солнце нагревает воздушные массы, из-за чего они перемещаются в пространстве. В процессе перетекания воздух соприкасается с поверхностью океана, инициируя возникновение волны.

Энергоемкость конкретного волнового вала определяется:

  • силой ветров;
  • продолжительностью порывов;
  • шириной воздушного фронта.

Максимальное значение энергоемкости одной волны достигает 100 кВт на 1 м. Данный показатель существенно понижается на мелководье, что объясняется трением о дно водоема.

Принцип действия классической волновой электростанции

Осциллирующая водяная колонна с воздушной турбиной Уэллса являет собой классический, наиболее проработанный вид волновой электростанции. Аналогичное оборудование успешно функционирует как в море, так и в прибрежной зоне.

Принцип работы одинаков и для стационарных, и для плавучих моделей. Волной в, наполовину погруженной в воду, камере поднимается уровень воды. Благодаря заполнению внутреннего объема агрегата водой, воздух, находящийся внутри, под давлением выдавливается из сосуда. Образовавшиеся воздушные потоки пропускаются через лопасти реверсивной турбины низкого давления Уэллса. Когда возникает откат воды, воздух возвращается в камеру, минуя все те же турбинные лопатки. Уэллс добился сохранения направления вращения вала турбины вне зависимости от направления движения волны, что обеспечивает непрерывность передачи крутящего момента на вал генератора.

Турбина Алана Артура Уэллса избавлена от сложных механизмов измерения шага, а также систем клапанов. Агрегат имеет симметричное сечение и сравнительно большой угол атаки лопастей. В целом механизм характеризуется:

  • малым отношением скорости вращения к скорости потока воздуха;
  • высоким коэффициентом лобового сопротивления;
  • периодическими провалами мощности;
  • КПД на уровне 40-70%;
  • шумностью – издаваемые им, звуки сопоставимы со звучанием огромного органа.


Совершенствование классической модели

Принцип действия подобных агрегатов сохраняется неизменным. Конструкторы пытаются изменить архитектуру камеры, чтобы добиться максимального сжатия воздушной массы внутри нее. Усовершенствованная модель камеры позволяет изменять ее объем и геометрию в зависимости от состояния акватории.

Эффективность этой идеи доказали и теоретически, и практически. В итоге удалось избавиться от перепадов мощности станции, обусловленных падением высоты волны, и защитить оборудование от чрезмерных нагрузок и разрушения во время штормов.

Такая станция с «дышащей» камерой функционирует в Атлантике у португальских берегов. Ее мощности в 750 кВт достаточно для обеспечения электричеством около 1000 семей. Там планируется создать огромный прибрежный генерирующий каскад.

В перспективе плавучие волновые станции этого типа будут строить там, где функционируют ветровые фермы, используя единую якорную систему для электростанций обоих видов.

Буй-генератор

Ocean Power Technologies (OPT) – инжиниринговая компания из Шотландии – представила PowerBuoy PB150. Это огромный буй длиной 42 м, удерживаемый одиннадцатиметровым поплавком и якорной системой. Мощность одной станции 150 кВт.

Агрегат способен преобразовывать в электроэнергию вертикальные колебания. Погруженная часть буя-генератора зафиксирована на дне якорной системой. Поплавок перемещается по вертикали в унисон колебанию морских вод — он закреплен на подвижном штоке. Шток – часть линейного генератора, который во время прохождения обмотки статора вырабатывает электричество.

Конструкция оснащена системой датчиков, благодаря которой можно вручную адаптировать ход штока согласно силе, высоте и частоте волн, добиваясь наиболее рационального режима работы оборудования. Во избежание аварий в периоды сильных штормов шток поплавка блокируется автоматически.

К месту дислокации агрегат доставляют буксиры. Несколько подобных буев, установленные рядом, использующие общую якорную систему и единый силовой контур, образуют волновую ферму. Для установки системы мощностью 10МВт необходимо 0,125 квадратных км водной поверхности. Первый такой буй разместили в 33 морских милях от Инвергордона (Шотландия). Анализ среды вблизи функционирующего генератора показал, что он экологически нейтрален.

Преимущества и недостатки

Преимущества волновой энергетики:

  • волновая электростанция способна заменить волногасители, защищающие береговую линию и прибрежные сооружения от разрушения;
  • волновые электрогенераторы малой мощности можно монтировать непосредственно на мостовых опорах, причалах, принимая мощность волн;
  • удельная мощность волнения волн выше удельной мощности ветров на 1-2 порядка, соответственно волновая энергетика может оказаться выгоднее, нежели ветряная.

Недостатки:

  • штормовая волна способна смять лопасти водяных турбин. Проблема решается методами искусственного уменьшения мощности, заключенной в волнах;
  • некоторые типы генераторов представляют реальную угрозу для безопасности мореплавания;
  • в местах установки отдельных видов агрегатов промышленное рыболовство становится невозможным.

← Вернуться

×
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:
Я уже подписан на сообщество «sinkovskoe.ru»