Последний циклоп Империи или лазеры на вооружении России.
Posted by Hrolv Ganger лазерное оружиенереализованные проектыРоссияТанк
Дек 24 2010

В конце 70-х – начале 80-х годов XX века все мировое «демократическое» сообщество грезило под эйфорией голливудских «Звездных войн». В то же самое время за «железным занавесом» под пологом строжайшей секретности советская «империя зла» потихоньку-полегоньку претворяла голливудские мечты в реальность. Советские космонавты летали в космос, вооруженные лазерными пистолетами–«бластерами», проектировались боевые станции и космические истребители, а по матушке-Земле поползли советские «лазерные танки».

Одной из организаций, занимавшейся разработкой боевых лазерных комплексов, являлось НПО «Астрофизика». Генеральным директором «Астрофизики» был Игорь Викторович Птицын, а Генеральным конструктором – Николай Дмитриевич Устинов, сын того самого всемогущего члена Политбюро ЦК КПСС и, по совместительству, Министра Обороны – Дмитрия Федоровича Устинова. Имея столь мощного покровителя, «Астрофизика» практически не испытывала никаких проблем с ресурсами: финансовыми, материальными, кадровыми. Это не замедлило сказаться – уже в 1982 году, без малого через четыре года после реорганизации ЦКБ в НПО и назначения Н.Д. Устинова генеральным конструктором (до этого он руководил в ЦКБ направлением по лазерной локации) был сдан на вооружение первый самоходный лазерный комплекс (СЛК) 1К11 «Стилет».

Задачей лазерного комплекса было обеспечение противодействия оптико-электронным системам наблюдения и управления оружием поля боя в жестких климатических и эксплуатационных условиях, предъявляемых к бронетехнике. Соисполнителем темы по шасси выступило конструкторское бюро «Уралтрансмаша» из Свердловска (ныне г. Екатеринбург) – ведущий разработчик практически всей (за редким исключением) советской самоходной артиллерии.

Под руководством Генерального конструктора «Уралтрансмаша» Юрия Васильевича Томашова (директором завода тогда был Геннадий Андреевич Студенок) лазерная система была смонтирована на хорошо проверенном шасси ГМЗ – изделия 118, которое ведет свою «родословную» от шасси изделия 123 (ЗРК «Круг») и изделия 105 (САУ СУ-100П). На «Уралтрансмаше» было изготовлено две несколько отличающихся между собой машины. Отличия были связаны с тем, что в порядке наработки опыта и экспериментов лазерные системы были не одинаковыми. Боевые характеристики комплекса были по тем временам выдающимися, они и в настоящее время отвечают требованиям ведения оборонно-тактических операций. За создание комплекса разработчикам были присуждены Ленинская и Государственная премии.

Как упоминалось выше, комплекс «Стилет» был принят на вооружение, но по ряду причин серийно не выпускался. Две опытные машины так и остались в единственных экземплярах. Тем не менее, их появление даже в условиях жуткой, тотальной советской секретности не осталось незамеченным американской разведкой. В серии рисунков, изображавших новейшие образцы техники Советской Армии, представленных Конгрессу для «выбивания» дополнительных средств министерству обороны США был и весьма узнаваемый «Стилет».

Так представляли себе на западе советский лазерный комплекс. Рисунок из журнала «Soviet Military Power»

Формально этот комплекс находится на вооружении и по сей день. Однако о судьбе опытных машин долгое время ничего не было известно. По завершению испытаний они оказались фактически никому не нужны. Вихрь развала СССР разбросал их по постсоветскому пространству и довел до состояния металлолома. Так, одна из машин в конце 1990-х – начале 2000-х годов была опознана историками-любителями БТТ на утилизации в отстойнике 61-го БТРЗ под Санкт-Петербургом. Вторую, десятилетие спустя, так же ценители истории БТТ обнаружили на танкоремонтном заводе в Харькове (см. http://photofile.ru/users/acselcombat/96472135/). В обоих случаях лазерные системы с машин были давно демонтированы. У «питерской» машины сохранялся только корпус, «харьковская» «телега» находится в лучшем состоянии. В настоящее время силами энтузиастов при согласовании с руководством завода предпринимаются попытки ее сохранения с целью последующей «музеефикации». К сожалению, «питерская» машина, по всей видимости, к настоящему времени утилизирована: «Что имеем, не храним, а потерявши плачем…».

Останки СЛК 1К11 «Стилет» на 61 БТРЗ МО РФ

Лучшая доля выпала еще одному, без сомнения уникальному аппарату, совместного производства «Астрофизики» и «Уралтрасмаша». Как развитие идей «Стилета» был спроектирован и построен новый СЛК 1К17 «Сжатие». Это был комплекс нового поколения с автоматическим поиском и наведением на бликующий объект излучения многоканального лазера (твердотельный лазер на оксиде алюминия Al2O3) в котором небольшая часть атомов алюминия замещена ионами трехвалентного хрома, или попросту – на кристалле рубина. Для создания инверсной заселённости используется оптическая накачка, то есть, освещение кристалла рубина мощной вспышкой света. Рубину придают форму цилиндрического стержня, концы которого тщательно отполированы, посеребрены, и служат зеркалами для лазера. Для освещения рубинового стержня применяют импульсные ксеноновые газоразрядные лампы-вспышки, через которые разряжаются батареи высоковольтных конденсаторов. Лампа-вспышка имеет форму спиральной трубки, обвивающейся вокруг рубинового стержня. Под действием мощного импульса света в рубиновом стержне создаётся инверсная заселённость и благодаря наличию зеркал возбуждается лазерная генерация, длительность которой чуть меньше длительности вспышки накачивающей лампы. Специально для «Сжатия» был выращен искусственный кристалл массой около 30 кг – «лазерная пушка» в этом смысле влетала «в копеечку». Новая установка требовала и большого количества энергии. Для ее питания использовались мощные генераторы, приводимые в действие автономной вспомогательной силовой установкой (ВСУ).

СЛК 1К17 «Сжатие» на испытаниях

В качестве базы для потяжелевшего комплекса было использовано шасси новейшего по тем временам самоходного орудия 2С19 «Мста-С» (изделие 316). Для размещения большого количества силового и электронно-оптического оборудования рубка «Мсты» была существенно увеличена по длине. В ее кормовой части разместилась ВСУ. Спереди, вместо ствола был размещен оптический блок, включающий 15 объективов. Система точных линз и зеркал в походных условиях закрывалась защитными броневыми крышками. Этот блок имел возможность наведения по вертикали. В средней части рубки размещались рабочие места операторов. Для самообороны на крыше была установлена зенитная пулеметная установка с 12,7-мм пулеметом НСВТ.

Корпус машины был собран на «Уралтрансмаше» в декабре 1990 года. В 1991 году комплекс, получивший войсковой индекс 1К17 вышел на испытания и на следующий, 1992 год был принят на вооружение. Как и прежде, работа по созданию комплекса «Сжатие» была высоко оценена Правительством страны: группа сотрудников «Астрофизики» и соисполнителей была удостоена Государственной премии. В области лазеров мы тогда опережали весь мир, как минимум, на 10 лет.

Однако на этом «звезда» Николая Дмитриевича Устинова закатилась. Развал СССР и падение КПСС низвергло прежние авторитеты. В условиях рухнувшей экономики подверглись серьезному пересмотру многие оборонные программы. Не миновала участь сия и «Сжатие» – запредельная стоимость комплекса, несмотря на передовые, прорывные технологии и хороший результат заставила руководство Министерства Обороны усомниться в его эффективности. Суперсекретная «лазерная пушка» осталась невостребована. Единственный экземпляр долгое время прятался за высокими заборами, пока неожиданно для всех в 2010 году не оказался воистину каким-то чудесным образом в экспозиции «Военно-технического музея», что расположен в подмосковном селе Ивановское. Надо отдать должное и поблагодарить людей, сумевших вытащить этот ценнейший экспонат из под грифа совершенной секретности и сделавших эту уникальную машину достоянием общественности – наглядным примером передовой советской науки и инженерной мысли, свидетелем наших забытых побед.

Минобороны в ближайшее время получит мобильный лазерный комплекс (МЛК), ослепляющий на расстоянии нескольких десятков километров оптику самолетов, вертолетов, головки самонаведения ракет и бомб. Также система, разработанная научно-производственным объединением «Астрофизика» (входит в холдинг «Швабе»), может справиться с оптико-электронными системами (ОЭС) танков, бронемашин и даже с прицелами противотанковых ракетных комплексов. МЛК отличается небольшими габаритами и поэтому легко монтируется на боевые машины и бронеавтомобили.

Как рассказали «Известиям» несколько информированных источников в военно-промышленном комплексе, в настоящее время МЛК уже проходит испытания. Принцип работы мобильного лазерного комплекса достаточно прост. Он направляет луч многоканального лазера на обнаруженную оптическую систему и ослепляет ее. В изделии несколько объединенных в один блок лазерных излучателей. Поэтому МЛК может одновременно глушить большое количество целей либо сконцентрировать все лучи лазера на одном объекте.

В настоящее время комплекс находится в высокой степени готовности, - рассказал «Известиям» один из собеседников издания. - Правда, точные сроки окончания работ и характеристики машины я назвать не могу.

МЛК - это развитие систем 1К11 «Стилет» и 1К17 «Сжатие». Последняя была разработана и принята на вооружение в начале 1990-х годов. Но из-за высокой стоимости система «Сжатие» не стала массовой серийной машиной.

Лазерный комплекс 1К17 с 15 лазерными излучателями устанавливался на шасси самоходной гаубицы 2С19 «Мста». Оптико-электронные системы противника комплекс «Сжатие» обнаруживал и классифицировал по их бликам. После этого система сама выбирала, сколько лазерных лучей и какой мощности нужно для ослепления противника.

Одна машина 1К17 могла защитить от самолетов, вертолетов и высокоточного оружия несколько танковых или мотострелковых рот. В настоящее время единственный сохранившийся комплекс «Сжатие» находится в экспозиции Военно-технического музея в подмосковном селе Ивановское.

До недавнего времени считалось, что всего было выпущено два «Сжатия», - рассказывает «Известиям» военный историк Алексей Хлопотов. - Но, по последним данным, таких машин было выпущено более десятка. И часть из них поступила в войска. Единственный недостаток 1К17 - это большие габариты и меньшая подвижность по сравнению с танками и боевыми машинами, которые «Сжатие» должно было прикрывать.

В отличие от своего прародителя МЛК - это более компактное изделие. Благодаря этому комплекс, установленный на шасси танка, БМП или БТР, отличается высокой подвижностью. Поэтому, действуя в боевом порядке мотострелковых или танковых подразделений, мобильный лазерный комплекс сможет непрерывно защищать технику от летательных аппаратов и высокоточного оружия противника.

Мобильные лазерные комплексы - это современное, перспективное и очень технологичное направление развития систем вооружения, - рассказывает Алексей Хлопотов. - Но лазер - это не летальное оружие. Он никого не убивает, ничего физически не разрушает. Хотя очень эффективно «глушит» оптико-электронные станции наблюдения, прицелы и головки самонаведения крылатых ракет и высокоточных боеприпасов.

Истории о разработке лазерного оружия в СССР обросли массой легенд и домыслов. Начиная от его якобы первого применения в конфликте с КНР в 1969 году и заканчивая фантастическим лазерным супероружием на платформе самолета А-60. На этом фоне как-то мало говорится о реальных работах предприятия НПО «Астрофизика», с 1979 года создавшего несколько полноценных лазерных комплексов «Стилет», «Сангвин», «Аквилон», «Сжатие».

Непосвященный человек, увидев эти машины, непременно назовет их «лазерными танками». Ведь внешне это так и есть: гусеничное шасси от танка или самоходного артиллерийского комплекса, поворачивающийся блок лазерного вооружения вместо привычных пушек. Одно «но»: «лазерные танки» советской Империи не сжигали наступающего врага как в голливудских комиксах и не могли это сделать, так как основным предназначением их было «противодействие оптико-электронным системам наблюдения вероятного противника» и «управление оружием на поле боя». Правда, потом все-таки выяснилось, что глаза вражеские операторы вооружения при попадании на них лазерного излучения все-таки теряли (или могли потерять, ибо история умалчивает о конкретных итогах тестов). Подтверждают это китайцы, которым удалось уже в начале 2000-х годов внедрить ряд наших разработок 25-летней свежести у себя на одном из видов бронетехники. Вежливо умалчивая, сколько их товарищей осталось без зрения, изображая вероятного противника на учениях…

Итак, начало разработок в СССР такого типа вооружений приходится на 1970-е годы. В 1979 году первым на свет появился лазерный комплекс 1К11 «Стилет» на специальном семикатковом шасси, разработанном на базе САУ СУ-100П с 400-сильным двигателем В-54-105. Для обеспечения питания лазера в моторном отделении был установлен второй двигатель мощностью 400 л.с. Дополнительное вооружение – пулемет 7,62-мм. По разным данным, было выпущено всего 2 таких машины, которые были приняты на вооружение Советской армии. Вполне возможно, что было их чуть больше, но нашли после распада СССР остатки именно двух «Стилетов» с демонтированным вооружением.


Комплекс 1К11 "Стилет". СССР, 1979 год.

В 1983 году появляется еще один самоходный лазерный комплекс от НПО «Астрофизика», на этот раз на платформе ЗСУ-23-4 «Шилка», - СЛК «Сангвин». На нём была использована «Система разрешения выстрела» (СРВ) и обеспечено прямое наведение боевого лазера (без крупногабаритных зеркал наведения) на оптико-электронную систему сложной цели. На башне, помимо боевого лазера, был установлен маломощный зондирующий лазер и приёмное устройство системы наведения, фиксирующее отражения луча зондировщика от бликующего объекта. Комплекс позволял решать задачи селекции реальной оптико-электронной системы на подвижном вертолёте и её функциональное поражение, на дальности более 10 км – ослепление оптико-электронной системы на десятки минут, на дальности менее 8-10 км – необратимые разрушения оптических приёмных устройств. Несмотря на выдающиеся характеристики, «Сангвин» якобы не выпускался серийно. Проверить это официальное утверждение нет возможности.


Комплекс "Сангвин". СССР, 1983 год.

В 1984 году в НПО «Астрофизика» сдали заказчику еще один боевой лазерный комплекс, на этот раз для Военно-морского флота, «Аквилон». Система предназначалась для поражения оптико-электронных систем береговой охраны противника. Смонтировали этот комплекс на переоборудованном в «Опытовое судно-90» (ОС-90) большом десантном корабле проекта 770. Первые стрельбы начались в том же году, результаты испытаний до конца неизвестны. Возможно, здесь свой негативный след оставил другой, начатый ранее, флотский проект боевого лазера на базе переоборудованного сухогруза «Диксон» (1978-1985 годы). Попытка создать именно боевой лазер привела к крайне большим затратам, обилию технических проблем и стала источником многочисленных баек еще в позднем СССР.


Носитель лазерного комплекса "Аквилон" - "ОС-90". СССР, 1984 год.


"Диксон" - экспериментальный корабль для испытаний боевого лазера. СССР, 1985 год.

На суше же дела шли очень хорошо, и к 1990 году была завершена разработка комплекса 1К17 «Сжатие» на шасси самоходной артиллерийской установки «Мста-С». Созданный в кооперации НПО «Астрофизика» и «Уралтрансмаша» этот аппарат действительно стал прорывом на много лет вперед. В 1992 году по результатам испытаний «Сжатие» приняли на вооружение уже Российской армии, выпустив около 10 машин, одну из которых сегодня можно увидеть в роли экспоната Военно-технического музея в Московской области. В 2015-2016 годах именно фотографии этого комплекса стали часто появляться в Интернете, правда, с различными малопонятными данными о том, что же это такое на самом деле.
1К17 «Сжатие» имел автоматический поиск и наведение на бликующий объект излучения многоканального лазера в котором небольшая часть атомов алюминия замещена ионами трехвалентного хрома (на кристалле рубина).


Музейный экспонат 1К17 "Сжатие" постройки 1990-91 годов.

Как описывают отечественные технические издания, специально для «Сжатия» был выращен искусственный кристалл рубина массой около 30 килограммов. Такому рубину придали форму цилиндрического стержня, концы которого были тщательно отполированы, посеребрены, и служили зеркалами для лазера. Для освещения рубинового стержня использовали импульсные ксеноновые газоразрядные лампы-вспышки через которые разряжаются батареи высоковольтных конденсаторов. Лампа-вспышка имеет форму спиральной трубки, обвивающейся вокруг рубинового стержня. Под действием мощного импульса света в рубиновом стержне создаётся инверсная заселённость и благодаря наличию зеркал возбуждается лазерная генерация, длительность которой чуть меньше длительности вспышки накачивающей лампы. Подобный аппарат требовал много энергии, и поэтому кроме основного 840-сильного двигателя В-84 на машине появилась вспомогательная силовая установка (ВСУ) и мощные генераторы.
Мощная и эффективная машина обладала лишь одним недостатком: опережая на тот момент общий уровень технологического развития, она стоила очень дорого. С учетом того, что в начале 1990-х годов Россия переживала мрачные годы ельцинского уничтожения заводов и распродажи на Запад секретных технологий, проект был свернут на стадии выпуска первой войсковой партии 1К17 «Сжатие». Вместе с тем, накопленный опыт и знания не могли исчезнуть, и как только в начале 2000-х годов в ВПК стали возвращаться деньги, возобновились работы по созданию новых систем лазерного оружия. С учетом серьезно изменившегося общего технологического уровня: размеры многих компонентов уменьшились, а характеристики выросли.

В 2017 году российские специализированные издания и блоги говорят о создании МЛК, «мобильного лазерного комплекса». Его планируется устанавливать на стандартное шасси обычных танков, БМП и даже БТР. Предполагается, что это будет компактный комплекс, обеспечивающий надежную защиту находящихся в боевом порядке мотострелковых или танковых подразделений от летательных аппаратов и высокоточного оружия противника. Характеристики МЛК пока не приводятся.

Проектирование советской супермашины началось в восьмидесятые годы в научно-производственном объединении «Астрофизика». Генеральным конструктором предприятия был Николай Дмитриевич Устинов, который приходился сыном Министру Обороны Дмитрию Устинову. Возможно, именно поэтому партия не жалела ресурсов на самые смелые проекты «Астрофизики». Так, уже через четыре года после назначения Устинова на должность появился опытный образец самоходного лазерного комплекса «Стилет».

Любители фантастики могут расслабиться – лазерный танк не выжигал противников смертоносными лучами. Задача комплекса состояла в обеспечении противодействия оптико-электронным системам наблюдения и управления оружием поля боя в жёстких климатических и эксплуатационных условиях, предъявляемых к бронетехнике. Под руководством специалистов из «Уралтрансмаша» лазерную систему установили на хорошо проверенное шасси ГМЗ, на котором к тому времени уже базировались некоторые самоходные артиллерийские установки и зенитно-ракетные комплексы. «Стилет» построили в двух экземплярах. Лазерный комплекс обладал выдающимися для того времени тактико-техническими характеристиками, «Стилет» и сегодня отвечает основным требованиям ведения оборонно-тактических операций (формально, кстати, комплекс состоит на вооружении и по сей день). Машина будущего хоть и была принята на вооружение, серийный выпуск «Стилета» так и не был налажен. Стоит, однако, отметить, что потенциальные противники здорово испугались советских лазерных танков. Есть сведения, что представители министерства Обороны США, выбивая у Конгресса деньги на «оборонку» показывали, демонстрировал страшные фотографии советского супер-лазера.

Но на «Стилете» история советских лазерных танков не закончилась. Совсем скоро «Астрофизика» и «Уралтрансмаш» начали новый проект, и последователем стилета стал самоходный лазерный комплекс 1К17 «Сжатие». В качестве шасси была использована платформа «Мста-С», новейшей по тем временам гаубицы. Комплекс оборудовался системой автоматического поиска и наведение на объекты, бликующие от излучения многоканального рубинового твердотельного лазера. Специально для «Сжатия» учёные вырастили искусственный кристалл рубина в форме цилиндра массой 30 кг. Торцы были отполированы, покрыты серебром и выполняли роль зеркал для лазера. Вокруг рубинового стержня в форме спирали были обвиты ксеноновые импульсные газоразрядные лампы-вспышки для освещения кристалла. Стоило всё это бешеных денег и для работы требовало огромного количества энергии. Лазерная пушка питалась от мощнейшего генератора, который приводился в действие автономной силовой установкой. Но результат полностью оправдывал затраченные ресурсы – подобные технологии были не мыслимы для всего остального мира, как минимум, ещё лет на десять вперёд.

Кто знает, куда моги завести дальнейшие разработки лазерных комплексов. Но с распадом СССР, как и многие другие оборонные программы, проект «Сжатие» было решено закрыть из-за непозволительно высокой стоимости. Единственный экземпляр лазерного комплекса 1К17 остался лежать в военных ангарах. В 2010 году отреставрированный танк привезли в Военно-технический музей в подмосковном Ивановском, там его можно увидеть и сегодня.

Сверхсекретная машина (многие использованные в ней технологии до сих пор находятся под грифом секретности) была призвана оказывать противодействие оптико-электронным приборам противника. Ее разработкой занимались сотрудники НПО "Астрофизика" и свердловского завода "Уралтрансмаш". Первые отвечали за техническую начинку, перед вторыми стояла задача приспособить платформу новейшей по тем временам самоходки 2С19 "Мста-С" под впечатляющих размеров башню СЛК.

Лазерная установка "Сжатия" является многодиапазонной - она состоит из 12 оптических каналов, каждый из которых обладает индивидуальной системой наведения. Такая конструкция практически сводит на нет шансы противника защититься от атаки лазера при помощи светофильтра, который может блокировать луч определенной частоты. То есть, если бы излучение осуществлялось из одного или двух каналов, то командир вражеского вертолета или танка, используя светофильтр, мог бы блокировать "ослепление". Противодействовать же 12 лучам разной длины волны почти невозможно.

Помимо "боевых" оптических линз, расположенных в верхнем и нижнем рядах модуля, в середине расположены объективы систем прицеливания. Справа находится зондирующий лазер и приемный канал автоматической системы наведения. Слева - дневной и ночной оптические прицелы. Причем для работы в темное время суток установка оснащалась лазерными подсветчиками-дальномерами.

Для защиты оптики во время марша лобовая часть башни СЛК закрывалась бронированными щитками.

Как отмечает издание "Популярная механика" , в свое время был распространен слух о 30-килограммовом кристалле рубина, специально выращенном для использования в лазере "Сжатия". В действительности же в 1К17 применялся лазер с твердым рабочим телом с люминесцентными лампами накачки. Они достаточно компактны и доказали свою надежность, в том числе и на зарубежных установках.

С наибольшей вероятностью рабочим телом в советском СЛК мог служить алюмоиттриевый гранат, легированный ионами неодима - так называемый YAG-лазер.

Генерация в нем происходит с длиной волны 1064 нм - излучение инфракрасного диапазона, в сложных погодных условиях менее подверженное рассеиванию по сравнению с видимым светом.

YAG-лазер в импульсном режиме может развивать внушительную мощность. Благодаря этому на нелинейном кристалле можно получить импульсы с длиной волны вдвое, втрое, вчетверо короче исходной. Таким образом и формируется многодиапазонное излучение.

К слову, башня лазерного танка была значительно увеличена по сравнению с основной для САУ 2С19 "Мста-С". Помимо оптико-электронного оборудования в задней ее части размещаются мощные генераторы и автономная вспомогательная силовая установка для их питания. В средней части рубки находятся рабочие места операторов.

Скорострельность советского СЛК остается неизвестной, поскольку нет сведений о времени, необходимом для зарядки конденсаторов, обеспечивающих импульсный разряд на лампы.

К слову, наряду с основной своей задачей - вывод из строя электронной оптики противника - СЛК 1К17 мог применяться для прицельного наведения и обозначения целей в условиях плохой видимости для "своей" техники.

"Сжатие" стало развитием двух более ранних вариантов самоходных лазерных комплексов, которые разрабатывались в СССР с 1970-х годов.

Так, в 1982 году на вооружение был сдан первый СЛК 1К11 "Стилет", потенциальными целями которого было оптико-электронное оборудование танков, самоходных артиллерийских установок и низколетящих вертолетов. После обнаружения установка производила лазерное зондирование объекта, пытаясь найти оптические системы по бликующим линзам. Затем СЛК поражал их мощным импульсом, ослепляя или даже выжигая фотоэлемент, светочувствительную матрицу либо сетчатку глаза прицелившегося бойца. Наведение лазера по горизонтали осуществлялось поворотом башни, по вертикали - с помощью системы точно позиционируемых крупногабаритных зеркал. Система 1К11 базировалась на шасси гусеничного минного заградителя свердловского "Уралтрансмаша". Были изготовлены всего две машины - дорабатывалась лазерная часть.

Годом позже на вооружение был сдан СЛК "Сангвин", отличающийся от предшественника упрощенной системой наведения на цель, что положительно сказалось на поражающей способности оружия. Однако более важным нововведением стала увеличенная подвижность лазера в вертикальной плоскости, так как этот СЛК предназначался для поражения оптико-электронных систем воздушных целей. Во время испытаний "Сангвин" продемонстрировал способность стабильно определять и поражать оптические системы вертолета на дистанции более 10 километров. На близких расстояниях (до 8 километров) установка полностью выводила из строя прицелы противника, а на предельных дальностях ослеплял их на десятки минут.

Комплекс устанавливался на шасси зенитной самоходной установки "Шилка". На башне также монтировались маломощный зондирующий лазер и приемное устройство системы наведения, фиксирующее отражения луча зондировщика от бликующего объекта.

К слову, в 1986 году на наработках "Сангвина" был создан корабельный лазерный комплекс "Аквилон". Он имел преимущество перед наземным СЛК в мощности и скорострельности, поскольку его работу обеспечивала энергетическая система военного корабля. "Аквилон" был предназначен для вывода из строя оптико-электронных систем береговой охраны противника.