Кристаллическая решетка теллура. Мировой рынок теллура

Подписаться
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:

Теллур Теллур (лат. Tellurium) это химический элемент с атомным номером 52 в периодической системе и атомным весом 127,60; обозначается символом Te, относится к семейству металлоидов. В природе встречается в виде восьми стабильных изотопов с массовыми числами 120, 128, 130, из которых наиболее распространены 128Тe и 130Тe. Из искусственно полученных радиоактивных изотопов широкое применение в качестве меченых атомов имеют 127Тe и 129Te.


Из истории Впервые был найден в 1782 году в золотоносных рудах Трансильвании горным инспектором Францом Иозефом Мюллером (впоследствии барон фон Рейхенштейн), на территории Австро-Венгрии. В 1798 году Мартин Генрих Клапрот выделил теллур и определил важнейшие его свойства. Первые систематические исследования химии теллура выполнены в 30-х гг. 19 в. И. Я. Берцелиусом.


"Аурум парадоксум" - парадоксальное золото, так называли теллур, после того как в конце XVIII столетия он был открыт Рейхенштейном в соединении с серебром и желтым металлом в минерале сильваните. Неожиданным явлением казался факт, когда золото, обычно всегда встречающееся в самородном состоянии, было обнаружено в соединении с теллуром. Вот почему, приписав свойства, подобные желтому металлу, его назвали желтым металлом парадоксальным.


Происхождение названия Позднее (1798 г.), когда М. Клапрот детальнее исследовал новое вещество, он в честь Земли, носительницы химических "чудес", назвал его теллурием (от латинского слова "теллус" - земля). Это название и вошло в обиход химиков всех стран.


Нахождение в природе Содержание в земной коре 1·10-6 % по массе. Металлический теллур можно встретить разве что в лаборатории, но его соединения можно найти вокруг нас гораздо чаще, чем может показаться. Известно около 100 минералов теллура. Важнейшие из них: алтаит PbTe, сильванит AgAuTe 4, калаверит AuTe 2, тетрадимит Bi 2 Te 2 S, креннсрит AuTe 2, петцит AgAuТе 2. Встречаются кислородные соединения теллура, например ТеО2 теллуровая охра. Встречается самородный теллур и вместе с селеном и серой (японская теллуристая сера содержит 0,17 % Те и 0,06 % Se).


Модуль Пельтье Многие знакомы с термоэлектрическими модулями Пельтье, которые используют в портативных холодильниках, термоэлектрических генераторах и иногда для экстремального охлаждения компьютеров. Основной материал полупроводников в таких модулях это теллурид висмута. В настоящее время это самый ходовой полупроводниковый материал. Если посмотреть сбоку на термоэлектрический модуль, можно заметить ряды маленьких «кубиков».


Физические свойства Теллур серебристо-белого цвета с металлическим блеском, хрупок, при нагреве становится пластичным. Кристаллизуется в гексагональной системе. Теллур - полупроводник. При обычных условиях и вплоть до температуры плавления чистый Теллур имеет проводимость p-типа. С понижением температуры в интервале (100 °С) - (-80 °С) происходит переход: проводимость Теллура становится n-типа. Температура этого перехода зависит от чистоты образца, и она тем ниже, чем чище образец. Плотность = 6,24 г / см ³ Температура плавления = 450°C Температура кипения = 990°C Теплота плавления = 17,91 кДж/моль Теплота испарения = 49,8 кДж/моль Молярная теплоемкость = 25,8 Дж/(K·моль) Молярный объем = 20,5 см³/моль


Теллур – неметалл. В соединениях теллур проявляет степени окисления: -2, +4, +6 (валентность II, IV, VI). Химически теллур менее активен, чем сера и кислород. Теллур устойчив на воздухе, но при высокой температуре горит с образованием двуокиси TeO 2. С галогенами Те взаимодействует на холоде. При нагревании реагирует со многими металлами, давая теллуриды. Растворим в щелочах. При действии азотной кислоты Те превращается в теллуристую, а при действии царской водки или 30%-ной перекиси водорода – в теллуровую кислоту. Химические свойства 128 Те))))) е = 52, р = 52, n = е 8е 8е 8е 6е


Физиологическое действие При нагревании Теллур взаимодействует с водородом с образованием теллуроводорода - H 2 Te бесцветного ядовитого газа с резким, неприятным запахом. Теллур и его летучие соединения токсичны. Попадание в организм вызывает тошноту, бронхиты, пневмонию. Предельно допустимая концентрация в воздухе колеблется для различных соединений 0,0070,01 мг/м³, в воде 0,0010,01 мг/л.


Получение Основной источник шламы электролитического рафинирования меди и свинца. Шламы подвергают обжигу, теллур остается в огарке, который промывают соляной кислотой. Из полученного солянокислого раствора теллур выделяют, пропуская через него сернистый газ SO 2. Для разделения селена и теллура добавляют серную кислоту. При этом выпадает диоксид теллура ТеО 2, а H 2 SeO 3 остается в растворе. Из оксида ТеО 2 теллур восстанавливают углем. Для очистки теллура от серы и селена используют его способность под действием восстановителя (Al) в щелочной среде переходить в растворимый дителлурид динатрия Na 2 Te 2: 6Te + 2Al + 8NaOH = 3Na 2 Te 2 + 2Na. Для осаждения теллура через раствор пропускают воздух или кислород: 2Na 2 Te 2 + 2H 2 O + O 2 = 4Te + 4NaOH. Для получения теллура особой чистоты его хлорируют Te + 2Cl 2 = TeCl 4. Образующийся тетрахлорид очищают дистилляцией или ректификацией. Затем тетрахлорид гидролизуют водой: TeCl 4 + 2H 2 O = TeO 2 + 4HCl, а образовавшийся ТеО 2 восстанавливают водородом: TeO 2 + 4H 2 = Te + 2H 2 O.



Теллур – химический элемент относящийся к 16-й группе, находящийся в таблице Менделеева, атомный номер 52 и обозначающийся латинским Те – специальным идентификационным . Элемент относится к металлоидам. Формула теллура 4d10 5s2 5p4.

Теллур – элемент имеющий бело-серебристый оттенок и металлический блеск и хрупкую структуру. При высокой температуре, как и многие металлы, теллур становится пластичным.

Происхождение теллура

Элемент был обнаружен на золотых рудниках, в горах Трансильвании. Человечеству известно не менее ста минералов содержащих теллур. В частности, это серебро, золото, медь и цинк. Существуют различные соединения теллура, к примеру, это некоторые виды охры. В чистом виде, в одном залеже можно обнаружить селен, теллур и серу, что указывает на возможность самородности элемента.

Все упомянутые минералы чаще встречаются в одном месторождении с , серебром, свинцом и висмутом. В промышленных условиях, по большей части теллур выделяется химическим путём из других металлов, несмотря на то, что его основные минералы довольно распространены. В частности, он в достаточном количестве содержится в халькопирите, входящего в состав никелево-медных и медноколчеданных руд.

Дополнительно его можно обнаружить в , молибдените и галените, также он содержится в медных рудах, полиметаллических залежах и свинцово-цинковых залежах. Также эти минералы содержат сульфидные и сурьмяные породы, содержащие кобальт и ртуть.

Преимущественно в промышленности теллур добывается из шлама, который образует электролитическая рафинация меди и свинца. При обработке шлам обжигается, в сгоревших остатках имеется определённое содержание теллура. Для выделения необходимого элемента огарки промываются соляной кислотой.

Чтобы выделить металл из полученного кислотного раствора, сквозь него необходимо пропустить сернистый газ. Полученный таким образом оксид теллура , обрабатывается углём, чтобы получить из него чистый элемент. Для его дальнейшей очистки применяется процедура хлорирования.

При этом образуется тетрахлорид, который необходимо очистить путём дистилляции или ректификации. Далее проводится его гидролизация, а полученный гидроксид теллура восстанавливается водородом.

Применение теллура

Этот металл применяется при изготовлении множества различных (медных, свинцовых, железных), поэтому отрасль металлургии является его основным потребителем. Теллур делает нержавеющую сталь и медь более обрабатываемыми. Также добавление этого элемента в ковкий чугун, придаёт ему положительные свойства серого чугуна.

Улучшаются его литейные качества и обрабатываемость. Он способен заметно улучшить физические свойства свинца, уменьшая отрицательную коррозию от серной кислоты, во время его обработки.

Теллур широко распространён в полупроводниковых устройствах и электронике. В частности, он используется для производства солнечных батарей. Применение теллура открывает широкие перспективы в применении этих передовых технологий. Процент производства подобного оборудования значительно возрос за последние годы. Это привело к заметному росту товарооборота теллура на мировом рынке.

Металл применяется, в том числе в космических технологических разработках, в частности, это сплавы с добавлениями теллура, обладающие уникальными свойствами. Используются они в технологиях обнаружения излучения оставляемых космическими аппаратами.

По этой причине дорогостоящий сплав, в значительной мере востребован в военной промышленности, для слежения за противником в космическом пространстве. Помимо этого смесь селен – теллур входит в состав порошка задержки в капсюлях-детонаторах для взрывных устройств, выпускаемых военными заводами.

Различные соединения теллура используются при производстве соединений полупроводникового характера с многослойной структурой. Многие соединения, включающие в себя теллур, обладают поразительной сверхпроводимостью.

Работает теллур и на благо обывательских нужд. В частности, как подокись металл применяется при производстве компакт-дисков, для создания перезаписываемого тончайшего слоя на них. Также он присутствует в некоторых микросхемах, к примеру, производимых компанией Intel. Теллурид и висмута включён в состав многих термоэлектрических устройств и инфракрасных датчиков.

При окраске керамических изделий также используют этот металл. При изготовлении стекловолокна для информационных коммуникаций (телевидения, интернета и т.д.), участие теллура в производстве кабеля, основывается, на положительном свойстве теллуридов и селенидов увеличивать оптическое преломление при добавлении в стекло.

Вулканизация резины, также подразумевает использование близких металлу веществ – селена или серы, которые могут быть заменены по возможности теллуром. Резина с его добавлением будет демонстрировать гораздо более лучшие качества. Теллур нашёл свою нишу и в медицине – его используют при диагностике дифтерии.

Цена теллура

По потреблению этого редкоземельного металла в мире, Китай стоит на первом месте, Россия на втором, а США на третьем. Общее потребление равняется 400 тоннам металла в год. На продажу теллур обычно идёт в виде порошка, прутков или .

За счёт малых объёмов добычи, в связи с его сравнительно небольшим содержанием в породах, цена на теллур довольна высокая. Приблизительно, если не принимать во внимание постоянные скачки цен на теллур, купить его на мировом рынке можно за 200-300 $ за один килограмм металла. Цена также зависит от степени очистки металла от нежелательных примесей.

Но, несмотря на труднодоступность этого уникального элемента, на него всегда имеется немалый спрос, имеющий постоянные тенденции роста. С каждый годом ширится спектр областей, требующих применения теллура и его соединений.

Проследить за тенденцией роста цен на теллур несложно, сравнив цены в начале 2000 года, когда она равнялась 30$ за 1 кг, и десять лет спустя, когда она дошла до 350$. И несмотря на то, что через год она всё-же упала, имеется серьёзная тенденция роста цен, в связи с падением объёмов производства теллура.

Дело в том, что рынок теллура напрямую зависит от объёма производства , так как теллур является одним из побочных продуктов при её извлечении. На данный момент рынок меди значительно уменьшил свой товарооборот, к тому появились новые технологии её производства, особенности которых значительно повлияют на объём дополнительно получаемого теллура.

Это непременно скажется на его поставках, и естественно расценках. По предположительным данным новый скачок цен ожидается уже через пару лет. Несмотря на то, что у теллура в промышленности имеются определённые аналоги, они не обладают столь ценными свойствами.

Подобная ситуация на мировом рынке, отнюдь не на руку многим производителям, в производстве которых задействован теллур. В частности это производители солнечных батарей, чья продукция в последние годы набирает всё большую популярность.

Теллур (лат. Tellurium), Те, химический элемент VI группы главной подгруппы периодической системы Менделеева; атомный номер 52, атомная масса 127,60, относится к редким рассеянным элементам. В природе встречается в виде восьми стабильных изотопов с массовыми числами 120, 122-126, 128, 130, из которых наиболее распространены 128 Те (31,79%) и 130 Те (34,48%). Из искусственно полученных радиоактивных изотопов широкое применение в качестве меченых атомов имеют 127 Те (Т ½ = 105 сут) и 129 Те (Т ½ = 33,5 сут). Теллур открыт Ф. Мюллером в 1782 году. Немецкий ученый М. Г. Клапрот подтвердил это открытие и дал элементу название "теллур" (от лат. tellus, род. падеж telluris - Земля). Первые систематические исследования химии Теллура выполнены в 30-х годах 19 века И. Я. Берцелиусом.

Распространение Теллура в природе. Теллур - один из наиболее редких элементов; среднее содержание в земной коре (кларк) ~1·10 -7 % по массе. В магме и биосфере Теллур рассеян; из некоторых горячих подземных источников осаждается вместе с S, Ag, Au, Pb и других элементами. Известны гидротермальные месторождения Au и цветных металлов, обогащенные Теллуром; с ними связаны около 40 минералов этого элемента (важнейшие - алтаит, теллуровисмутит и другие природные теллуриды). Характерна примесь Теллура в пирите и других сульфидах. Теллур извлекается из полиметаллических руд.

Физические свойства Теллура. Теллур серебристо-белого цвета с металлическим блеском, хрупок, при нагреве становится пластичным. Кристаллизуется в гексагональной системе: а = 4,4570Å; с = 5,9290Å; плотность 6,25 г/см 3 при 20 "С; t пл 450°C; t кип 990 °С; удельная теплоемкость при 20 °С 0,204 кдж/(кг·К) ; теплопроводность при 20 °С 5,999 вт/(м·К) ; температурный коэффициент линейного расширения 1,68·10 -5 (20 °С). Теллур диамагнитен, удельная магнитная восприимчивость при 18 °С -0,31·10 -6 . Твердость по Бринеллю 184,3 Мн/м 2 (18,43 кгс/мм 2). Атомный радиус 1,7 Å, ионные радиусы: Те 2- 2,22 Å, Те 4+ 0,89 Å, Те 6+ 0,56 Å.

Теллур - полупроводник. Ширина запрещенной зоны 0,34 эв. При обычных условиях и вплоть до температуры плавления чистый Теллур имеет проводимость p-типа. С понижением температуры в интервале (-100 °С) - (-80 °С) происходит переход: проводимость Теллура становится n-типа. Температура этого перехода зависит от чистоты образца, и она тем ниже, чем чище образец.

Химические свойства Теллура. Конфигурация внешней электронной оболочки атома Те 5s 2 5p 4 . В соединениях проявляет степени окисления -2; +4; + 6, реже +2. Теллур - химический аналог серы и селена с более резко выраженными металлическими свойствами. С кислородом Теллур образует оксид (II) ТеО, оксид (IV) ТеО 2 и оксид (VI) ТеО 3 . ТеО существует выше 1000 °С в газовой фазе. ТеО 2 получается при сгорании Те на воздухе, обладает амфотерными свойствами, трудно растворим в воде, но легко - в кислых и щелочных растворах. ТеО 3 неустойчив, может быть получена только при разложении теллуровой кислоты. При нагревании Теллур взаимодействует с водородом с образованием теллуроводорода Н 2 Те - бесцветного ядовитого газа с резким, неприятным запахом. С галогенами реагирует легко; для него характерны галогениды типа ТеХ 2 и ТеХ 4 (где X - Cl и Вг); получены также TeF 4 , TeF 6 ; все они легколетучи, водой гидролизуются. Теллур непосредственно взаимодействует с неметаллами (S, Р), а также с металлами; он реагирует при комнатной температуре с концентрированными азотной и серной кислотами, в последнем случае образуется TeSO 3 , окисляющаяся при нагревании до TeOSO 4 . Известны относительно слабые кислоты Те: теллуроводородная (раствор Н 2 Те в воде), теллуристая Н 2 ТеО 3 и теллуровая Н 6 ТеО 6 ; их соли (соответственно теллуриды, теллуриты и теллураты) слабо или совсем нерастворимы в воде (за исключением солей щелочных металлов и аммония). Известны некоторые органические производные Теллура, например RTeH, диалкилтеллуриды R 2 Te - легкокипящие жидкости с неприятным запахом.

Получение Теллура. Теллур извлекается попутно при переработке сульфидных руд из полупродуктов медного, свинцовоцинкового производства, а также из некоторых золотых руд. Основным источником сырья для производства Теллура являются шламы электролиза меди, содержащие от 0,5 до 2% Те, а также Ag, Au, Se, Cu и других элементы. Шламы сначала освобождаются от Cu, Se, остаток, содержащий благородные металлы, Те, Pb, Sb и других компоненты, переплавляют с целью получения сплава золота с серебром. Теллур при этом в виде Na 2 TeO 3 переходит в содовотеллуровые шлаки, где содержание его достигает 20-35%. Шлаки дробят, размалывают и выщелачивают водой. Из раствора Теллур осаждается электролизом на катоде. Полученный теллуровый концентрат обрабатывают щелочью в присутствии алюминиевого порошка, переводя Теллур в раствор в виде теллуридов. Раствор отделяется от нерастворимого остатка, концентрирующего примеси тяжелых металлов, и продувается воздухом. При этом Теллур (чистотой 99%) осаждается в элементарном состоянии. Теллур повышенной чистоты получают повторением теллуридной переработки. Наиболее чистый Теллур получают сочетанием методов химической очистки, дистилляции, зонной плавки.

Применение Теллура. Теллур используют в полупроводниковой технике; в качестве легирующей добавки - в сплавах свинца, чугуне и стали для улучшения их обрабатываемости и повышения механических характеристик; Bi 2 Te 3 и Sb 2 Te 3 применяют в термогенераторах, a CdTe - в солнечных батареях и в качестве полупроводниковых лазерных материалов. Теллур используют также для отбеливания чугуна, вулканизации латексных смесей, производства коричневых и красных стекол и эмалей.

Теллур в организме. Теллур постоянно присутствует в тканях растений и животных. В растениях, произрастающих на почвах, богатых Теллуром, его концентрация достигает 2·10 -4 - 2,5·10 -3 %, в наземных животных - около 2·10 -6 %. У человека суточное поступление Теллур с продуктами питания и водой составляет около 0,6 мг; выводится из организма главным образом с мочой (свыше 80%), а также с калом. Умеренно токсичен для растений и высокотоксичен для млекопитающих (вызывает задержку роста, потерю шерсти, параличи и т. д.).

Профессиональные отравления Теллур возможны при его выплавке и других производственных операциях. Наблюдаются озноб, головная боль, слабость, частый пульс, отсутствие аппетита, металлический вкус во рту, чесночный запах выдыхаемого воздуха, тошнота, темная окраска языка, раздражение дыхательных путей, потливость, выпадение волос.

Вряд ли кто-либо поверит рассказу о капитане дальнего плавания, который, кроме того, профессиональный цирковой борец, известный металлург и врач-консультант хирургической клиники. В мире же химических элементов подобное разнообразие профессий - явление весьма распространенное, и к ним неприменимо выражение Козьмы Пруткова: «Специалист подобен флюсу: полнота его односторонняя». Вспомним (еще до разговора о главном объекте нашего рассказа) железо в машинах и железо в крови, железо - концентратор магнитного поля и железо - составную часть охры... Правда, на «профессиональную выучку» элементов порой уходило намного больше времени, чем на подготовку йога средней квалификации. Так и элемент № 52, о котором предстоит нам рассказать, долгие годы применяли лишь для того, чтобы продемонстрировать, каков он в действительности, этот элемент, названный в честь нашей планеты: «теллур» - от tellus, что по-латыни значит «Земля».
Открыт этот элемент почти два века назад. В 1782 г. горный инспектор Франц Йозеф Мюллер (впоследствии барон фон Рейхенштейн) исследовал золотоносную руду, найденную в Семигорье, на территории тогдашней Австро-Венгрии. Расшифровать состав руды оказалось настолько сложно, что ее назвали Aurum problematicum - «золото сомнительное». Именно из этого «золота» Мюллер выделил новый металл, но полной уверенности в том, что он действительно новый, не было. (Впоследствии оказалось, что Мюллер ошибался в другом: открытый им элемент был новым, но к числу металлов отнести его можно лишь с большой натяжкой.)


Чтобы рассеять сомнения, Мюллер обратился за помощью к видному специалисту, шведскому минералогу и химику-аналитику Бергману.
К сожалению, ученый умер, не успев закончить анализ присланного вещества - в те годы аналитические методы были уже достаточно точными, но анализ занимал очень много времени.
Элемент, открытый Мюллером, пытались изучать и другие ученые, однако лишь через 16 лет после его открытия Мартин Генрих Клапрот - один из крупнейших химиков того времени - неопровержимо доказал, что этот элемент на самом деле новый, и предложил для него название «теллур».
Как и всегда, вслед за открытием элемента начались поиски его применений. Видимо, исходя из старого, еще времен иатрохимии принципа - мир это аптека, француз Фурнье пробовал лечить теллуром некоторые тяжелые заболевания, в частности проказу. Но без успеха - лишь спустя много лет теллур смог оказать медикам некоторые «мелкие услуги». Точнее, не сам теллур, а соли теллуристой кислоты К 2 Те0 3 и Na 2 Te0 3 , которые стали использовать в микробиологии как красители, придающие определенную окраску изучаемым бактериям. Так, с помощью соединений теллура надежно выделяют из массы бактерий дифтерийную палочку. Если не в лечении, так хоть в диагностике элемент № 52 оказался полезен врачам.
Но иногда этот элемент, а в еще большей мере некоторые его соединения прибавляют врачам хлопот. Теллур Достаточно токсичен. В нашей стране предельно допустимой концентрацией теллура в воздухе считается 0,01 мг/м3. Из соединений теллура самое опасное - теллуроводород H 2 Те, бесцветный ядовитый газ с неприятным запахом. Последнее вполне естественно: теллур - аналог серы, значит, Н 2 Те должен быть подобен сероводороду. Он раздражает бронхи, вредно влияет на нервную систему.
Эти неприятные свойства не помешали теллуру выйти в технику, приобрести множество «профессий».
Металлурги интересуются теллуром потому, что уже небольшие его добавки к свинцу сильно повышают прочность и химическую стойкость этого важного металла. Свинец, легированный теллуром, применяют в кабельной и химической промышленности. Так, срок службы аппаратов сернокислотного производства, покрытых изнутри свинцово-теллуровым сплавом (до 0,5% Те), вдвое больше, чем у таких же аппаратов, облицованных просто свинцом. Присадка теллура к меди и стали облегчает их механическую обработку.
В стекольном производстве теллуром пользуются, чтобы придать стеклу коричневую окраску и больший коэффициент лучепреломления. В резиновой промышленности его, как аналог серы, иногда применяют для вулканизации каучуков.

Теллур - полупроводник

Однако не эти отрасли были виновниками скачка в ценах и спросе на элемент № 52. Произошел этот скачок в начале 60-х годов нашего века. Теллур - типичный полупроводник, и полупроводник технологичный. В отличие от германия и кремния, он сравнительно легко плавится (температура плавления 449,8° С) и испаряется (закипает при температуре чуть ниже 1000° С). Из него, следовательно, легко получать тонкие полупроводниковые пленки, которыми особенно интересуется современная микроэлектроника.
Однако чистый теллур как полупроводник применяют ограниченно - для изготовления полевых транзисторов некоторых типов и в приборах, которыми меряют интенсивность гамма-излучения. Да еще примесь теллура умышленно вводят в арсенид галлия (третий по значению после кремния и германия полупроводник), чтобы создать в нем проводимость электронного типа.
Намного обширнее область применения некоторых теллуридов - соединений теллура с металлами. Теллуриды висмута Bi 2 Te 3 и сурьмы Sb 2 Te 3 стали самыми важными материалами для термоэлектрических генераторов. Чтобы объяснить, почему это произошло, сделаем небольшое отступление в область физики и истории.
Еще полтора века назад (в 1821 г.) немецкий физик Зеебек обнаружил, что в замкнутой электрической цепи, состоящей из разных материалов, контакты между которыми находятся при разной температуре, создается электродвижущая сила (ее называют термо-ЭДС). Через 12 лет швейцарец Пельтье обнаружил эффект, обратный эффекту Зеебека: когда электрический ток течет по цепи, составленной из разных материалов, в местах контактов, кроме обычной джоулевой теплоты, выделяется или поглощается (в зависимости от направления тока) некоторое количество тепла.


Примерно 100 лет эти открытия оставались «вещью в себе», любопытными фактами, не более. И не будет преувеличением утверждать, что новая жизнь обоих этих эффектов началась после того, как академик А. Ф. Иоффе с сотрудниками разработал теорию применения полупроводниковых материалов для изготовления термоэлементов. А вскоре эта теория воплотилась в реальные термоэлектрогенераторы и термоэлектрохолодильники различного назначения.
В частности, термоэлектрогенераторы, в которых использованы теллуриды висмута, свинца и сурьмы, дают энергию искусственным спутникам Земли, навигационно - метеорологическим установкам, устройствам катодной защиты магистральных трубопроводов. Те же материалы помогают поддержать нужную температуру во многих электронных и микроэлектронных устройствах.
В последние годы большой интерес вызывает еще одно химическое соединение теллура, обладающее полупроводниковыми свойствами,- теллурид кадмия CdTe. Этот материал используют для изготовления солнечных батарей, лазеров, фотосопротнвлений, счетчиков радиоактивных излучений. Теллурид кадмия знаменит и тем, что это один из немногих полупроводников, в которых заметно проявляется эффект Гана.
Суть последнего заключается в том, что уже само введение маленькой пластинки соответствующего полупроводника в достаточно сильное электрическое поле приводит к генерации высокочастотного радиоизлучения. Эффект Гана уже нашел применение в радиолокационной технике.
Заключая, можно сказать, что количественно главная «профессия» теллура - легирование свинца и других металлов. Качественно же главное, безусловно, это работа теллура и теллуридов как полупроводников.

Полезная примесь

В таблице Менделеева место теллура находится в главной подгруппе VI группы рядом с серой и селеном. Эти три элемента сходны по химическим свойствам и часто сопутствуют друг другу в природе. Но доля серы в земной коре - 0,03%, селена всего - 10-5 %, теллура же еще на порядок меньше - 10~6%. Естественно, что теллур, как и селен, чаще всего встречается в природных соединениях серы - как примесь. Бывает, правда (вспомните о минерале, в котором открыли теллур), что он контактирует с золотом , серебром , медью и другими элементами. На нашей планете открыто более 110 месторождений сорока минералов теллура. Но добывают его всегда заодно или с селеном, или с золотом, или с другими металлами.
В России известны медно-никелевые теллурсодержащие руды Печенги и Мончегорска, теллурсодержащие свинцово-цинковые руды Алтая и еще ряд месторождений.


Из медной руды теллур выделяют на стадии очистки черновой меди электролизом. На дно электролизера вьпадает осадок - шлам. Это очень дорогой полупродукт. Приведем для иллюстрации состав шлама одного из канадских заводов: 49,8% меди, 1,976% золота, 10,52% серебра, 28,42% селена и 3,83% теллура. Все эти ценнейшие компоненты шлама надо разделить, и для этого существует несколько способов. Вот один из них.
Шлам расплавляют в печи, и через расплав пропускают воздух. Металлы, кроме золота и серебра, окисляются, переходят в шлак. Селен и теллур тоже окисляются, но - в летучие окислы, которые улавливают в специальных аппаратах (скрубберах), затем растворяют и превращают в кислоты - селенистую Н 2 SeОз и теллуристую Н 2 ТеОз. Если через этот раствор пропустить сернистый газ S0 2 , произойдут реакции
H 2 Se0 3 + 2S0 2 + Н 2 0 → Se ↓ + 2H 2 S0 4 .
H2Te03 + 2S02 + Н20 → Те ↓ + 2H 2 S0 4 .
Теллур и селен выпадают одновременно, чтo весьма не-желательно - они нужны нам порознь. Поэтому условия процесса подбирают таким образом, чтобы в соответствии с законами химической термодинамики сначала восстанавливался преимущественно селен. Этому помогает подбор оптимальной концентрации добавляемой в раствор соляной кислоты.
Затем осаждают теллур. Выпавший серый порошок, разумеется, содержит некоторое количество селена и, кроме того, серу, свинец, медь, натрий, кремний, алюминий, железо, олово, сурьму, висмут, серебро, магний, золото, мышьяк, хлор. От всех этих элементов теллур приходится очищать сначала химическими методами, затем перегонкой или зонной плавкой. Естественно, что из разных руд теллур извлекают по-разному.

Теллур вреден

Теллур применяют все шире и, значит, все возрастает число работающих с ним. В первой части рассказа об эле-менте № 52 мы уже упоминали о токсичности теллура и его соединений. Расскажем об этом подробней - именно потому, что с теллуром приходится работать все большему числу людей. Вот цитата из диссертации, посвященной теллуру как промышленному яду: белые крысы, которым ввели аэрозоль теллура, «проявляли беспокойство, чихали, терли мордочки, делались вялыми и сонливыми». Подобным образом действует теллур и на людей.


И сам теллур и его соединения могут приносить беды разных «калибров». Они, например, вызывают облысение, влияют на состав крови, могут блокировать различные ферментные системы. Симптомы хронического отравления элементарным теллуром - тошнота, сонливость, исхудание; выдыхаемый воздух приобретает скверный чесночный запах алкилтеллуридов.
При острых отравлениях теллуром вводят внутривенно сыворотку с глюкозой , а иногда даже морфий. Как профилактическое средство употребляют аскорбиновую кислоту. Но главная профилактика - это надежная герметизация аппаратов, автоматизация процессов, в которых участвуют теллур и его соединения.

Элемент № 52 приносит много пользы и уже потому заслуживает внимания. Но работа с ним требует осторожности, четкости и опять-таки - сосредоточенного внимания.
ВНЕШНИЙ ВИД ТЕЛЛУРА. Кристаллический теллур больше всего похож на сурьму. Цвет его - серебристо-белый. Кристаллы - гексагональные, атомы в них образуют спиральные цепи и связаны ковалентными связями с ближайшими соседями. Поэтому элементарный теллур можно считать неорганическим полимером. Кристаллическому теллуру свойствен металлический блеск, хотя по комплексу химических свойств его скорее можно отнести к неметаллам. Теллур хрупок, его довольно просто превратить в порошок. Вопрос о существовании аморфной модификации теллура однозначно не решен. При восстановлении теллура из теллуристой или теллуровой кислот выпадает осадок, однако до сих пор не ясно, являются ли эти частички истинно аморфными или это просто очень мелкие кристаллы.
ДВУХЦВЕТНЫЙ АНГИДРИД. Как и положено аналогу серы, теллур проявляет валентности 2-, 4+ и 6+ и значительно реже 2+. Моноокись теллура ТеО может существовать лишь в газообразном виде и легко окисляется до Те0 2 . Это белое негигроскопичное, вполне устойчивое кристаллическое вещество, плавящееся без разложения при 733° С; оно имеет полимерное строение.
В воде двуокись теллура почти не растворяется - в раствор переходит лишь одна часть Те0 2 на 1,5 млн. частей воды и образуется раствор слабой теллуристой кислоты Н 2 Те0 3 ничтожной концентрации. Так же слабо выражены кислотные свойства и у теллуровой кислоты

H 6 TeO 6 . Эту формулу (а не Н 2 ТеО 4 ей присвоили после того, как были получены соли состава Ag 6 Te0 6 и Hg 3 Te0 6 , хорошо растворяющиеся в воде. Образующий теллуровую кислоту ангидрид ТеОз в воде практически не растворяется. Это вещество существует в двух модификациях - желтого и серого цвета: α-ТеОз и β-ТеОз. Серый теллуровый ангидрид очень устойчив: даже при нагревании на него не действуют "кислоты и концентрированные щелочи. От желтой разновидности его очищают, кипятя смесь в концентрированном едком кали.

ВТОРОЕ ИСКЛЮЧЕНИЕ. При создании периодической таблицы Менделеев поставил теллур и соседний с ним иод (так же, как аргон и калий) в VI и VII группы не в соответствии, а вопреки их атомным весам. Действительно, атомная масса теллура - 127,61, а иода - 126,91 Значит, иод должен был бы стоять не за теллуром, а впереди него. Менделеев, однако, не сомневался в пра
вильности своих рассуждений, так как считал, что атомные веса этих элементов определены недостаточно точно. Близкий друг Менделеева чешский химик Богуслав Браунер тщательно проверил атомные веса теллура и иода, но его данные совпали с прежними. Правомерность исключений, подтверждающих правило, была установлена лишь тогда, когда в основу периодической системы легли не атомные веса, а заряды ядер, когда стал известен изотопный состав обоих элементов. У теллура, в отличие от иода, преобладают тяжелые изотопы.
Кстати, об изотонах. Сейчас известно 22 изотопа элемента № 52. Восемь из них - с массовыми числами 120, 122, 123, 124, 125, 126, 128 и 130 - стабильны. Последние два изотопа - самые распространенные: 31,79 и 34,48% соответственно.

МИНЕРАЛЫ ТЕЛЛУРА. Хотя теллура на Земле значительно меньше, чем селена, известно больше минералов элемента № 52, чем минералов его аналога. По своему составу минералы теллура двояки: или теллуриды, или продукты окисления теллуридов в земной коре. В числе первых калаверит AuTe 2 и креннерит (Au, Ag) Те2, входящие в число немногих природных соединений золота. Известны также природные теллуриды висмута, свинца, ртути. Очень редко в природе встречается самородный теллур. Еще до открытия этого элемента его иногда находили в сульфидных рудах, но не могли правильно идентифицировать. Практического значения минералы теллура не имеют - весь промышленный теллур является попутным продуктом переработки руд других металлов.

Открыт Ф.Мюллером в 1782 г. Название элемента происходит от латинского tellus, родительный падеж telluris, Земля (название предложил М.Г. Клапрот, который выделил элемент в виде простого вещества и определил его важнейшие свойства).

Получение:

В природе существует как смесь 8 стабильных изотопов (120, 122-126, 128, 130). Содержание в земной коре 10 -7 %. Основные минералы - алтаит (PbTe), теллуровисмутит (Bi 2 Te 3), тетрадимит (Bi 2 Te 2 S), содержится во многих сульфидных рудах.
Получают из шламов производства меди выщелачиванием раствором NaOH в виде Na 2 TeO 3 , откуда теллур выделяется электролитически. Дальнейшая очистка - сублимацией и зонной плавкой.

Физические свойства:

Компактный теллур серебристо-серое вещество с металлическим блеском, имеющее гексагональную кристаллическую решетку (плотность 6,24 г/см 3 , температура плавления - 450°С, кипения - 990°С). Из растворов осаждается в виде коричневого порошка, в парах состоит из молекул Te 2 .

Химические свойства:

На воздухе при комнатной температуре теллур устойчив, при нагревании реагирует с кислородом. Взаимодействует с галогенами, со могими металлами вступает в реакцию при нагревании.
При нагревании теллур окисляется водяным паром с образованием оксида теллура(II), взаимодействует с концентрированными серной и азотной кислотами. При кипячении в водных растворах щелочей диспропорционирует аналогично сере:
8 Te + 6NаОН = Na 2 TeO 3 + 2Na 2 Te + 3H 2 O
В соединениях проявляет степени окисления -2, +4, +6, реже +2.

Важнейшие соединения:

Оксид теллура(IV), диоксид теллура, TeO 2 , плохо растворим в воде, кислотный оксид, реагирует со щелочами, образуя соли теллуристой кислоты. Применяется в лазерной технике, компонент оптических стекол.
Оксид теллура(VI) , триоксид теллура, TeO 3 , желтое или серое вещество, в воде практически не растворимо, при нагревании разлагается образуя диоксид, реагирует со щелочами. Получают разложением теллуровой кислоты.
Теллуристая кислота , H 2 TeO 3 , малорастворима, склонна к полимеризации, поэтому обычно представляет собой осадок с переменым содержанием воды TeO 2 *nH 2 O. Соли - теллуриты (M 2 TeO 3) и полителлуриты (M 2 Te 2 O 5 и др.), обычно получают спеканием карбонатов с TeO 2 , применяются как компоненты оптических стекол.
Теллуровая кислота , H 6 TeO 6 , белые кристаллы, хорошо растворима в горячей воде. Очень слабая кислота, в растворе образует соли состава MH 5 TeO 6 и M 2 H 4 TeO 6 . При нагревании в запаянной ампуле была получена также метателлуровая кислота H 2 TeO 4 , которая в растворе постепенно превращается в теллуровую. Соли - теллураты . Получают также сплавлением оксида теллура(IV) со щелочами в присутствии окислителей, сплавлением теллуровой кислоты с карбонатом или оксидом металла. Теллураты щелочных металлов растворимы. Применяются как сегнетоэлектрики, ионообменники, компоненты люминисцирующих составов.
Теллуроводород , H 2 Te - ядовитый газ с неприятным запахом, получают гидролизом теллурида алюминия. Сильный восстановитель, в растворе быстро окисляется кислородом до теллура. В водном растворе кислота, более сильная чем серо- и селеноводородная. Соли - теллуриды , получают обычно взаимодействием простых веществ, теллуриды щелочных металлов растворимы. Многие теллуриды p- и d- элементов - полупроводники.
Галогениды . Известны галогениды теллура(II), например TeCl 2 , солеподобные, при нагревании и в растворе диспропорционируют на Te и соединения Te(IV). Тетрагалогениды теллура - твердые вещества, в растворе гидролизуются с образованием теллуристой кислоты, легко образуют комплексные галогениды (например K 2 ). Гексафторид TeF 6 , бесцветный газ, в отличие от гексафторида серы легко гидролизуется, образуя теллуровую кислоту.

Применение:

Компонент полупроводниковых материалов; легирующая добавка к чугуну, сталям, сплавам свинца.
Мировое производство (без СССР) - около 216 т/год (1976).
Теллур и его соединения токсичны. ПДК около 0,01 мг/м 3 .

См. также:
Теллур // Википедия. . Дата обновления: 20.12.2017. URL: http://ru.wikipedia.org/?oldid=89757888 (дата обращения: 25.12.2017).
Открытие элементов и происхождение их названий. Теллур //
URL: http://www.chem.msu.su/rus/history/element/Te.html

← Вернуться

×
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:
Я уже подписан на сообщество «sinkovskoe.ru»