Вторичная переработка полимеров. Оборудование для переработки полимеров Процесс переработки делится на три стадии

Подписаться
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:

Министерство образования Республики Беларусь

Учреждение образования

"Гродненский государственный университет имени Янки Купалы"

Факультет строительства и транспорта

Контрольная работа

по дисциплине «Технология материалов»

Переработка полимеров и полимерных материалов

Полимером называется органическое вещество, длинные молекулы которого построены из одинаковых многократно повторяющихся звеньев - мономеров.

Рис. 1. Схема строения макромолекулы полимера:

а) - цепеобразные молекулы; б)- боковые связи

Обладая способностью при определенных условиях последовательно соединяться друг с другом, мономеры образуют длинные цепи (рис. 1) линейной, разветвленной и сетчатой структурами связи- в результате чего получают макромолекулы полимера.

По происхождению полимеры делятся на три группы:

Природные образуются в результате жизнедеятельности растений и животных и содержатся в древесине, шерсти, коже. Это протеин, целлюлоза, крахмал, шеллак, лигнин, латекс. Обычно природные полимеры подвергаются операциям выделения очистки, модификации, при которых структура основных цепей остается неизменной. Продуктом такой переработки являются искусственные полимеры. Примерами являются натуральный каучук, изготовляемый из латекса, целлулоид, представляющий собой нитроцеллюлозу, пластифицированную камфарой для повышения эластичности.

Природные и искусственные полимеры сыграли большую роль в современной технике, а в некоторых областях остаются незаменимыми и до сих пор, например в целлюлозно-бумажной промышленности. Однако резкий рост производства и потребления органических материалов произошел за счет синтетических полимеров – материалов, полученных синтезом из низкомолекулярных веществ и не имеющих аналогов в природе. Синтетические полимеры получают при переработке угля, природного и промышленного газа, нефти и другого сырья. По химической структуре полимеры делятся: линейные, разветвленные, сетчатые и пространственные.

В зависимости от изменения свойств при нагреве, полимеры разделяют на две основные группы: термопластичные и термореактивные. Первые из них образуются на базе новолачных смол, а вторые - на базе резольных смол.

1.Термопластичные полимеры (термопласты) при нагревании размягчаются, переходя сначала в высокоэластичное, а затем в вязко-текучее состояние; при охлаждении они затвердевают. Процесс этот является обратимым, т. е. его можно повторять многократно. К термопластам относят полимеры с линейной и разветвленной структурой связи; у них мономеры связаны один с другим только в одном направлении. При повторном нагревании такие химические связи не разрушаются; молекулы мономеров приобретают гибкость и подвижность. Из термопластов изготовляют изделия прессованием, литьем под давлением, непрерывным выдавливанием (экструзией) и другими способами. Наиболее распространенными термопластами являются полимеризационные материалы (полиэтилен, полипропилен, полихлорвинил, полистирол, фторопласты и другие) и поликонденсационные (полиамидные, полиуретановые, анилино-формальдегидные, феноло-формальдегидные смолы и др.), выпускаемые в виде порошков, крошки, листов, стержней, труб и т. п.

2.Термореактивные полимеры (реактопласты) при нагреве сначала размягчаются, если они были твердыми, а затем переходят в твердое состояние. Процесс этот является необратимым, т. е. при повторном нагреве такие полимеры не размягчаются. К реактопластам относят полимеры с сетчатой или сшитой структурой связи. Такие полимеры образуют в гигантских макромолекулах двух- или трехмерные связи, т.е. их мономеры или линейные молекулы жестко связаны между собою и не способны взаимно перемещаться. Наиболее распространенными реактопластами являются поликонденсационные материалы - фенопласты, получаемые на основе феноло-формальдегидных, полиэфирных, эпоксидных и карбамидных смол. Детали и изделия из термопластов получают горячим прессованием, литьем под давлением, механической обработкой.

В настоящее время изделия из пластических масс производят весьма разнообразными методами. При этом выбор метода изготовления изделий обусловлен видом полимера, его исходным состояние, а также конфигурацией и габаритами изделия.

Основная задача при переработке полимерных материалов заключается в замедлении отрицательных процессов и создании необходимой структуры материала. Самыми простыми приемами для достижения этой цели являются регулирование температуры, давления, скорости нагрева и охлаждения материала. Кроме того, используют стабилизаторы, увеличивающие стойкость материала против старения, пластификаторы, понижающие вязкость материала и повышающие гибкость молекулярных цепей, а также различные наполнители.

Прежде чем перейти к обсуждению разнообразных методов переработки полимеров, напомню, что полимерные материалы могут быть термопластичными или термореактивными (термоотверждающимися). После формования термопластичных материалов под действием температуры и давления перед освобождением из пресс-формы их следует охлаждать ниже температуры размягчения полимера, так как в противном случае они теряют форму. В случае термореактивных материалов такой необходимости нет, поскольку после однократного совместного воздействия температуры и давления изделие сохраняет приобретенную форму даже при его освобождении из пресс-формы при высокой температуре.

При переработке в изделия термопласты подвергают воздействию теплоты, механического давления, кислорода воздуха и света. Чем выше температура, тем материал пластичнее и тем легче проходит процесс переработки. Однако под влиянием высоких температур и названных выше факторов в полимерах происходят разрыв химических связей, окисление, образование новых нежелательных структур, перемещение отдельных участков макромолекул и макромолекул относительно друг друга, ориентация макромолекул в различных направлениях, причем прочность материала в направлении ориентации возрастает, а в поперечном направлении уменьшается. При получении пленок и тонкостенных изделий это явление играет положительную роль, во всех остальных случаях оно вызывает структурную неоднородность и служит причиной возникновения остаточных напряжений.

Особенность переработки в изделия реактопластов состоит в сочетании процессов формования с отверждением, т. е. с химическими реакциями образования сшитой структуры макромолекул. Неполное отверждение ухудшает свойства материала. Достижение необходимой полноты отверждения даже в присутствии катализаторов и при повышенных температурах требует значительного времени, что увеличивает трудоемкость изготовления детали. Окончательно отверждение материала может происходить вне формующей оснастки, так как изделие приобретает устойчивую форму до завершения этого процесса.

При переработке композиционных материалов большое значение имеет адгезия (сцепление) связующего с наполнителем. Величина адгезии может быть повышена путем очистки поверхности наполнителя и сообщения ей химической активности. При плохой адгезии связующего к наполнителю в материале появляются микропоры, которые значительно снижают прочность материала.

Различие по сечению изделия в скоростях охлаждения, в степени кристаллизации, полноте протекания релаксационных процессов для термопластов и степени отверждения для реактопластов приводит также к структурной неоднородности и появлению дополнительных остаточных напряжений в изделиях. Для снижения остаточных напряжений применяют термическую обработку изделий, формирование структуры при переработке и другие технологические приемы.

Все возрастающий объем производства пластических масс требует дальнейшего совершенствования существующих и разработки новых высокопроизводительных технологических процессов переработки полимеров. Дальнейший прогресс в области переработки пластических масс связан с резким повышением производительности перерабатывающего оборудования, сокращением трудоемкости в производстве изделий и повышением их качества. Решение поставленных задач невозможно без применения новых прогрессивных методов переработки, к числу которых относятся различные виды переработки полимеров давлением в твердом агрегатном состоянии.

В основе всех процессов переработки полимеров в твердом состоянии лежит пластическая (вынужденно-эластическая) деформация, которая носит обратимый характер. Вынужденно-эластические деформации в полимерах развиваются под влиянием больших механических напряжений. После прекращения действия деформирующего усилия, при температурах ниже температуры размягчения, вынужденно-эластическая деформация оказывается фиксированной в результате стеклования или кристаллизации материала и деформированное полимерное тело не восстанавливает свою исходную форму.

Вторичная переработка полимеров в России становится все более перспективной. Увеличивается количество проектов по раздельному сбору отходов, а продукция, изготовленная с использованием таких материалов, находит широкое применение в различных отраслях. Однако развитию рынка все еще мешает ряд факторов.

16 февраля в Москве прошла Четвертая международная конференция «Вторичная переработка полимеров 2018». Партнерами стали компании Viscotec и KRONES, генеральным информационным партнером - журнал «Полимерные материалы». Мероприятие прошло при поддержке ГК INTRATOOL, EREMA и PETplanet.

Генеральный директор INVENTRA Рафаэль Григорян, приветствуя собравшихся, отметил, что региональные операторы в перспективе могут стать крупнейшими игроками в сегменте вторичной переработки полимеров. Их основной источник доходов сегодня - оплачиваемый населением тариф по управлению отходами, но объемы поступающих средств могут быть недостаточны для получения прибыли. В данной связи региональные операторы, обладающие обширной ресурсной базой, заинтересованы в сортировке, переработке и производстве товаров из вторсырья, дабы извлечь максимальную выгоду.

Обсуждение состояния дел в сегменте началось с выступления председателя совета директоров ГК «Чистый город» Полины Вергун, которая сообщила, что сфера обращения с отходами в России выглядит следующим образом: 5% отправляются на переработку, 10% - на полигоны, отвечающие экологическим требованиям, а 85% попадают на объекты, которые не обеспечивают экологическую безопасность.

Среди основных проблем отрасли г-жа Вергун выделила: размещение отходов на несанкционированных свалках и отсутствие достаточного количества объектов сферы обращения с отходами. А основные трудности в сегменте вторичной переработки - отсутствие сортировочных и перерабатывающих мощностей, разрозненность рынка и неразвитость системы раздельного сбора.

Решение вышеперечисленных проблем, по словам выступающей, уже найдено: внедрение института регионального оператора в сфере обращения с отходами, запрет на захоронение отдельных компонентов и увеличение ставок и нормативов экологического сбора. Также эксперт отметила, что важно участие малого бизнеса в организации деятельности по обращению с отходами.

«Учитывая проводимую реформу по обращению с отходами, важно начать строительство федеральных экотехнопарков, перерабатывающих вторичное сырье, которое будет отбираться на вводимых в настоящий момент региональных технопарках уже сегодня, т.к. имеющихся перерабатывающих мощностей будет недостаточно для объемов вторсырья в новой системе, - продолжила г-жа Вергун, - в ее рамках проходит взаимодействие на уровне региональных и федеральных экотехнопарков, определяются направления переработки вторичного сырья с целью импортозамещения и вырабатываются совместные решения по усовершенствованию нормативно-правовой базы, в том числе - обоснование увеличения нормативов и ставок утилизации».
Кроме того, выступающая отметила, что в ближайшие несколько лет сбор пластиковых отходов увеличится в разы и не совсем понятно, есть ли на сегодняшний день в России достаточный объем потребления изделий из вторичных полимеров. «Мы готовы на своей территории дать определенные мощности для развития сторонних предприятий, если это будет целесообразно и выгодно обеим сторонам» - резюмировала г-жа Вергун.

Председатель совета директоров «Экотехнологии» Константин Рзаев рассказал о своем видении ситуации и напомнил, что всего в России потребляется 5 млн т полимерного сырья, внушительная часть которых остаётся в использовании на десятки лет (рамы окон, трубы, геоматериалы), а в «мусор» попадает прежде всего полимерная упаковка.

По мнению докладчика, с учетом предполагаемого резкого увеличения сбора пластиковых отходов на сортировках усилиями региональных операторов можно ожидать дополнительно 100–150 тыс. т ПЭТ и еще несколько сотен тысяч тонн другой полимерной упаковки в ближайшие несколько лет.

Г-н Рзаев в продолжение разговора отметил, что предыдущие два-три года задали некоторые тренды в сфере переработки отходов пластмасс, появились факторы, влекущие за собой рост отрасли и новые возможности. Среди таковых докладчик отметил принятие законов 458 и 503 Ф3, введение расширенной ответственности производителя, запуск все большего числа мусоросортировочных комплексов, а также начатую с 2018 г. реализацию запрета на захоронение отходов, в состав которых входят полезные компоненты. Территориальные схемы разработаны почти во всех регионах, примерно треть из них выбрали регоператоров по обращению с ТКО, все больше организаций узнают о расширенной ответственности производителя и экологическом сборе.

Безусловно, экологичность становится трендом. Но у сегмента по-прежнему существуют проблемы: низкие масштабы сбора фракций для переработки, высокая доля игроков, остающихся «в тени», неструктурированность отрасли - изменится ли это в наступившем году? Вопрос остается открытым.


Эксперт оценил потребление вторичного ПЭТФ (в виде ПЭТ-хлопьев) на 2017 г. в 151 тыс. т, из которых внутреннее производство - 136 тыс. т, импортировано примерно 16 тыс. т, а на экспорт ушло 877 т. Практически 100% импорта - ПЭТ-хлопья для производства полиэфирного волокна. Среди крупнейших стран-поставщиков: Украина, Белоруссия-Казахстан-Кыргызстан, Литва, Азербайджан и Великобритания.

Структура потребления вторичного ПЭТФ на сегодняшний день выглядит следующим образом: 65.4% приходится на полиэфирное волокно, около 18% - преформы, 12.7% - лента, шпагат, на пленку и листы - 2.7% и менее 1% - остальные сегменты (смолы и др.) Крупнейшие переработчики - производители полиэфирного волокна («Комитекс», «РБ-Групп», «Технопласт», «Политекс», «Номатекс», «Селена», «Вторком»), «Спекта» (лидер российского рынка упаковочных лент), а также единственный производитель ПЭТ-гранулята пищевого качества завод «Пларус».

Объем поставок вторичного полиэтилена в Россию, для сравнения, в 2014 г. был 1.9 тыс. т, к 2016 г. поднялся до 3.3 тыс т, однако в 2017 г. вновь опустился и составил примерно 3.1 тыс. т. Среди крупнейших поставщиков по данным за прошедший год - Польша (2.2 тыс. т) и Болгария (777 т).

В Европе в среднем производится 492 кг отходов на человека в год, из которых перерабатывается меньшая часть - 42%, а оставшиеся 58% захороняются или сжигаются, сообщил генеральный директор PET Baltija Каспарс Фогельманис в своем докладе, посвященном рециклингу пластмасс в Европе.

Сегодня практически 50% всего собираемого и перерабатываемого объема пластика в ЕС приходится на Францию, Германию и Италию. К этим странам примыкают Испания и Великобритания, формируя пятерку крупнейших игроков и собирая около 71% всего объема отходов в Ес. Европейской Комиссией предложено увеличить процент переработки всего потока пластиковых отходов в ЕС до 55% к 2025 г.


Импорт ПЭТ-отходов в Китай сократился в 3-м квартале 2017 г. на 177.6 тыс. т или 26% по сравнению с показателями за 2016 г., которые составили 517 тыс. т. К концу 2017 г. китайскими властями был запрещен ввоз 24 видов материалов, включая бумагу и пластик. По заявлению правительства страны, впредь они будут принимать только перерабатываемые материалы с уровнем загрязнения не более 0.3%.

Очевидно, что запрет, наложенный Китаем, влияет на переработку по всему миру: это распространяется на страны ЕС-27, где 87% собираемого переработанного пластика доставляется непосредственно или косвенно через Гонконг в Китай. Япония и США также пользуются тем, что Китай скупает их переработанный пластик. В прошлом году Америка экспортировала 1.42 млн т пластиковых отходов, что, по оценке г-на Фогельманиса, принесло Китаю почти $500 млн.


С докладом о механизмах реализации расширенной ответственности производителя (которые предусмотрены двумя способами: самостоятельно или через оплату экологического сбора) выступила исполнительный директор «РусПЭК» Любовь Меланевская.

«По плану государство в 2017 г. должно было собрать 6.5 млрд руб. в качестве экологического сбора, а по факту собрали 1.3 млрд руб. Что нужно, чтобы РОП заработала? Понятные правила игры, равноправный вклад бизнеса, государства и населения, а также поддержка „первых ласточек“ по самостоятельной реализации РОП», - поделилась г-жа Меланевская.

К успеху в сложившейся ситуации, по словам выступающей, может привести синхронное принятие законодательных актов, наделение обязательствами органов власти по внедрению раздельного сбора мусора и ответственностью за недостижение целевых показателей по РСО, а также внедрение инфраструктуры по РСО. Законом по РСО, принятым в конце 2017 г., положено начало перемен. Последуют ли дальнейшие улучшения? Время покажет.


Руководитель проекта «ТехноНИКОЛЬ» Анна Даутова считает, что в России пока отсутствует культура и широкая практика сбора и переработки полистирольных отходов, но этот процесс может возглавить их компания, и тогда важная экологическая проблема в масштабах страны будет решаться.

Переработка полистирольных отходов требует менее 10% от ресурсов, совокупно затраченных на производство первичных полимеров. При этом для выпуска ряда изделий можно в большом объеме использовать вторичные. Говоря о мировом опыте, выступающая отметила, что компании Torox и Ursa - основные игроки на европейском рынке вторпереработки полистирола. По предоставленным докладчиком данным, ежегодно в Европе вторично перерабатывается 50 тыс. т вспененного полистирола, а в Японии, при емкости рынка первичного вспененного полистирола в 132 тыс. т, собирается и используется повторно 125 тыс. т.

Генеральный директор дочерней компании «Ерема» Калоян Илиев представил информацию о предварительной вакуумной обработке при повышенной температуре перед экструзией, благодаря которой в стабильной технологической среде влажность и миграционные вещества удаляются из материала уже до экструзии. Такая обработка и короткий экструзионный шнек обеспечивают непрерывное производство одобренных для пищевого применения ПЭТФ-гранул с высокими и стабильными значениями вязкости и хорошими показателями цвета.

Повышаются мировые показатели по сбору отходов, Азия - лидер. Законодательство становится строже: поощряется переработка материалов и одновременно вводятся ограничения по захоронению отходов и использованию энергии, что, однозначно, должно отразиться на мировой экологии положительно, сообщил начальник отдела продаж Krones Питер Хартель и рассказал о решениях компании по переработке пластмасс. Модульные системы Krones полностью адаптируются под индивидуальные потребности и могут поставляться как отдельными машинами, так и в виде заводов под ключ. Технология переработки MetaPure позволяет получать хлопья или гранулы различного качества, вплоть до ПЭТ пищевого класса в соответствии с FDA и другими системами сертификации.

В завершение разговор зашел о ПЭТ-упаковке. По утверждению представителя Starlinger Viscotec Герхарда Оссбергера, есть три условия успешной ПЭТ-упаковки: оптический вид (яркий цвет, полная прозрачность и никаких дефектов), пищевая безопасность (100% безопасная упаковка для здоровья человека), механические характеристики (максимальная возможность штабелирования и складирования, прочность). Сушка deCON и экструзионная линия viscoSHEET удаляет пыль, чтобы уменьшить визуальные дефекты, сушит сырьё для обеспечения максимальной вязкости и при этом максимальной прочности, а также очищает входящее вторичное сырьё для 100% пищевой безопасности. Таким образом Viscotec создаёт качественную «защиту» для товара.


Введение

Вторичная переработка однородных полимеров - относительно простая задача, если их структура сохранилась и ни во время изготовления, ни во время первичного использования не было значительной деструкции (см., например, ). Разумеется, процесс деструкции, следствием которого могут быть структурные и морфологические изменения, вызванные уменьшением молекулярной массы, образованием ветвей, других химических групп и т. п., приводит к существенному ухудшению всех физических свойств. Если вторичные материалы, сохранившие свои свойства, могут быть использованы в тех же приложениях, что первичные полимеры, то вторичные материалы с пониженными свойствами менее можно использовать только в специфических приложениях. Поэтому при механической повторной переработке однородных полимеров задача заключается в том, чтобы избежать дальнейшей деструкции в ходе технологического процесса, то есть избежать ухудшения свойств конечного материала. Этого можно достичь правильным выбором оборудования для переработки, условий переработки (см. главы 4 и 8) и введением стабилизаторов (см. главы 3 и 7).

В этой главе мы рассмотрим связь свойств однородных полимеров с условиями их переработки (в том порядке, в котором свойства полимеров изменяются с увеличением числа шагов переработки), а также с типом применяемых машин; кроме того, мы исследуем зависимость свойств от исходной структуры.

Вторичная переработка полиолефинов и поливинилхлорида

Введение

Механическая переработка полиолефинов составляет очень важную область индустрии вторичной переработки. Разумеется, основная доля здесь приходится на сырьевые полиолефины и, соответственно, выпускается огромное число изделий из полиолефинов, а относительная легкость их сбора обусловливает простую и экономичную вторичную переработку. Как и в случае других полимеров, конечные свойства и экономическая ценность полиолефинов зависят от степени деструкции при первичном использовании и от условий вторичной переработки. Кроме того, химическое строение полиолефинов имеет очень важное значение для формирования свойств вторично переработанного полимера.

Полиэтилены

Различные структурные типы коммерческих полиэтиленов (ПЭ) сильно влияют на поведение этих материалов при вторичной переработке. Разумеется, развет-вленность (короткими или длинными цепями) влияет на кинетику деструкции, а далее и на конечные свойства повторно переработанного материала, испытавшего нескольких этапов переработки. Это поведение имеет особое значение для тех пластмасс, которые подвергаются не только термомеханической деструкции во время переработки, но также и другим деструктивным воздействиям при дальнейшем использовании. Фотоокисление и прочие виды деструкции вызывают различные структурные и морфологические изменения, зависящие от строения ПЭ.

Вторичная переработка ПЭ рассмотрена в нескольких монографиях и во множестве статей .

Соотношение свойства/этапы переработки будет рассмотрено как на примере различных типов коммерческих ПЭ, так и различных типов деструкции, которую испытывает материал при его использовании.

Полиэтилен высокой плотности

Главным источником рекуперированного полиэтилена высокой плотности (ПЭВП) являются емкости для жидкостей и упаковочная пленка; кроме того, растет объем вторичной переработки тары из-под автомобильного топлива. Во всех случаях молекулярная масса этих бывших в употреблении изделий из ПЭВП остается весьма высокой, потому что деструкция, испытываемая материалом этого типа, при краткосрочном использовании весьма незначительна. Последнее обстоятельство предполагает, что свойства вторично переработанного материала близки к таковым у исходного полимера. В табл. 5.1 приводится сравнение образцов ПЭВП, полученных из переработанных бутылок, и из исходного полимера. Хорошо видно, что большая часть свойств очень близка. Как отмечалось выше, это результат кратковременного использования бутылок и отсутствия существенной деструкции, хотя некоторое изменение строения все же, возможно, имело место во время вторичной переработки; на это указывает расширение молекулярно-массового распределения. Кроме того, значительно различаются модуль упругости и относительное удлинение при разрыве, и у переработанного материала несколько выше прочность при растяжении.

Эти различия могут быть результатом небольших изменений в структуре и морфологии. В частности, при переработке расплава ПЭ могут происходить как разрывы цепей (с уменьшением молекулярной массы), так и ветвление (увеличение молекулярной массы), на фоне которых реакции сшивания с трудом определяются по измерениям молекулярной массы, а они могут изменить конечные свойства вторичного материала.

Вторично переработанные полимеры испытывают, по крайней мере, два-три цикла переработки, и в каждом из них плавление вызывает дополнительную деструкцию материала. Кроме того, увеличение количества вторично переработанных полимеров и использование смесей из вторично переработанных и первичных материалов (см. главу 6) ведет к тому, что значительная доля рекуперированных пластиков перерабатывается вновь и вновь. Это означает, что свойства таких многократно переработанных полимерных материалов постоянно изменяются с увеличением числа циклов переработки в сторону их ухудшения. Например, в табл. 5.2 показаны изменения некоторых свойств образца из ПЭВП (канистра для топлива) после 15 циклов вторичной переработки литьем под давлением.

Хорошо видно, что изменения механических свойств относительно невелики, хотя показатель текучести расплава уменьшается значительно. Последнее обстоятельство можно объяснить сильной зависимостью вязкости от молекулярной массы и это означает, что обрабатываемость материала существенно изменилась.

Результат ясно показывает, что свойства восстановленного ПЭВП зависят не только от свойств утилизированных продуктов, но также от характера и числа циклов переработки. Кроме того, как на свойства расплавов, определяющих обрабатываемость полимера, так и на свойства твердого материала до некоторой степени влияет вторичная переработка

Таким образом, необходимо знать связь между свойствами и циклами переработки, чтобы иметь возможность до некоторой степени предусмотреть вероятные характеристики вторично переработанных пластмасс и, следовательно, определить доступные для этих материалов сферы применения. Разумеется конечные свойства будут зависеть не только от числа циклов переработки, но также от свойств рекуперированных материалов, от характера переработки и ее условий.

На рис. 5.1 показаны кривые течения образца ПЭВП (канистра). Данные относятся к образцам, прошедшим через несколько циклов переработки на одно-шнековом экструдере. Вязкость уменьшается с увеличением числа циклов вторичной переработки во всем диапазоне скоростей сдвига. Это означает, что при повторных экструзиях термомеханические напряжения, действующие на расплав, вызывают определенную деструкцию полимера. Эта простая схема, однако она находится в противоречии с тем, что наблюдалось для того же образца, проходившего через двухшнековый экструдер (рис. 5.2). В этом случае ситуация н -сколько сложнее, поскольку небольшое уменьшение вязкости имеет место только при высоких скоростях сдвига, а при низких скоростях эффект обратный Термомеханическое напряжение вызывает как разрывы цепей, так и молекулярный рост, главным образом, из-за образования длинных боковых ветвей и сшивания . Конечное молекулярное строение зависит от относительного вклада этих двух процессов. В частности, увеличение температуры и времени переработки (на одношнековом экструдере) благоприятно для разрыва цепей, в результате чего вязкость конечного расплава уменьшается. Кроме того, характер конкуренции между двумя механизмами может изменяться при избытке кислорода во время переработки или в зависимости от конкретного молекулярного строения образца ПЭВП Например, было показано, что высокое

содержании винильных групп ведет к значительному увеличению вязкости расплава - уменьшению молекулярной массы - и длинноцепному ветвлению . Влачопулос с сотр. получили, что разрывы цепей доминируют в сополимерах (что проявляется в ветвлении цепей), тогда как сшивание является главным механизмом деградации в гомополимерах. Увеличение давления экструзии по мере возрастания числа циклов переработки для последнего образца, и падение в сополимерном образце имеют место из-за увеличения и уменьшения молекулярной массы, что подтверждают данные механизмы. Это означает, что очень трудно предсказать изменение строения рекуперированного ПЭВП и, следовательно, его реологических и механических свойств, поскольку этот материал состоит из сополимерного и гомополимерного полимеров. Кроме того, гомополимеры могут содержать различное количество винильных групп. Качество экструзии материала, полученного утилизацией бутылок, проверенное в той же работе , в самом деле не зависело от проходов через экструдер, что указывало на то, что оба механизма играют одну и ту же роль, и что рекуперированный материал является, как уже предполагалось, смесью сополимера и гомополимера ПЭВП.

Приведенные данные показывают, что тип машин для повторной переработки и условия переработки существенно, а иногда и решающим образом, влияют на конечные свойства вторичного материала - в данном случае образца ПЭВП. В качестве примера на рис. 5.3 и 5.4 показаны модуль упругости и удлинение при разрыве как функция числа проходов через экструдер. Механические свойства двух образцов изменялись совершенно по разному.

Кривая модуля упругости идет вверх с числом этапов переработки, тогда как поведение удлинения при разрыве проявляет противоположную тенденцию. Более того, кривая модуля образца, переработанного в одношнековом экструдере идет выше, чем у образца, экструдированного в двухшнековом экструдере, но величины его удлинения при разрыве ниже. Неожиданный ход зависимости модуля от числа циклов переработки был объяснен увеличением кристалличности при снижении молекулярной массы. Та же причина, что вызывает снижение молекулярной массы, влечет падение удлинения при разрыве. Более выраженный рост модуля и уменьшение удлинения при разрыве образца, переработанного на одношнековом экструдере, отражает факт более значительной деструкции расплава в этой машине. Это происходит главным образом из-за большего времени переработки.

Влияние строения на механические свойства вторично переработанного ПЭВП становится понятнее, если посмотреть на величины трещиностойкости при внешнем напряжении, приведенные в табл. 5.3. Данные относятся к образцам гомополимера и сополимера, а также образца из бывшего в употреблении материала после 0 и 4 проходов через одношнековый экструдер.

Два исходных образца демонстрируют ухудшение трещиностойкости при внешнем напряжении, но у сополимера падение свойств после многократной вторичной переработки катастрофическое. Значение трещинностойкости рекуперированного материала после четырех проходов через экструдер уменьшается на

20 %, хотя он состоит в основном из сополимера. Существенное изменение величины трещинностойкости сополимера, по видимому, уравновешено улучшением поведения гомополимерной фракции.

Приведенные данные ясно показывают влияние строения ПЭВП и характера перерабатывающего оборудования на конечные свойства вторично переработанного полимера.

Основным применением вторичного ПЭВП является изготовление контейнеров для жидкостей (среди которых - многослойные бутыли с внутренним слоем из восстановленного ПЭВП), дренажных труб, гранул и пленок для пакетов и мешков для мусора.

Изделия из полимеров сегодня являются неотъемлемой частью нашей повседневной жизни, однако, одновременно с ростом объемов производства таких изделий, вполне естественно, что и количество твердых отходов также увеличивается.

Сегодня полимерные отходы составляют примерно двенадцать процентов от всего бытового мусора, и их количество постоянно растет. И естественно, что вторичная переработка полимеров сегодня является одной из самых остро стоящих проблем, ведь без нее человечество может буквально утонуть в горах мусора.

Утилизация полимеров сегодня является не только проблемой, но и весьма перспективным направлением бизнеса, поскольку из казалось бы бросового сырья – бытового мусора, можно получить множество полезных веществ. К тому же данная технология переработки мусора (ТБО) является куда более безопасным методом утилизации полимерных отходов, чем традиционное сжигание, которое наносит ощутимый вред экологии.

Технология переработки полимеров

Итак, что собой представляет переработка полимеров?

Для превращения полимерных отходов в сырье, пригодное для дальнейшей переработки в изделия, необходимо его предварительно обработать. Выбор способа предварительной обработки в первую очередь зависит от степени загрязненности отходов и источника их образования. Так, однородные отходы производства обычно перерабатывают прямо на месте их образования, поскольку в данном случае требуется незначительная предварительная обработка – всего лишь измельчение и грануляция.

Однако отходы в виде изделий, вышедших из употребления, требуют куда более основательной подготовки. Итак, предварительная обработка полимерных отходов обычно включает в себя следующие этапы:

  1. Грубая сортировка и идентификация для отходов смешанного типа.
  2. Измельчение отходов.
  3. Разделение смешанных от­ходов.
  4. Мойка отходов.
  5. Сушка.
  6. Грануляция.

Предварительная сортировка предусматривает собой грубое разделение полимерных отходов по различным признакам: виду пластмассы, цвету, форме и габаритам. Предварительная сортировка производится, как правило, вручную на ленточных конвейерах или столах. Также технология переработки полимеров подразумевает, что при сортировке из отходов удаляются различные посторонние включения.

Вышедшие из употребления и попавшие на завод по переработке мусора полимерные ПО отходы, в которых содержание посторонних примесей не превышает 5 %, поступают на сортировочный узел, где из них удаляют случайные инородные включения. Отходы, прошедшие сортировку, измельчаются в ножевых дробилках до получения рыхлой массы, размер частиц которой составляет 2…9 мм.

Измельчение – один из важнейших этапов подготовки отходов к переработке, поскольку степень измельчения определяет сыпучесть, размеры частиц и объемную плотность получаемого продукта. А регулирование степени измельчения позволяет повысить качество материала благодаря усреднению его технологических характеристик. Таким образом упрощается и переработка полимеров.

Весьма перспективным методом измельчения отходов полимеров является криогенный, благодаря которому можно получать порошки из полимерных отходов со степенью дисперсности от 0,5 до 2 мм. Использование данной технологии имеет ряд преимуществ перед традиционным механическим измельчением, поскольку благодаря нему можно добиться снижения продолжительности смешения и лучшего распределение компонентов в смеси.

Разделение смешанных отходов пластмасс по видам проводят следующими способами:

  1. Флотационный.
  2. Разделение в тяжелых средах.
  3. Аэросепарация.
  4. Электросепарация.
  5. Химические методы.
  6. Методы глубокого охлаждения.

Наиболее распространенный из них сегодня метод флотации, при котором разделение пластмасс производится благодаря добавлению в воду различных поверхностно-активных веществ, благодаря которым избирательно изменяются гидрофильные свойства полимеров.

В некоторых случаях довольно эффективным способом разделения полимеров является оказаться их растворение и в общем растворителе. Обрабатывая полученный раствор паром, выделяют ПВХ, смесь полиолефинов и ПС, причем чистота продуктов выходит не менее чем 96 %.

Именно две этих методики являются экономически более целесообразными из всех перечисленных нами выше.

Далее измельченные отходы полимеров подают в моечную машину на отмывку. Отмывку производят в несколько приемов с использованием специальных моющих смесей. Отжатую в центрифуге полимерную массу с влажностью от 10 до 15 %, подают для окончательного обезвоживания в сушильную установку, где она высушивается до содержания влаги в 0,2 %.

После этого масса попадает в гранулятор, где происходит уплотнение материала, благодаря чему облегчается его дальнейшая переработка и усредняются характеристики вторичного сырья. Конечным результатом гранулировки является получение материала, который может переработать стандартное оборудование для переработки полимеров.


Итак, понятно, что переработка отходов полимеров это дело достаточно непростое, и требует наличия определенного оборудования. Какое же именно оборудование для вторичной переработки полимеров используется сегодня?

  • Линии мойки полимерных отходов.
  • Дробилки полимеров.
  • Экструдеры для рециклинга.
  • Ленточные транспортеры.
  • Шредеры.
  • Агломераторы.
  • Линии гранулирования, грануляторы.
  • Ситозаменители.
  • Смесители и дозаторы.

Если у вас имеется все необходимое для переработки полимеров оборудование, то вы можете приступать к делу и на своем опыте убедиться, что сегодня переработка мусора (ТБО) это не только забота об экологии планеты, но и отличное капиталовложение, поскольку рентабельность данного бизнеса весьма высока.

Использование вторичного сырья в качестве новой ресурсной базы ‑ одно из наиболее динамично развивающихся направлений переработки полимерных материалов в мире. Для России оно является новым. Однако интерес к получению дешевых ресурсов, которыми являются вторичные полимеры, весьма ощутим, поэтому мировой опыт их вторичной переработки должен быть востребован.

В странах, где охране окружающей среды придают большое значение, объемы переработки вторичных полимеров постоянно увеличиваются. Законодательство обязывает юридических и частных лиц выбрасывать полимерные отходы (гибкую упаковку, бутылки, стаканчики и т. д.) в специальные контейнеры для их последующей утилизации. Сегодня на повестку дня становится не только задача утилизации отходов полимерных материалов, но и восстановления ресурсной базы. Однако возможность использования полимерных отходов для повторного производства ограничивается их нестабильными и худшими по сравнению с исходными полимерами механическими свойствами. Конечная продукция с их использованием часто не удовлетворяет эстетическим критериям. Для некоторых видов продукции использование вторичного сырья вообще запрещено действующими санитарными или сертификационными нормами. Например, в ряде стран действует запрет на использование некоторых вторичных полимеров для производства пищевой упаковки.

Сам процесс получения готовой продукции из вторичных пластиков связан с рядом трудностей. Повторное использование утилизируемых материалов требует особой перенастройки параметров технологического процесса в связи с тем, что вторичный материал изменяет свою вязкость, а также может содержать неполимерные включения. В некоторых случаях к готовой продукции предъявляются особые механические требования, которые просто невозможно соблюсти при использовании вторичных полимеров. Поэтому для использования вторичных полимеров необходимо достижение баланса между заданными свойствами конечного продукта и средними характеристиками вторичного материала. Основой для подобных разработок должна стать идея создания новых изделий из вторичных пластиков, а также частичной замены первичных материалов вторичными в традиционных изделиях. В последнее время процесс вытеснения первичных полимеров на производствах настолько интенсифицировался, что только в США производится более 1400 наименований изделий из вторичных пластмасс, которые раньше производились только с использованием первичного сырья.

Таким образом, продукты вторичной переработки пластмасс могут использоваться для производства изделий, ранее производимых из первичных материалов. Например, возможно производство пластиковых бутылок из отходов, т. е. переработка по замкнутому циклу. Также вторичные полимеры пригодны для изготовления объектов, свойства которых могут быть хуже, чем у аналогов, изготовленных с использованием первичного сырья. Последнее решение носит название "каскадной" переработки отходов. Она с успехом применяется, например, компанией FIAT auto, которая перерабатывает бамперы отслуживших свой срок автомобилей в патрубки и коврики для новых машин.

Проблемы и перспективы повторного использования пластиков мы рассмотрим на примере полиэтилентерефталата (ПЭТ), полиэтилена, полипропилена и полистирола.

ПЭТ

ПЭТ обладает достаточно стабильными механическими свойствами. Поэтому вторичный материал на его основе достаточно легко поддается переработке. Основным сырьем для переработки служат столь распространенные пластиковые бутылки из-под напитков. Важно и то, что вторичный ПЭТ гомогенизируется легче, чем другие вторичные пластмассы. В развитых странах сбор ПЭТ-отходов в достаточной степени налажен, как и технология их переработки. Общемировой объем переработки вторичного ПЭТ достигает 1 млн т ежегодно.

Процесс переработки ПЭТ-отходов не требует их пластификации. Они отсортировываются от других видов полимерной тары (на основе ПВХ или ПЭ), затем измельчаются, проходят мойку и очистку от этикеток, клеев, остатков пакуемых составов и прочих загрязнителей, а после этого агломерируются или гранулируются. Вторичным ПЭТ-полимерам при переработке свойственны те же проблемы, что и исходной ПЭТ-основе: низкий порог неньютоновского поведения (когда скорость сдвига сказывается на изменении вязкости полимера), чувствительность к нагреву и, наконец, необходимость просушки. Более того, в процессе сушки, и переработки вторичный материал претерпевает некоторую потерю вязкости, что вызвано не только температурными и деформирующими воздействиями в процессе пластикации полимера, но и присутствием загрязнителей (влаги, клея, красителей и т. д.). Эти факторы приводят к снижению молекулярной массы полимера. В таблице 1 приведены величины прочности (σ) и относительного удлинения (ε) при разрыве пленочных образцов из первичного ПЭТ и образцов переработки вторичного ПЭТ экструзией с предварительной сушкой и без сушки. Недостаточная сушка утилизируемой основы может значительно ухудшить свойства вторичного материала.

Таблица 1

Область их дальнейшего применения перерабатываемых ПЭТ-отходов определяют их молекулярные веса. Молекулярный вес ПЭТ рассчитывается исходя из его характеристической вязкости. В таблице 2 приведен диапазон ее значений для различных областей применения ПЭТ.

Таблица 2. Характеристическая вязкость ПЭТ в зависимости от области применения

Очевидно, что вторичные полимеры, лежащие в основе различных видов продукции и, соответственно, обладающие разными молекулярными весами (характеристической вязкостью), требуют совершенно разных технологий вторичной переработки. Вторичный ПЭТ не всегда может служить основой для повторного производства исходной продукции.

Другая проблема переработки ПЭТ-отходов связана с вероятным присутствием в них ПВХ. Даже при тщательной сортировке ПЭТ-бутылок есть вероятность попадания ПВХ и ПЭ примесей в состав вторичного материала. При температуре переработки ПЭТ ПВХ разлагается, выделяя соляную кислоту, которая вызывает интенсивную деструкцию полимера. Поэтому нужно максимально снизить присутствие ПВХ в составе ПЭТ-отходов. Допустимое содержание ПВХ не превышает 50 промилле.

Чаще всего ПЭТ-отходы используются повторно для производства пластиковых бутылок, пленок и волокна. Реологические и механические свойства вторичного состава ПЭТ позволяют использовать при изготовлении емкостей для моющих средств, что делает его хорошей альтернативой ПВХ и ПЭВП. Вторичный ПЭТ также часто используется в качестве промежуточного слоя при производстве трехслойной аморфной пленки и выдуве трехслойных ламинированных бутылок с внешними слоями из первичного полимера. Применение соэкструзии смесей из переработанного вторичного и первичного ПЭТ позволяет улучшить реологические свойства вторичного полимера, сделав его более пригодным для выдува.

Не менее важной областью применения вторичного ПЭТ является производство волокон. Процесс формования волокна требует от пластифицируемого вторичного полимера тех же реологических свойств (градиента скорости потока и неизотермального вытягивания), которыми обладает первичный полимер. Как правило, ПЭТ-волокно, формируемое из вторичной основы, имеет механические свойства, удовлетворяющие условиям производства широкой гаммы продуктов.

Вторволокно перерабатывается в текстиль или тканые основы для производства одежды и ковровых покрытий. Эти приложения могут использовать до 100 % вторичного полимера. Чаще всего ПЭТ-волокно применяют в качестве синтетического утеплителя для зимней одежды либо готовой плисовой фактуры для ее пошива одежды.

У ПЭТ-волокна есть ряд преимуществ перед другими синтетическими волокнами. Например, ковры из ПЭТ-волокна не теряют цвет и не требуют специальной химической обработки, необходимой коврам из нейлоновых волокон. ПЭТ-волокна и окрашиваются легче, чем нейлон. Волоконные полотна из ПЭТ, изготовленные по технологии melt-blown, применяются для производства шумоизолирующих материалов, геотекстиля, фильтрующих и абсорбирующих элементов, синтепона. Наконец, небольшой объем вторичного ПЭТ используется для изготовления автомобильных компонентов, электротехнических изделий, различной фурнитуры методом литья под давлением.

Полиэтилен

Из полиэтилена низкой плотности (ПЭНП) и линейного полиэтилена (ЛПЭНП) изготавливаются пленки для бытовой упаковки (в том числе пластиковые пакеты, сумки и мешки) и для промышленной упаковки (например, мешки для сельхозудобрений), которые и являются сырьем для дальнейшей вторичной переработки. В первом случае переработка достаточно проста, т. к. качество вторматериала очень близко к качеству первичного полимера из-за короткого жизненного цикла продукта. Полимер подвергается воздействию внешних факторов на непродолжительный срок и претерпевает лишь незначительный распад структуры. В большей степени структура материала страдает в процессе его регенерации посредством пластификации. Другим источником неудовлетворительных свойств переработанного вторичного материала может служить использование отходов с разными молекулярными структурами (например, одновременно ПЭНП и ЛПЭНП), что непременно приводит к снижению механических свойств получаемого материала.

При вторичном использовании промышленной упаковки дело обстоит несколько сложнее. Как правило, пленка промышленного назначения имеет больший жизненный цикл, чем бытовая. Воздействие солнечных лучей, температурных колебаний и т. д. также оказывает пагубное воздействие на структуру полимера. Ко всему прочему, использованные промышленные полиэтиленовые пленки могут содержать значительные загрязнения в виде пыли и мелкодисперсных компонентов, которые практически невозможно удалить даже при самой тщательной мойке. Естественно, это негативно сказывается на свойствах вторичных материалов.

Применение всех вторичных пластиков рассчитывается исходя из их усредненных свойств. В случае ПЭНП и ЛПЭНП можно с той или иной степенью уверенности утверждать, что полимерное сырье вторичных пленок этих типов может перерабатываться в тех же условиях (и примерно с теми же конечными свойствами), что и первичные пластики. В качестве примеров утилизации ПЭНП можно назвать повторное производство пленки для бытовой и торговой упаковки, пакетов для несыпучего мусора, а также садовой мульчирующей пленки. Свойства материала готовой продукции очень близки к свойствам первичной полимерной основы, однако количество циклов повторной переработки "продукта в продукт" ограничено из-за ухудшения свойств полимера в процессе многократно повторяющегося процесса плавления материала. На последнем цикле утилизируемая пленка годна лишь для производства садовой мульчирующей пленки, от которой требуются достаточно скромные механические свойства (нередко в нее добавляется обыкновенная сажа).

Стретч-пленки имеют полимерные добавки, которые проявляют себя как загрязнители, требуя значительного добавления первичного сырья: вторичная стретч-пленка смешивается в низкой пропорции (15-25 %) с первичным полимером. При вторичной переработке пленки агропромышленного происхождения возникает ряд трудностей, вызванных не только ухудшением механических свойств полимерной основы и посторонними включениями, но и фотоокислительными процессами, снижающими оптические свойства материала. Получаемая вновь пленка приобретает желтый оттенок.

В настоящее время наиболее перспективным направлением переработки отходов из ПЭНП и ЛПЭНП (да и из любых других полимеров) считается создание промежуточных материалов для замены традиционных материалов из дерева. Основное преимущество полимерного вторсырья над деревом - его биологическая стойкость: полимеры не подвергаются разрушению микроорганизмами и могут длительное время находиться в воде без угрозы для структуры. Для улучшения механических свойств в состав полимеров вводятся различные инертные добавки, например, пылевидная древесная стружка или волокна. Рынок такой продукции огромен. Компания US Plastic Lumber Corp. оценивает его в 10 млрд долл.

Из полиэтилена высокой плотности изготавливаются, например, канистры для жидких продуктов. Процесс переработки ПЭВП-отходов требует специальной очистки вторпродуктов (например, емкостей для ГСМ). Кроме того, часто возникают проблемы, связанные с разрушением ПЭВП в процессе пластификации по причине сопровождающих процесс больших механических усилий. Область применения вторичного ПЭВП весьма широка и отличается многообразием технологических процессов. Он часто используется для производства пленки, емкостей самого разного объема, ирригационных труб, различных полуфабрикатов и т. д. Наибольшее применение вторичный ПЭВП нашел в производстве емкостей (канистр) методом выдувного формования. Реологические свойства вторично перерабатываемых полимеров высокой плотности не позволяют выдувать большие емкости, поэтому объем таких канистр ограничен. Типичная область использования канистр на основе ПЭВП-отходов ‑ упаковка ГСМ и моющих средств.

Канистры могут изготавливаться либо полностью на основе полимерных отходов, либо со экструзией с первичным гранулятом. В последнем случае слой вторполимера формирует сердцевину между двумя слоями первичного полимера. Канистры, полученные таким путем, используют для розлива моющих средств целый ряд компаний (Procter & Gamble, Unilever и т. д.).

Другой пример массовой продукции из вторичного ПЭВП ‑ ирригационные трубы. Как правило, они изготавливаются из смеси вторичного и первичного полимеров в разных соотношениях. Учитывая, что ирригационные трубы не предназначены для использования под давлением, механические свойства вторичного ПЭВП как нельзя лучше подходят для их производства. Высокую вязкость ПЭВП, полученного при переработке канистр и пленок, часто удается компенсировать низкой вязкостью первичного полимера, за счет чего можно улучшить ударопрочность. Производство труб с большим диаметром из вторичного ПЭВП ‑ тоже не проблема: диаметр ирригационных и дренажных труб достигает 630 мм.

При использовании технологии литья под давлением процентное содержание вторичного пластика ниже. Эта технология применяется для изготовления обшивочных панелей, коммунальных мусорных контейнеров и т. д. Рынок обшивочных панелей очень привлекателен благодаря своей большой емкости. Подсчитано, что один только рынок США потребляет 2 млрд единиц обшивочных панелей и досок, в качестве которых все еще используются традиционные пиломатериалы.

Что касается производства пленки с повышенной стойкостью к ударным воздействиям и высокой прочностью на разрыв, то в этом случае вторичный ПЭВП может быть использован только с добавками ПЭНП и ЛПЭНП.

Полипропилен

Основным источником вторичного полипропилена являются пластиковые короба, корпуса аккумуляторных батарей, бамперы и другие пластиковые детали автомобилей. В меньшей степени вторичной переработке подвергаются упаковочные изделия из этого материала. Качество вторичного ПП зависит от условий, в которых находилось изделие в процессе эксплуатации. Чем меньше оно пострадало от внешних воздействий, тем ближе свойства вторичного материала к свойствам первичного. Однако условия эксплуатации редко бывают столь благоприятными. Лишь в редких случаях автомобильные пластиковые компоненты могут быть переработаны по замкнутому циклу: например, компания Renault при производстве модели Megane использует переработанные бамперы из ПП для изготовления новых. Как правило, вторичный ПП используется для производства других автомобильных деталей, к которым предъявляются менее жесткие требования, ‑ вентиляционных патрубков, уплотнений, ковриков и т. д. Этот пример укладывается в классическую схему каскадной утилизации.

Вторичный ПП также используется в различных смесях с первичным ПП или другими полиолефинами при литье под давлением (короба, корпуса) или экструзии (различные профили и полуфабрикаты).

Полистирол

Возможности вторичной переработки полистирольных отходов гораздо скромнее. Это объясняется меньшей диффузией по сравнению с другими пластиками и, самое главное, меньшей разницей в цене между исходным и вторичным сырьем. Кроме того, изделия из полистирола в процессе производства часто претерпевают значительную объемную вытяжку, что усложняет вторичную переработку и сказывается на общей себестоимости утилизации. Очень небольшая часть полистиролов, бывших в употреблении, перерабатывается в исходные продукты. Примерами повторного использования полистирольных отходов являются изоляционные панели, упаковочные материалы, утепляющая обшивка труб и другие изделия, в которых оптимальным образом могут быть использованы хорошие термоизоляционные, шумопоглощающие и ударопрочные свойства вторичного полистирола. В ряде случаев структура перерабатываемого полистирола уплотняется за счет использования специальных переходных технологий, и полученный таким образом материал используется в областях применения кристаллического полистирола. Наиболее интересное применение такого материала ‑ производство профилей, ранее изготавливавшихся только из дерева (оконных рам, полов и т. д.). В этом случае свойства переработанного полистирола ничем не уступают свойствам дерева, а по показателям длительности жизненного цикла в естественных условиях даже превосходят его.

Смеси пластиков

Утилизация изделий, состоящих из комбинации различных полимеров, является насколько трудоемкой, настолько и перспективной задачей. С одной стороны, при создании вторичных материалов с допустимыми механическими свойствами из смесей пластиков отпадает необходимость в первичной (на коммунальном уровне) и вторичной (на уровне утилизационного производства) сортировке бытового и промышленного мусора, что должно положительно сказаться на себестоимости переработки. С другой стороны, свойства получаемых материалов не очень-то хороши, т. к. полимеры, составляющие их основу (преимущественно ПЭ, ПП, ПЭТ, ПС и ПВХ), несовместимы между собой и образуют многокомпонентную систему с низким межфазным взаимодействием. Более того, присутствие загрязнителей ‑ частиц бумаги, металла, красителей ‑ приводит к дальнейшему ухудшению физико-механических свойств.

Практически во всех случаях свойства смеси оказываются намного хуже свойств каждого компонента по отдельности. Для достижения видимых успехов в утилизации многокомпонентных отходов необходимо вести переработку с максимально коротким циклом. Задача состоит в том, чтобы, с одной стороны, избежать лишних материальных затрат, а с другой ‑ сократить время переработки, не давая возможности полимерам, входящим в состав материала, начать разрушаться. По этой причине необходимо выдерживать рабочую температуру низкой, даже несмотря на то, что определенные компоненты (например, ПЭТ) останутся в твердом состоянии и будут вести себя как инертные наполнители. Необходимо также выбирать им приложения, которые не требуют высоких механических свойств и не обладают значительными габаритами. Только так можно избежать серьезного влияния себестоимости переработки на конечную стоимость изделия, а также нивелировать невысокие механические свойства многокомпонентного полимера малыми размерами изделий, формируемых из него.

Оборудование

Различные виды оборудования для переработки полимерных отходов производятся во всех развитых индустриальных странах. Есть производители отдельных видов оборудования для «рециклинга» и в СНГ ‑ например, ОАО "Кузполимермаш" (Россия), Барановичский станкостроительный завод (Беларусь).

Однако в комплексных решениях нет равных таким известным европейским фирмам, как Erema GmbH, Artoc Maschinenbau GesmbH, NGR GmbH, General Plastics GmbH (Австрия), Gamma Meccanica, Tria S.p.A. (Италия), Erlenbach GmbH, Sikoplast Maschinenbau, Heinrich Koch GmbH (Германия), ORVAK (Швеция). Сегодня эти компании активно выходят на российский рынок.

← Вернуться

×
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:
Я уже подписан на сообщество «sinkovskoe.ru»