Полные уроки — Гипермаркет знаний. Сравнение чисел

Подписаться
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:

Существуют определённые правила сравнения чисел. Рассмотрим следующий пример.

Вчера термометр показывал 15˚ C, а сегодня показывает 20˚ C. Сегодня теплее, чем вчера. Число 15 меньше числа 20, можем записать так: 15 < 20. А, если мы представим эти числа на координатной прямой, то точка со значением 15 будет расположена левее точки со значением 20.

А сейчас рассмотрим отрицательные температуры. Вчера на улице было -12˚ C, а сегодня -8˚ C. Сегодня теплее, чем вчера. Поэтому считают, что число -12 меньше числа -8. На горизонтальной координатной прямой точка со значением -12 расположена левее точки со значением -8. Можем записать так: -12 < -8.

Итак, если сравнивать числа с помощью горизонтальной координатной прямой, из двух чисел меньшим считается то, изображение которого на координатной прямой расположено левее, а большим то, изображение которого расположено правее. Например, у нас на рисунке А > B и C, но B > C.

На координатной прямой положительные числа располагаются справа от нуля, а отрицательные – слева от нуля, всякое положительное число больше нуля, а всякое отрицательное меньше нуля, и поэтому всякое отрицательное число меньше всякого положительного числа.

Значит, первое на что необходимо обратить внимание при сравнении чисел, – это знаки сравниваемых чисел. Число с минусом (отрицательное) всегда меньше положительного.

Если же мы сравниваем два отрицательных числа, то нужно сравнить их модули: большим будет то число, модуль которого меньше, а меньшим то число, модуль которого меньше. Например, -7 и -5. Сравниваемые числа – отрицательные. Сравниваем их модули 5 и 7. 7 больше чем 5, значит -7 меньше чем -5. Если отметить на координатной прямой два отрицательных числа, то левее окажется меньшее число, а большее будет расположено правее. -7 расположено левее -5, значит -7 < -5.

Сравнение обыкновенных дробей

Из двух дробей с одинаковыми знаменателями меньше та, у которой меньше числитель, и больше та, у которой больше числитель.

Можно сравнивать дроби только с одинаковыми знаменателями.

Алгоритм сравнения обыкновенных дробей

1) Если у дроби есть целая часть, сравнение начинаем именно с неё. Большей будет та дробь, у которой целая часть больше. Если целой части у дробей нет или они равны, переходим к следующему пункту.

2) Если дроби с разными знаменателями необходимо привести их к общему знаменателю.

3) Сравниваем числители дробей. Большей будет та дробь, у которой числитель больше.

Обратите внимание, дробь с целой частью всегда будет больше дроби без целой части.

Сравнение десятичных дробей

Десятичные дроби можно сравнивать только с одинаковым количеством цифр (знаков) справа от запятой.

Алгоритм сравнения десятичных дробей

1) Обращаем внимание на количество знаков справа от запятой. Если количество цифр одинаковое, можем приступать к сравнению. Если – нет, дописываем нужное количество нулей в одной из десятичных дробей.

2) Сравниваем десятичные дроби слева направо: целые с целыми, десятые с десятыми, сотые с сотыми и т.д.

3) Большей будет та дробь, в которой одна из частей окажется больше, чем в другой дроби (сравнение начинаем с целых чисел: если целая часть одной дроби больше, значит, и вся дробь больше).

Например, сравним десятичные дроби:

1) Допишем в первой дроби необходимое количество нулей, чтобы уравнять количество знаков после запятой

57,300 и 57,321

2) Сравнивать начинаем слева направо:

целые с целыми: 57 = 57;

десятые с десятыми: 3 = 3;

сотые с сотыми: 0 < 2.

Так как сотые первой десятичной дроби оказались меньше, вся дробь и будет меньше:

57,300 < 57,321

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

§ 1 Сравнение положительных чисел

В этом уроке мы вспомним, как сравнить положительные числа и рассмотрим сравнение отрицательных чисел.

Начнем с задачи. Днем температура воздуха была +7 градусов, к вечеру понизилась до +2 градусов, ночью стала -2 градуса, а на утро еще понизилась до -7 градусов. Как изменялась температура воздуха?

В задаче речь идет о понижении, т.е. об уменьшении температуры. Значит, в каждом случае конечное значение температуры меньше начального, поэтому 2 < 7; -2 < 2; -7< -2.

Обозначим числа 7, 2, -2, -7 на координатной прямой. Вспомним, что на координатной прямой большее положительное число расположено правее.

Посмотрим на отрицательные числа, число -2 находится правее, чем -7, т.е. для отрицательных чисел на координатной прямой сохраняется тот же порядок: при движении точки вправо ее координата увеличивается, а при движении точки влево ее координата уменьшается.

Можно сделать вывод: Любое положительное число больше нуля и больше любого отрицательного числа. 1 > 0; 12 > -2,5. Любое отрицательное число меньше нуля и меньше любого положительного числа. -59 < 1; -9 < 2. Из двух чисел большее изображается на координатной прямой правее, а меньшее - левее.

Сравнивать рациональные числа (т.е. все и целые, и дробные числа) удобно с помощью модуля.

Положительные числа раполагаются на координатной прямой в порядке возрастания от начала координат, значит чем дальше число от начала координат, тем больше длина отрезка от нуля до числа, т.е. его модуль. Следовательно, из двух положительных чисел больше то, модуль которого больше.

§ 2 Сравнение отрицательных чисел

При сравнении двух отрицательных чисел большее будет расположено правее, то есть ближе к началу отсчёта. Значит, его модуль (длина отрезка от нуля до числа) будет меньше. Таким образом, из двух отрицательных чисел больше то, у которого модуль меньше.

Например. Сравним числа -1 и -5. Точка, соответствующая числу -1расположена ближе к началу отсчёта, чем точка, соответствующая числу -5. А значит длина отрезка от 0 до -1 или модуль числа -1 меньше, чем длина отрезка от 0 до -5 или модуль числа -5 , значит, число -1, больше, чем число -5.

Делаем выводы:

При сравнении рациональных чисел обращаем внимание на:

Знаки: отрицательное число всегда меньше положительного и нуля;

На расположение на координатной прямой: чем правее, тем больше;

На модули: у положительных чисел модуль больше и число больше, у отрицательных чисел модуль больше, а число меньше.

Список использованной литературы:

  1. Математика.6 класс: поурочные планы к учебнику И.И. Зубаревой, А.Г. Мордковича //автор-составитель Л.А. Топилина. Мнемозина 2009 г.
  2. Математика. 6 класс: учебник для учащихся общеобразовательных учреждений. И.И. Зубарева, А.Г. Мордкович.- М.: Мнемозина, 2013 г.
  3. Математика. 6 класс: учебник для учащихся общеобразовательных учреждений. /Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд. – М.: Мнемозина, 2013 г.
  4. Справочник по математике - http://lyudmilanik.com.ua
  5. Справочник для учащихся в средней школе http://shkolo.ru

Определение 1. Если два числа 1) a и b при делении на p дают один и тот же остаток r , то такие числа называются равноостаточными или сравнимыми по модулю p .

Утверждение 1. Пусть p какое нибудь положительное число. Тогда всякое число a всегда и притом единственным способом может быть представлено в виде

Но эти числа можно получить задав r равным 0, 1, 2,..., p −1. Следовательно sp+r=a получит всевозможные целые значения.

Покажем, что это представление единственно. Предположим, что p можно представить двумя способами a=sp+r и a=s 1 p +r 1 . Тогда

(2)

Так как r 1 принимает один из чисел 0,1, ..., p −1, то абсолютное значение r 1 −r меньше p . Но из (2) следует, что r 1 −r кратно p . Следовательно r 1 =r и s 1 =s .

Число r называется вычетом числа a по модулю p (другими словами, число r называется остатком от деления числа a на p ).

Утверждение 2. Если два числа a и b сравнимы по модулю p , то a−b делится на p .

Действительно. Если два числа a и b сравнимы по модулю p , то они при делении на p имеют один и тот же остаток p . Тогда

делится на p , т.к. правая часть уравнения (3) делится на p .

Утверждение 3. Если разность двух чисел делится на p , то эти числа сравнимы по модулю p .

Доказательство. Обозначим через r и r 1 остатки от деления a и b на p . Тогда

Примеры 25≡39 (mod 7), −18≡14 (mod 4).

Из первого примера следует, что 25 при делении на 7 дает тот же остаток, что и 39. Действительно 25=3·7+4 (остаток 4). 39=3·7+4 (остаток 4). При рассмотрении второго примера нужно учитывать, что остаток должен быть неотрицательным числом, меньшим, чем модуль (т.е. 4). Тогда можно записать: −18=−5·4+2 (остаток 2), 14=3·4+2 (остаток 2). Следовательно −18 при делении на 4 дает остаток 2, и 14 при делении на 4 дает остаток 2.

Свойства сравнений по модулю

Свойство 1. Для любого a и p всегда

не всегда следует сравнение

где λ это наибольший общий делитель чисел m и p .

Доказательство. Пусть λ наибольший общий делитель чисел m и p . Тогда

Так как m(a−b) делится на k , то

Следовательно

и m является один из делителей числа p , то

где h=pqs.

Заметим, что можно допустить сравнения по отрицательным модулям, т.е. сравнение a≡b mod (p ) означает и в этом случае, что разность a−b делится на p . Все свойства сравнений остаются в силе и для отрицательных модулей.

Отрицательные числа — это числа со знаком минус (−), например −1, −2, −3. Читается как: минус один, минус два, минус три.

Примером применения отрицательных чисел является термометр, показывающий температуру тела, воздуха, почвы или воды. В зимнее время, когда на улице очень холодно, температура бывает отрицательной (или как говорят в народе «минусовой»).

Например, −10 градусов холода:

Обычные же числа, которые мы рассматривали ранее, такие как 1, 2, 3 называют положительными. Положительные числа — это числа со знаком плюс (+).

При записи положительных чисел знак + не записывают, поэтому мы и видим привычные для нас числа 1, 2, 3. Но следует иметь ввиду, что эти положительные числа выглядят так: +1, +2, +3.

Содержание урока

Это прямая линия, на которой располагаются все числа: и отрицательные и положительные. Выглядит следующим образом:

Здесь показаны числа от −5 до 5. На самом деле координатная прямая бесконечна. На рисунке представлен лишь её небольшой фрагмент.

Числа на координатной прямой отмечают в виде точек. На рисунке жирная чёрная точка является началом отсчёта. Начало отсчёта начинается с нуля. Слева от начала отсчёта отмечают отрицательные числа, а справа — положительные.

Координатная прямая продолжается бесконечно по обе стороны. Бесконечность в математике обозначается символом ∞. Отрицательное направление будет обозначаться символом −∞, а положительное символом +∞. Тогда можно сказать, что на координатной прямой располагаются все числа от минус бесконечности до плюс бесконечности:

Каждая точка на координатной прямой имеет своё имя и координату. Имя — это любая латинская буква. Координата — это число, которое показывает положение точки на этой прямой. Проще говоря, координата это то самое число, которое мы хотим отметить на координатной прямой.

Например, точка А(2) читается как «точка А с координатой 2» и будет обозначаться на координатной прямой следующим образом:

Здесь A — это имя точки, 2 — координата точки A.

Пример 2. Точка B(4) читается как «точка B с координатой 4»

Здесь B — это имя точки, 4 — координата точки B.

Пример 3. Точка M(−3) читается как «точка M с координатой минус три» и будет обозначаться на координатной прямой так:

Здесь M — это имя точки, −3 — координата точки M.

Точки можно обозначать любыми буквами. Но общепринято обозначать их большими латинскими буквами. Более того, начало отчёта, которое по другому называют началом координат принято обозначать большой латинской буквой O

Легко заметить, что отрицательные числа лежат левее относительно начала отсчёта, а положительные числа правее.

Существуют такие словосочетания, как «чем левее, тем меньше» и «чем правее, тем больше» . Наверное, вы уже догадались о чём идёт речь. При каждом шаге влево, число будет уменьшаться в меньшую сторону. И при каждом шаге вправо число будет увеличиваться. Стрелка, направленная вправо, указывает на положительное направление отсчёта.

Сравнение отрицательных и положительных чисел

Правило 1. Любое отрицательное число меньше любого положительного числа.

Например, сравним два числа: −5 и 3. Минус пять меньше , чем три, несмотря на то, что пятёрка бросается в глаза в первую очередь, как цифра большая, чем три.

Связано это с тем, что −5 является отрицательным числом, а 3 — положительным. На координатной прямой можно увидеть, где располагаются числа −5 и 3

Видно, что −5 лежит левее, а 3 правее. А мы говорили, что «чем левее, тем меньше» . И правило говорит, что любое отрицательное число меньше любого положительного числа. Отсюда следует, что

−5 < 3

«Минус пять меньше, чем три»

Правило 2. Из двух отрицательных чисел меньше то, которое располагается левее на координатной прямой.

Например, сравним числа −4 и −1. Минус четыре меньше , чем минус единица.

Связано это опять же с тем, что на координатной прямой −4 располагается левее, чем −1

Видно, что −4 лежит левее, а −1 правее. А мы говорили, что «чем левее, тем меньше» . И правило говорит, что из двух отрицательных чисел меньше то, которое располагается левее на координатной прямой. Отсюда следует, что

Минус четыре меньше, чем минус единица

Правило 3. Ноль больше любого отрицательного числа.

Например, сравним 0 и −3. Ноль больше , чем минус три. Связано это с тем, что на координатной прямой 0 располагается правее, чем −3

Видно, что 0 лежит правее, а −3 левее. А мы говорили, что «чем правее, тем больше» . И правило говорит, что ноль больше любого отрицательного числа. Отсюда следует, что

Ноль больше, чем минус три

Правило 4. Ноль меньше любого положительного числа.

Например, сравним 0 и 4. Ноль меньше , чем 4. Это в принципе ясно и так. Но мы попробуем увидеть это воочию, опять же на координатной прямой:

Видно, что на координатной прямой 0 располагается левее, а 4 правее. А мы говорили, что «чем левее, тем меньше» . И правило говорит, что ноль меньше любого положительного числа. Отсюда следует, что

Ноль меньше, чем четыре

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

← Вернуться

×
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:
Я уже подписан на сообщество «sinkovskoe.ru»