Местонахождение хрящевой ткани у человека. Строение и функции хрящевой ткани человека

Подписаться
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:

Многие органы человека имеют в своей структуре хрящевую ткань, которая выполняет ряд важнейших функций. Эта особая разновидность соединительной ткани обладает неодинаковым строением в зависимости от локализации в организме, и этим объясняется ее различное предназначение.

Строение и функции хрящевой ткани тесно взаимосвязаны, каждый ее вид играет определенную роль.

Хрящевая ткань под микроскопом

Как любая ткань в организме, хрящевая содержит в себе два главных компонента. Это основное межклеточное вещество, или матрикс, и собственно клетки. Особенности строения хрящевой ткани человека в том, что массовая доля матрикса намного больше, чем суммарный клеточный вес. Это означает, что при гистологическом исследовании (изучение образца ткани под микроскопом) хрящевые клетки занимают незначительное пространство, а основная площадь полей зрения – это межклеточное вещество. Кроме того, несмотря на высокую плотность и твердость хрящевой ткани, матрикс содержит до 80% воды.

Строение межклеточного вещества хряща

Матрикс обладает неоднородной структурой и разделяется на две составляющие: основное, или аморфное, вещество, с массовой долей 60%, и хондриновые волокна, или фибриллы, занимающие 40% от общего веса матрикса. Эти волокна по строению похожи на коллагеновые образования, из которых состоит, например, кожа человека. Но отличаются от нее диффузным, неупорядоченным расположением фибрилл. Многие хрящевые образования имеют своеобразную капсулу, называемую надхрящницей. Она играет ведущую роль в восстановлении (регенерации) хряща.

Состав хряща

Хрящевая ткань по химическому составу представлена различными белковыми соединениями, мукополисахаридами, глюкозаминогликанами, комплексами гиалуроновой кислоты с белками и глюкозаминогликанами. Эти вещества – основа хрящевой ткани, причина ее высокой плотности и прочности. Но в то же время они обеспечивают проникновение в нее различных соединений и питательных веществ, необходимых для осуществления метаболизма и регенерации хряща. С возрастом продуцирование и содержание гиалуроновой кислоты и глюкозаминогликанов снижается, в результате в хрящевой ткани начинаются дегенеративно-дистрофические изменения. Для замедления прогрессирования этого процесса необходима заместительная терапия, которая обеспечивает нормальное функционирование хрящевой ткани.

Клеточный состав хряща

Строение хрящевой ткани человека таково, что хрящевые клетки, или хондроциты, не имеют четкой и упорядоченной структуры. Их локализация в межклеточном веществе напоминает скорее одиночные островки, состоящие из одной или нескольких клеточных единиц. Хондроциты могут иметь различный возраст, и подразделяются на молодые и недифференцированные клетки (хондробласты), и на полностью зрелые, называемые хондроцитами.

Хондробласты продуцируются надхрящницей и, постепенно продвигаясь в глубокие слои хрящевой ткани, дифференцируются и взрослеют. В начале своего развития они расположены не группами, а поодиночке, обладают круглой или овальной формой и имеют огромное ядро по сравнению с цитоплазмой. Уже на начальном этапе своего существования в хондробластах происходит активнейший метаболизм, направленный на продуцирование компонентов межклеточного вещества. Образуются новые белки, глюкозаминогликаны, протеогликаны, которые затем диффузным образом проникают в матрикс.

Гиалиновый и эластический хрящ

Важнейшая отличительная черта хондробластов, локализующихся сразу под надхрящницей, заключается в их способности к делению, образованию себе подобных. Эта особенность активно изучается учеными, так как дает огромные возможности для внедрения новейшего способа лечения суставных патологий. Ускорив и отрегулировав деление хондробластов, можно полностью восстанавливать поврежденную болезнью или травмой хрящевую ткань.

Взрослые дифференцированные хрящевые клетки, или хондроциты, локализуются в глубинных слоях хряща. Они располагаются компаниями, по 2-8 клеток, и называются «изогенными группами». Структура хондроцитов иная, чем у хондробластов, они имеют маленькое ядро и массивную цитоплазму, и уже не умеют делиться и образовывать другие хондроциты. Намного снижена и их метаболическая деятельность. Они способны только на очень умеренном уровне поддержать обменные процессы в матриксе хрящевой ткани.

Расположение элементов в хряще

При гистологическом изучении видно, что изогенная группа находится в хрящевой лакуне и окружена капсулой из переплетенных коллагеновых волокон. Хондроциты в ней находятся близко друг к другу, разделенные лишь белковыми молекулами, и могут иметь разнообразную форму: треугольную, овальную, круглую.

При заболеваниях хрящевой ткани появляется новый вид клеток: хондрокласты. Они намного крупнее хондробластов и хондроцитов, так как являются многоядерными. Эти клетки не участвуют ни в метаболизме, ни в регенегации хряща. Они – разрушители и «пожиратели» нормальных клеток и обеспечивают деструкцию и лизис хрящевой ткани при воспалительных или дистрофических процессах в ней.

Типы хрящевой ткани

Межклеточное вещество хряща может иметь различное строение, в зависимости от вида и расположения волокон. Поэтому различают 3 типа хряща:

  • Гиалиновый, или стекловидный.
  • Эластический, или сетчатый.
  • Волокнистый, или соединительнотканный.

Виды хрящей

Каждый тип характеризуется определенной степенью плотности, твердости и эластичности, а также локализацией в организме. Гиалиновая хрящевая ткань выстилает суставные поверхности костей, соединяет ребра с грудиной, содержится в трахее, бронхах, гортани. Хрящ эластический – это составная часть мелких и средних бронхов, гортани, из него выполнены и ушные раковины человека. Соединительная хрящевая ткань, или волокнистая, называется так потому, что соединяет связки или сухожилия мышц с гиалиновым хрящом (к примеру, в точках прикрепления сухожилий к телам или отросткам позвонков).

Кровоснабжение и иннервация хрящевой ткани

Структура хряща очень плотная, ее не пронизывают даже самые мелкие кровеносные сосуды (капилляры). Все питательные вещества и кислород, необходимые для жизнедеятельности хрящевой ткани, поступают в нее снаружи. Диффузным способом они проникают из рядом расположенных кровеносных сосудов, из надхрящницы или костной ткани, из синовиальной жидкости. Продукты распада удаляются также диффузно, и по венозным сосудам выводятся из хряща.

Молодой и зрелый хрящ

Нервные волокна лишь отдельными единичными ответвлениями проникают в поверхностные слои хряща из надхрящницы. Этим объясняется тот факт, что нервные импульсы из хрящевой ткани при ее заболеваниях не поступают, а болевой синдром появляется при реакции костных структур, когда хрящ практически уже разрушен.

Функции хрящевой ткани

Главнейшая функция хрящевой ткани – опорно-механическая, которая заключается в обеспечении прочных соединений различных частей скелета и разнообразнейших движений. Так, гиалиновый хрящ, являющийся важнейшей структурной частью суставов и выстилающий костные поверхности, делает возможным весь комплекс движений человека. Благодаря его физиологичному скольжению, они происходят плавно, комфортно и безболезненно, с соответствующей амплитудой.

Хрящи коленного сустава

Другие соединения между костями, не предусматривающие активных движений в них, также выполнены посредством прочной хрящевой ткани, в частности гиалинового типа. Это могут быть малоподвижные сращения костей, выполняющие опорную функцию. Например, в местах перехода ребер в грудинную кость.

Функции соединительной хрящевой ткани объясняются ее локализацией и заключаются в обеспечении подвижности различных частей скелета. Она делает возможным прочное и эластичное соединение мышечных сухожилий с костными поверхностями, покрытыми гиалиновым хрящом.

Другие функции хрящевой ткани человека также являются важными, так как формируют внешность, голос, обеспечивают нормальное дыхание. Прежде всего, это относится к хрящевой ткани, которая составляет основу ушных раковин и кончика носа. Хрящ, входящий в состав трахеи и бронхов, делает их подвижными и функциональными, а хрящевые структуры гортани участвуют в образовании индивидуального тембра человеческого голоса.

Хрящи носа

Хрящевая ткань без патологических изменений имеет огромное значение для здоровья человека и нормального качества жизни.

Классификация хрящевых тканей основана на особенностях строения его межклеточного вещества - матрикса. Такая классификация видов хрящевой ткани далеко не совершенна, поскольку не содержит в себе общего единого принципа. Так, термин «фиброзный» указывает на содержание волокнистых структур, а термин «эластический» - уже на определенную конкретную характеристику белка - эластина, входящего в состав хряща. Термин «гиалиновый» информирует лишь о том, что матрикс хряща внешне однородный, а о структуре и характере белков, составляющих его структуру, вообще не упоминается.
).

Хрящевая ткань присутствует во внескелетных образованиях - гортани, носовых перегородках, бронхах, стромальных компонентах сердца.

Внеклеточный матрикс хрящевой ткани отличается от матрикса других разновидностей соединительной ткани существенными особенностями своих структурных макромолекулярных компонентов. Эти особенности обусловливают выраженное своеобразие архитектоники матрикса и его уникальные функциональные (биомеханические) характеристики.

Волокнистые структуры матрикса образованы особыми, специфическими для хрящевой ткани коллагеновыми белками - «большим» фибриллярным коллагеном II типа и сопутствующими ему «малыми» (минорными) коллагенами IX, XI, а также X и некоторых других типов. Главным компонентом межуточного вещества матрикса является также специфический для хрящевой ткани «большой» протеогликан агрекан, макромолекулы которого образуют огромные (их размеры превышают размеры клеток), занимающие большое пространство агрегаты. В состав макромолекул агрекана, составляя значительную часть их массы, входят сульфатированные гликозаминогликаны - хондроитинсульфаты и кератансульфат.

Клетки хрящевой ткани

Дифферон хрящевой ткани может быть представлен следующим образом: прехондробласты-хондробласты-хондроциты. Опираясь на описание дифферона клеток хрящевых тканей, а также из дидактических соображений, мы опишем три формы хондроцитов: прехондробласты, хондробласты и хондроциты.

Прехондробласты

В диффероне хрящевых клеток выделяют клетки-предшественники хондробластов - прехондробласты. Выделение прехондробластов в определенной мере является условным, так как предполагают, что у хряща и кости имеются единые полустволовые клетки - общие для хондробластов и остеобластов.

Хондробласты

Основные процессы формирования хрящевой ткани происходят в эмбриогенезе, где хондроцит функционирует в качестве своей бластной формы и называется хондробластом. По-видимому, целесообразно говорить о единой популяции клеток хондробласт-хондроцит, которая обеспечивает как формирование хрящевой ткани, так и функционирование ее в зрелом состоянии. Источником пополнения популяции таких клеток являются прехондробласты.

Хондробласт можно определить как клетку, находящуюся в стадии перехода от прехондробласта к зрелому хондроциту. Такая клетка обладает секреторными потенциями, необходимыми для синтеза компонентов матрикса, но сохраняет еще способность к пролиферации. Многие исследователи отмечают, что хондробласт и хондроцит не имеют отчетливых морфологических различий, т.е. в морфологической характеристике хондробластов и хондроцитов еще не удалось определить ту меру специфичности, которая позволила бы уверенно различать эти два типа клеток.

Роль хондробластов-хондроцитов как, возможно, единственной клетки в жизнедеятельности хряща настолько важна, что их назвали «архитекторами хряща». Это название отражает тот факт, что она является единственным продуцентом всех макромолекулярных компонентов матрикса хрящевой ткани. Формирование хряща происходит преимущественно в эмбриогенезе и заканчивается в очень молодом возрасте. Таким образом, этот процесс почти целиком происходит на хондробластической стадии дифференцировки клетки.

Хондроциты

Хондроциты - это высокоспециализированная и метаболически активная клетка. Синтетическая деятельность хондроцита специфична и дифференцирована в направлении продукции и секреции коллагена II типа, минорных коллагенов, агрекана, характерных для хрящевой ткани гликопротеинов, эластина (в эластических хрящах). Ультраструктура зрелого хондроцита соответствует высокому уровню его метаболической активности.

Тот факт, что хондроциты служат источником коллагена хрящевой ткани, документируется и биохимическими, и морфологическими методами. Хондроциты в монослойной клеточной культуре дают внутриклеточную иммунофлюоресценцию с сывороткой, меченной к коллагену II типа. Таким же методом удалось локализовать коллаген II типа внутри клеток хрящевой метафизарной пластинки у детей на биопсийном материале.

Не менее убедительны и данные, относящиеся к синтезу протеогликанов. В хондроцитах при ТЭМ выявляются окрашиваемые рутениевым красным гранулы, которые заполняют весь внеклеточный матрикс хрящевой ткани и представляют собой не что иное, как уплотненные в процессе фиксации агрегаты протеогликанов. Эти гранулы обнаруживаются в везикулах комплекса Гольджи, но они отсутствуют в ГЭС. Это означает, что агрекан приобретает свой полианионный характер (рутениевый красный окрашивает полианионные макромолекулы избирательно) при прохождении через комплекс Гольджи. Эти данные согласуются с результатами радиоавтографических исследований, в которых показано, что S35 избирательно концентрируется в комплексе Гольджи. Таким образом, был не только установлен факт биосинтеза хондроцитами агрекана, но и выявлена точная внутриклеточная локализация центрального звена процесса его биосинтеза.

Сопоставление габаритов хондроцита и агреканового агрегата (первый значительно меньше по занимаемому объему, чем второй) позволило заключить, что внутри хондроцита происходит только синтез мономерных макромолекул агрекана, которые секретируются за пределы клетки в матрикс, где и происходит сборка агрекановых агрегатов.

Синтез хондроцитами тканевых структурных гликопротеинов хрящевой ткани доказан биохимическими методами. Получить морфологические подтверждения этого синтеза трудно. Полагают, что он маскируется выраженными процессами синтеза коллагена и протеогликанов. Способность хондроцитов к синтезу белка эластина была показана при исследовании культивируемых хондроцитов ушной раковины кролика.

Согласно современным представлениям, процесс обызвествления хряща происходит при активном участии в нем хондроцитов. Минерализации предшествуют изменения - как в матриксе, так и в клетках хряща.

Гетерогенность хондроцитов

Хондроциты нормальной хрящевой ткани фенотипически представляют собой гетерогенную популяцию клеток.

В гиалиновом хряще выявляются разные по своим морфологическим и функциональным характеристикам хондроциты. Основными являются три их разновидности.

Хондроциты I типа - относительно немногочисленные клетки с неровными отростчатыми краями, крупным ядром, относительно слабо выраженным ГЭС. Клеткам этого типа, например, в суставном хряще, приписывается возможность митотического деления, т.е. функции, необходимой для осуществление физиологической регенерации в процессе естественной смены популяции хондроцитов.

Хондроциты II типа составляют основную массу клеток и характерны для любой разновидности гиалинового хряща. Такой хондроцит - клетка (15- 20 мкм в диаметре) с крупным ядром и многими мелкими отростками, так называемыми цитоплазматическими «ножками». Ядерный хроматин частично конденсирован и сосредоточен в основном на внутренней поверхности ядерной мембраны. В цитоплазме хорошо развита ГЭС, ее каналы местами расширены и наполнены продуктами синтеза. Комплекс Гольджи всегда хорошо развит. Митохондрии немногочисленны.

Хондроциты III типа - это также высокодифференцированные клетки.

Фенотип хондроцита и закономерности его поддержания

Вопрос о том, каковы возможности и необходимые условия для поддержания фенотипа хондроцита в зрелом хряще в норме и при экстремальных ситуациях, являлся в последние годы предметом как изучения, так и дискуссий. Хондроцит и окружающий его матрикс представляют собой единое в функциональном отношении целое - хондроцит продуцирует матрикс, матрикс обеспечивает поддержание фенотипа хондроцита. Соответственно в нормальном хряще in vivo имеются условия, обеспечивающие поддержание стабильности фенотипа хондроцита.

Полагают, что фенотип хондроцита более лабилен, чем фенотип других клеток соединительной ткани. Он приобретается на определенном этапе хондрогенной дифференцировки мезенхимальных клеток и утрачивается в условиях патологии, что, несомненно, имеет патогенетическое значение. Утрата фенотипа хондроцитов происходит также после изолирования их из хрящевой ткани для последующего культивирования в условиях монослойной клеточной культуры. В этом случае на фоне выраженной пролиферации хондроцитов наблюдается угнетение биосинтеза хрящевого матрикса. Этот феномен обычно называют процессом дедифференциации.

Однако при определенных условиях фенотип хондроцитов (например, после перенесения клеток из монослойной в суспензионную культуру) может быстро восстанавливаться. Происходит редифференциация, при которой активируется ряд генов, участвующих в процессе дифференцировки клеток, в том числе гены, кодирующие компоненты системы передачи сигналов одного из цитокинов - IL-6. Напротив, экспрессия некоторых других генов угнетается. В частности, угнетение затрагивает ген фактора роста соединительной ткани (CTGF). Главным признаком редифференциации является возобновление экспрессии специфических компонентов экстрацеллюлярного матрикса, хотя при этом могут частично сохраняться как появившаяся при дедифференциации экспрессия неспецифических продуктов биосинтеза, в частности, коллагена I типа, так и измененная структура хондроцита.

Для поддержания фенотипа зрелого хондроцита необходимо присутствие нормального полноценного хрящевого матрикса. В норме именно структурные особенности матрикса стабилизируют фенотип клеток. Это заключение подтверждается тем фактом, что при культивировании срезов хряща, т.е. при сохранении матрикса, фенотип хондроцитов не изменяется на протяжении длительного времени культивирования (до 9 недель). В условиях патологии фенотип хондроцита изменяется, а задачей терапии является его восстановление.

Метаболические процессы в клетках хрящевой ткани

Хондроциты, как было указано выше, - это единственная разновидность клеток, представленная в зрелой хрящевой ткани, и именно поэтому только они могут служить источником для формирования внеклеточного матрикса. Продукция матрикса и поддержание его структурной целостности на протяжении жизни организма - основные функции хондроцитов. Именно хондроциты осуществляют биосинтез всех специфических компонентов матрикса. Кроме того, хондроциты контролируют протекающие в матриксе процессы сборки надмолекулярных структур (например, агрегатов агрекана и коллагеновых фибрилл) и течение катаболических реакций.

Как мы уже подчеркивали, численность хондроцитов относительно невелика. Они могут обеспечить формирование матрикса только за счет высокой метаболической (анаболической и катаболической) активности каждой клетки. Эта активность, наиболее выраженная в эмбриональном и раннем постнатальном онтогенезе, является одним из характерных свойств хондроцитов.

Метаболическая активность хондроцитов, за исключением общих для всех клеток процессов, обеспечивающих их собственную жизнедеятельность, направлена на построение и поддержание матрикса. Ее целесообразно рассмотреть после того, как будет представлена характеристика структурных компонентов матрикса и действующих в нем ферментов. Здесь мы лишь обратим внимание на те условия, в которых осуществляются метаболические функции хрящевых клеток.

Относительно немногочисленные клетки хрящевой ткани (хондробласты-хондроциты) должны обеспечить образование и последующее поддержание в состоянии динамического равновесия больших масс экстрацеллюлярного матрикса. Свою задачу клетки хряща выполняют в особых условиях: они функционируют в ткани, бедной кровеносными сосудами, а в суставных хрящах взрослых организмов - в бессосудистой ткани. Если хрящи других локализаций, например межреберные, получают необходимые для метаболизма материалы из капилляров надхрящницы (перихондрия), то в суставном хряще, лишенном перихондрия и отделенным пограничной линией от субхондральной кости, возможности получения этих материалов из крови отсутствуют.

Это означает, что в зрелом суставном хряще хондроциты, удаленные от кровеносных сосудов, получают исходные материалы для метаболических процессов только из омывающей суставную поверхность СЖ за счет их проникновения сквозь толщу матрикса. Физическим механизмом, осуществляющим такое проникновение, является диффузия - перемещение находящихся в растворе молекул из области с более высокой концентрацией в область более низкой концентрации до достижения равномерного распределения молекул растворенного вещества среди молекул растворителя.

Скорость диффузии между полярными и неполярными молекулами отчетливо различается. Но интенсивность диффузии всех низкомолекулярных веществ вполне достаточна для того, чтобы обеспечить метаболические потребности хондроцитов по всей толщине суставного хряща, даже в наиболее массивных участках хрящей тазобедренного сустава человека, где толщина хряща достигает 3,5-5 мм. Исключение составляет кислород; его концентрация в СЖ очень низкая. При реально существующей в синовии концентрации кислорода (3-10 х Ю-8 моль/мл) диффузия обеспечивает проникновение кислорода только до глубины около 1,8 мм. Клетки, расположенные в более удаленных от суставной поверхности слоях хряща, оказываются в условиях дефицита кислорода. Вследствие этого метаболические процессы в хондроцитах различных слоев хряща протекают с неодинаковой активностью. Это - еще одно проявление метаболической неоднородности суставных хрящей.

Метаболизм хондроцитов носит преимущественно анаэробный характер, ибо он осуществляется за счет гликолиза. Такая особенность энергетического обеспечения ткани хряща - приспособительный механизм, позволяющий клеткам функционировать в условиях очень низких концентраций кислорода. Если в межклеточных пространствах мягких тканей парциальное давление кислорода составляет 15-20 мм рт. ст., то в суставном хряще оно не превышает 5-8 мм рт. ст. При этом в базальной зоне хряща оно примерно в 10 раз ниже, чем в поверхностных. Чем ниже концентрация кислорода в матриксе хряща, тем выше интенсивность гликолиза и соответственно - продукция молочной кислоты.

Хондроциты фенотипически адаптированы к анаэробным условиям функционирования. Эксперименты in vitro показали, что по мере повышения степени гипоксии анаболические процессы не только не угнетаются, но даже активируются. Повышается эффективность утилизации глюкозы, что обеспечивает более экономное расходование энергии. Однако при слишком выраженной тканевой гипоксии (такое состояние наблюдается при РА, когда очень резко падает содержание кислорода в СЖ) происходит угнетение экспрессии хондроцитами ряда генов. Уровни мРНК, кодирующих структурные макромолекулы матрикса (коллаген II типа), количество некоторых цитокинов и интегринов в хондроцитах при этом снижается.

В то же время в отличие от клеток других тканей хондроциты дают парадоксальную реакцию на увеличение парциального давления кислорода: угнетением биосинтетических процессов, в частности снижением биосинтеза ДНК и протеогликанов. С возрастом потребление кислорода хондроцитами еще более снижается. Потребление кислорода хондроцитами, особенно поверхностного слоя хряща, понижается при избыточной концентрации глюкозы в СЖ.

Биомеханические свойства хряща

Суставные хрящи выполняют две основные биомеханические функции:

  1. принимают на себя действие сил сжатия (компрессии), обусловленных тяжестью и развивающимися при движениях нагрузками, способствуя их равномерному распределению и переводу аксиально направленных сил в тангенциальные;
  2. образуют устойчивые к износу поверхности сочленяющихся элементов скелета.

Поскольку хрящевая ткань содержит очень мало клеток - около 1 % массы ткани, эти свойства практически полностью зависят от внеклеточного матрикса.

С точки зрения биомеханики матрикс хрящевой ткани представляет собой материал, состоящий из двух различных фаз - твердой и жидкой. Твердая фаза включает в себя неволокнистые структурные макромолекулы, в числе которых преобладают агрегаты агрекана и волокнистые структурные макромолекулы, среди которых преобладает коллаген II типа. Жидкая фаза составляет примерно 80 % массы ткани.

Коллагеновые волокна образуют прочную сеть, которая фиксирует агрегаты агрекана и, ограничивая в пространстве отрицательно заряженные макромолекулы агрекана, не позволяет им распространиться в максимальном объеме. Эта сеть (каркас) мало растяжима и обеспечивает прочность хряща на разрыв.

Композитная твердая фаза матрикса функционирует как пористый, проницаемый, скрепленный волокнами материал, набухший водой. Молекулы воды располагаются внутри пространств, занимаемых диффузными агрегатами агрекана, и именно вода, как несжимаемая жидкость, обеспечивает прочность хряща на сжатие. Протеогликановый компонент матрикса, в силу своих полианионных свойств, ответствен за гипергидратированное состояние хряща и, следовательно, играет определяющую роль в формировании прочности к сдавливающим нагрузкам. Существует выраженная положительная корреляция между концентрацией в хряще агрекана и его прочностью на сжатие.

Только менее 1 % молекул воды прочно удерживается коллагеновыми волокнами. Остальные (более 99%) молекулы воды, располагающиеся в межволокнистой субстанции матрикса, достаточно свободны и подвижны. При компрессионных нагрузках эти свободные молекулы вместе с растворенными в воде низкомолекулярными веществами могут перемещаться по матриксу и «выжиматься» из хряща в СЖ. При уменьшении давления происходит движение в обратном направлении - из СЖ в матрикс. Этим объясняется способность хряща к обратимой деформации (упругость).

При движении воды в пористом материале, каким является матрикс, возникает трение, которое в сочетании с некоторыми особенностями твердой фазы (в основном речь идет о сложной системе межмолекулярных связей компонентов матрикса) обусловливает определенную вязкость хрящевой ткани.

Таким образом, двухфазная модель в целом объясняет вязкоупругие биомеханические свойства хряща. Вместе с тем она встречает и возражения. Главное из них - неправомерность объединения всех твердых компонентов в одну фазу. Эксперименты N.D. Broom, Н. Silyn-Roberts показали, что разрушение значительной части агрекановых агрегатов (с помощью гиалуронидазы) практически не отражается на прочности хряща на разрыв и, следовательно, коллагеновые волокна в этой биомеханической функции независимы от агрекана. Вероятно, укрепление коллагеновых волокон за счет взаимодействия коллагенов различных типов более существенно, чем связи между коллагенами и агреканом, поэтому появляются основания рассматривать агрекан и коллагены как две отдельные фазы, что означает переход к трехфазной биомеханической модели хряща (коллагены-агрекан-вода).

Вполне возможно, что на биомеханических свойствах хряща сказывается влияние гликопротеинов. Это означает, что и трехфазная модель недостаточно учитывает всю многокомпонентность хрящевого матрикса. Но независимо от того, какая биомеханическая модель окажется окончательной, очевидно, что нормальное функционирование хряща возможно только при оптимальных количественных и структурных взаимоотношений всех компонентов матрикса.

Хрящевая ткань является разновидностью твердой соединительной ткани. Из названия понятно, что состоит она из хрящевых клеток и межклеточного вещества. Основная функция хрящевой ткани – опорная.

Хрящевая ткань обладает высокой упругостью и эластичностью. Для суставов хрящевая ткань очень важна – она исключает трение за счет выделения жидкости и смазывания суставов. Благодаря этому нагрузка на суставы существенно снижается.

К сожалению, с возрастом хрящевая ткань утрачивает свои свойства. Нередко хрящевая ткань повреждается и в молодом возрасте. Все потому, что хрящевая ткань очень склонна к разрушению. Очень важно вовремя заняться своим здоровьем, поскольку поврежденная хрящевая ткань – одна из основных причин заболеваний опорно-двигательного аппарата.

Виды хрящевой ткани

  1. Гиалиновый хрящ
  2. Эластический хрящ
  3. Волокнистый хрящ

Гиалиновая хрящевая ткань встречается в составе хрящей гортани, бронхов, костных темафизов, в области присоединения ребер к грудине.

Из эластичной хрящевой ткани состоят ушные раковины, бронхи, гортань.

Волокнистая хрящевая ткань находится в области перехода связок и сухожилий в гиалиновую хрящевую ткань.

Однако все три вида хрящевой ткани схожи по своему составу – они состоят из клеток (хондроцитов) и межклеточного вещества. Последнее обладает высокой обводностью, примерно 60-80 процентов воды. Кроме этого, межклеточное вещество занимает больше пространства, нежели клетки. Химический состав довольно сложный. Межклеточное вещество хрящевой ткани разделяют на аморфное вещество и фибриллярный компонент, в состав которого входит около сорока процентов сухого вещества — коллагена. Выработкой матрикса (межклеточного вещества) занимаются хондробласты и молодые хондроциты.

Хондробласты и хондроциты

Хондробласты представляют собой клетки округлой или овоидной формы. Основная задача: продуцирование компонентов межклеточного вещества, такие как коллаген, эластин, гликопротеины, протеогликаны.

Хондроцитами принять считать зрелые клетки хрящевой ткани крупного размера. Форма может быть округлая, овальная, полигональная. Где находятся хондроциты? В лакунах. Окружает хондроциты межклеточное вещество. Стенки лакун представляют собой два слоя – наружный (из коллагенновых волокон) и внутреннего (из агрегатов протеогликанов).

Сочетает в себе не только коллагеновые фибриллы, но и эластические волокна, которые состоят из белка эластина. Его выработка – также задача хрящевых клеток. Эластическая хрящевая ткань отличается повышенной гибкостью.

В состав волокнистой хрящевой ткани входят пучки коллагеновых волокон. Волокнистая хрящевая ткань очень прочная. Фиброзные кольца межпозвоночных дисков, внутрисуставные диски состоят из волокнистой хрящевой ткани. Кроме этого, волокнистая хрящевая ткань покрывает суставные поверхности височно-нижнечелюстного, а также грудино-ключичного суставов.

Рост костей, хрящи, строение скелета, конечности, таз. Около 206 костей составляют скелет взрослого человека. Кости имеют твердый, толстый и прочный внешний слой и мягкую сердцевину, или костный мозг. Они прочны и крепки, как бетон, и могут выдержать очень большой вес, не сгибаясь при этом, не ломаясь и не разрушаясь. Соединенные вместе суставами и движимые мышцами, которые к ним прикреплены с обоих концов. кости образуют защитный остов для мягких и уязвимых частей тела, обеспечивая одновременно телу человека большую гибкость движений. В дополнение к этому скелет представляет собой каркас, или леса, на которых прикреплены и держатся другие части тела.

Как все в теле человека, кости состоят из клеток. Это клетки, которые создают каркас волокнистой (фиброзной) ткани, относительно мягкой и пластичной основы. Внутри этого каркаса имеется сеть более твердого материала, что в результате напоминает бетон с «камнями» (то есть твердым материалом), придающими прочность «цементной» основе из волокнистой ткани. В результате образуется необычайно прочная структура с большой степенью гибкости.

Рост костей

Когда кости начинают расти, они состоят из сплошной массы. Только на вторичной стадии они начинают образовывать внутри себя полые пространства. Образование пустот внутри костной трубки совсем незначительно влияет на ее прочность, зато очень уменьшает ее вес. Это основной закон строительной техники, который в полной мере использовала природа при создании костей. Полые пространства заполняют костный мозг, в котором происходит образование клеток крови. Может показаться удивительным, но новорожденный ребенок имеет больше костей в своем теле, чем взрослый человек.

При рождении около 350 костей образуют основу скелета ребенка; с годами некоторые из них объединяются в более крупные кости. Череп грудного ребенка является хорошим примером этому: во время родов он сдавливается, чтобы пройти через узкий канал. Если бы череп ребенка был сплошь жестким, как V взрослого, он бы просто сделал невозможным прохождение ребенка через тазовое отверстие тела матери. Роднички в разных секциях черепа делают возможным придать ему нужную форму при прохождении через родовой капал. После рождения ути роднички постепенно закрываются.

Скелет ребенка состоит не только из костей, но также из хрящей, которые гораздо гибче первых. По мере роста тела они постепенно затвердевают, превращаясь в кости - этот процесс называют окостенением (оссификацией), который продолжается и в организме взрослого человека. Рост тела происходит за счет увеличения в длину костей рук, ног и спины. Длинные (трубчатые) кости конечностей имеют на каждом конце пластинку роста, где и происходит рост. Эта пластинка роста представляет собой скорее хрящ, чем кость, и поэтому ее не видно на рентгеновском снимке. Когда пластинка роста окостеневает, кость больше не растет в длину. Пластинки роста в различных костях тела образуют как бы мягкую связь в определенном порядке. Примерно в возрасте 20 лет тело человека обретает вполне развитый скелет.

По мере развития скелета его пропорции значительно изменяются. Голова шестинедельного зародыша имеет такую же длину, как и его туловище; при родах голова еще достаточно большая по сравнению с другими частями тела, но срединная точка переместилась от подбородка ребенка к пупку. У взрослого человека срединная линия тела проходит через лонное сочленение (лобковый симфиз) или сразу над половыми органами.

В целом женский скелет легче и меньше мужского. Таз женщины пропорционально шире, что необходимо для растущего плода во время беременности. Плечи мужчины шире, и грудная клетка длиннее, но, вопреки расхожему мнению, мужчины и женщины имеют одинаковое число ребер. Важной и замечательной особенностью костей является их способность в процессе роста обретать определенную форму. Это очень важно для длинных костей, которые служат опорой конечностей. Они шире у концов, чем посередине, что обеспечивает дополнительную прочность суставу, где это особенно нужно. Такое образование формы, известное как моделирование, идет особенно интенсивно при росте костей; продолжается оно и все последующее время.

Различные формы и размеры

Имеется несколько различных типов костей, каждый из которых имеет определенную конфигурацию в зависимости от функции. Длинные трубчатые кости, образующие конечности тела, представляют собой просто цилиндры из твердой кости с мягким губчатым костным мозгом внутри. Короткие трубчатые кости, например, кости кисти руки и кости лодыжки имеют в основе ту же конфигурацию, что и длинные (трубчатые) кости, но они более короткие и толстые для того, чтобы совершать множество разных движений без потери сил, не уставая.
Плоские кости образуют как бы сэндвич из твердых костей с пористой (губчатой) прослойкой между ними. Они плоские, так как обеспечивают защиту (как, например, череп) или предоставляют особенно большую поверхность, к которой крепятся некоторые мышцы (например, лопатки). И, наконец, последний тип кости- смешанные кости - имеет несколько конфигураций в зависимости от конкретной функции. Кости позвоночника, например, имеют форму коробочек, чтобы дать большую силу (прочность) и пространство для спинного мозга внутри них. А кости лица, которые создают структуру лица,- полые, с воздушными полостями внутри, для создания сверхлегкости их веса.

Хрящи

Хрящи - гладкая, прочная, но гибкая часть костной системы человека. У взрослого они находятся главным образом в суставах и в покрытии концов костей, а также в других важных точках скелета, где требуется прочность, гладкость и гибкость. Структура хрящей не везде одинакова в разных частях скелета. Она зависит от конкретной функции, которую тот или иной хрящ выполняет. Все хрящи состоят из основы, или матрицы, в которой помещены клетки и волокна, состоящие из белков - коллагена и эластина. Консистенция волокон разная в разных тинах хрящей, но все хрящи похожи тем, что не содержат в себе кровеносных сосудов. Вместо этого они питаются питательными веществами, которые проникают через покрытие (перихондрий, или надхрящницу) хряща, и смазываются синовиальной жидкостью, которая вырабатывается выстилающими суставы оболочками.
По своим физическим качествам различные типы хрящей известны под названием гиалиновые хрящи, волокнистые хрящи и эластические хрящи.

Гиалиновые хрящи

Гиалиновые хрящи (первый тип хрящей) представляют собой голубовато-белую полупрозрачную ткань и из всех трех типов хрящей имеют наименьшее количество клеток и волокон. Все имеющиеся здесь волокна состоят из коллагена.
Этот тин хрящей образует скелет эмбриона и способен на большой рост, что позволяет вырасти ребенку ростом 45 см до взрослого мужчины ростом 1,8 м. После завершения роста гиалиновые хрящи остаются как очень тонкий слой (1 - 2 мм) на концах костей, которые они выстилают, в суставах.

Гиалиновые хрящи часто встречаются в дыхательном тракте, где формируют кончик носа, а также жесткие, но гибкие кольца, окружающие трахею и большие трубки (бронхи), ведущие к легким. На концах ребер гиалиновый хрящ образует соединительные звенья (реберные хрящи) между ребрами и грудиной, которые позволяют груди расширяться и сжиматься в процессе дыхания.
В гортани, или голосовой коробке, гиалиновые хрящи не только служат опорой, но и участвуют в создании голоса. По мере движения они контролируют объем воздуха, проходящего через гортань, и как результат этого издается звук определенной высоты.

Волокнистые хрящи

Волокнистые хрящи (второй тип хрящей) состоят из многочисленных пучков плотного вещества коллагена, которые придают хрящу, с одной стороны, упругость, а с другой - способность выносить значительное давление. Оба эти качества необходимы в тех участках, где находится больше всего волокнистых хрящей, а именно - между костями позвоночного столба.
В позвоночнике каждая кость, или позвонок, отделена от своего соседа диском из волокнистого хряща. Межпозвоночные диски защищают позвоночник от сотрясения и позволяют скелету держаться прямо.
Каждый диск имеет внешнее покрытие из волокнистого хряща, который окружает густую сироповидную жидкость. Хрящевая часть диска, которая имеет хорошо смазанную поверхность, предотвращает изнашивание костей во время движения, а жидкость играет роль природного противоударного механизма.
Волокнистые хрящи служат прочным соединительным материалом между костями и связками; в тазовом поясе они соединяют две части таза вместе в суставе, известном под названием лобковый симфиз. У женщин этот хрящ имеет особо важное значение, так как он смягчается гормонами беременности для того, чтобы позволить головке ребенка пройти наружу во время родов.

Эластические хрящи

Эластические хрящи (третий тип хрящей) получили свое название из-за присутствия в них волокон эластина, но содержится в их составе также и коллаген. Волокна эластина придают эластическому хрящу отличительную желтую окраску. Прочный, но упругий, эластический хрящ образует лоскут ткани, называемый надгортанником; он закрывает доступ воздуху, когда нища проглатывается.

Эластический хрящ образует также упругую часть наружного уха и поддерживает стенки канала, ведущего к среднему уху и евстахиевым трубам, которые соединяют каждое ухо с задней стенкой горла. Вместе с гиалиновым хрящем эластический хрящ также участвует в образовании опорных и голосопроизводящих частей гортани.

Строение скелета

Каждая из различных костей скелета сконструирована для совершения определенных действий. Череп защищает мозг, а также глаза и уши. Из 29 костей черепа 14 формируют основной каркас для глаз, носа, скул, верхней и нижней челюсти. Одного взгляда на череп достаточно, чтобы понять, как уязвимые части лица защищены этими костями. Глубокие глазные впадины с нависающим над ними лбом охраняют сложные и тонкие глазные механизмы. Подобным же образом запахоопределяющие части обонятельного аппарата запрятаны высоко позади центрального носового отверстия в верхней челюсти.
Поражает в черепе размер нижней челюсти. Подвешенная на шарнирах, она образует идеальный дробящий инструмент в момент контакта через посредство зубов с верхней челюстью. Лицевые ткани- мышцы, нервы и кожа - покрывают лицевые кости так, что незаметно, как умело сконструированы челюсти. Другим примером первоклассного дизайна является соотношение положения лицевой части к черепу: лицевая часть вокруг глаз и носа прочнее, и это не позволяет лицевым костям вдавливаться в череп или, наоборот, слишком выдаваться.
Позвоночник состоит из цепи мелких костей, называемых позвонками, и образует центральную ось скелета. Он обладает огромной силой и прочностью и, так как стержень не сплошной, а состоит из мелких отдельных секций, очень гибок. Это позволяет человеку наклоняться, касаться пальцами носков и держаться прямо. Позвонки также защищают нежную ткань спинного мозга, который проходит посередине внутри позвоночника. Нижнии конец позвоночника называется копчиком. У некоторых животных, таких как собака и кошка, копчик гораздо длиннее и образует хвост.

Грудная клетка состоит по бокам из ребер, позвоночного столба сзади и грудины спереди. Ребра крепятся к позвоночнику специальными суставами, которые позволяют им двигаться во время дыхания. Спереди они крепятся к грудине реберными хрящами. Два нижних ребра (11-е и 12-е) крепятся только сзади и слишком коротки для соединения с грудиной. Они называются колеблющимися ребрами и имеют лишь некоторое отношение к дыханию. Первое ребро и второе тесно соединены с ключицей и образуют основание шеи, где несколько больших нервов и кровеносных сосудов проходят к рукам. Реберная клетка предназначена для защиты сердца и легких, которые в ней заключены, так как повреждение этих органов может угрожать жизни.

Конечности и таз

Задняя часть таза - крестец. С двух сторон к крестцу крепятся массивные подвздошные кости, закругленные верхи которых хорошо прощупываются на теле. Вертикальные крестцово подвздошные суставы между крестцом и подвздошной костью уплотнены волок нами и переплетены крест-накрест рядом связок. К тому же поверхность костей таза имеет небольшие надрезки, и кости складываются друг с другом наподобие свободно соединяющихся ажурных пил, что придает дополнительную устойчивость всей конструкции. В передней части тела две лобковые кости соединяются в лобковом симфизе (лонном сочленении). Их соединение амортизирует хрящевой или лобковый диск. Сустав окутывает множество связок; связки отходят к подвздошной кости, чтобы придать тазу устойчивость. В нижней части ноги проходят большеберцовая кость и более тонкая - малоберцовая кость. Ступня, как и кисть руки, состоит из сложной системы мелких костей. Это дает человеку возможность твердо и свободно стоять, а также ходить и бегать без падений.

ХРЯЩЕВЫЕ ТКАНИ

Общая характеристика: относительно низкий уровень метаболизма, отсутствие сосудов, гидрофильность, прочность и эластичность.

Строение: клетки хондроциты и межклеточное вещество (волокна, аморфное вещество, интерстициальная вода).

Лекция: ХРЯЩЕВЫЕ ТКАНИ


Клетки (хондроциты ) составляют не более 10% массы хряща. Основной объем в хрящевой ткани приходится на межклеточное вещество . Аморфное вещество достаточно гидрофильно, что позволяет доставлять клеткам питательные вещества путем диффузии из капилляров надхрящницы.

Дифферон хондроцитов : стволовые, полустволовые клетки, хондробласты, молодые хондроциты, зрелые хондроциты.

Хондроциты являются производными хондробластов и единственной популяцией клеток в хрящевой ткани, расположены в лакунах. Хондроциты можно подразделить по степени зрелости на молодые и зрелые. Молодые сохраняют черты строения хондробластов. Они имеют продолговатую форму, развитую грЭПС, крупный аппарат Гольджи, способны образовывать белки для коллагеновых и эластических волокон и сульфатированные гликозаминогликаны, гликопротеины. Зрелые хондроциты имеют овальную или округлую форму. Синтетический аппарат развит в меньшей степени при сравнении с молодыми хондроцитами. В цитоплазме происходит накопление гликогена и липидов.

Хондроциты способны к делению и образуют изогенные группы клеток, окруженные одной капсулой. В гиалиновом хряще изогенные группы могут содержать до 12 клеток, в эластическом и волокнистом хрящах – меньшее число клеток.

Функции хрящевых тканей: опорная, формирование и функционирование сочленений.

Классификация хрящевых тканей

Различают: 1) гиалиновую, 2) эластическую и 3) волокнистую хрящевую ткань.

Гистогенез . В эмбриогенезе хрящи образуются из мезенхимы.

1-я стадия. Образование хондрогенного островка.

2-я стадия. Дифференциация хондрробластов и начало образования волокон и хрящевого матрикса.

3-я стадия. Рост хрящевой закладки двумя путями:

1) Интерстициальный рост – обусловлен увеличением ткани изнутри (образование изогенных групп, накопление межклеточного матрикса), происходит при регенерации и в эмбриональном периоде.

2) Аппозиционный рост – обусловлен наслоением ткани за счёт деятельности хондробластов в надхрящнице.

Регенерация хряща . При повреждении хряща регенерация происходит из камбиальных клеток в надхрящнице, при этом образуются новые слои хряща. Полноценная регенерация происходит только в детском возрасте. Для взрослых характерна неполная регенерация: на месте хряща образуется ПВНСТ.

Возрастные изменения . Эластический и волокнистый хрящи устойчивы к повреждениям и мало меняются с возрастом. Гиалиновая хрящевая ткань может подвергаться обызвествлению, трансформируясь иногда в костную ткань.

Хрящ как орган состоит из нескольких тканей: 1) хрящевая ткань, 2) надхрящница: 2а) наружный слой – ПВНСТ, 2б) внутренний слой – РВСТ, с кровеносными сосудами и нервами, а также содержит стволовые, полустволовые клетки и хондробласты.

1. ГИАЛИНОВАЯ ХРЯЩЕВАЯ ТКАНЬ

Локализация: хрящи носа, гортани (щитовидный хрящ, перстневидный хрящ, черпаловидный, кроме голосовых отростков), трахеи и бронхов; суставные и рёберные хрящи, хрящевые пластинки роста в трубчатых костях.

Строение: клетки хряща хондроциты (описаны выше) и межклеточное вещество, состоящее из коллагеновых волокон, протеогликанов и интерстициальной воды. Коллагеновые волокна (20-25%) состоят из коллагена II типа, расположены неупорядоченно. Протеогликаны, составляющие 5-10% от массы хряща, представлены сульфатированными гликозоаминогликанами, гликопротеинами, которые связывают воду и волокна. Протеогликаны гиалинового хряща препятствуют его минерализации. Интерстициальная вода (65-85%) обеспечивает несжимаемость хряща, является амортизатором. Вода способствует эффективному обмену веществ в хряще, переносит соли, питательные вещества, метаболиты.

Суставной хрящ является разновидностью гиалинового хряща, не имеет надхрящницы, питание получает из синовиальной жидкости. В суставном хряще выделяют: 1) поверхностную зону, которую можно назвать бесклеточной, 2) среднюю (промежуточную) – содержащую колонки хрящевых клеток и 3) глубокую зону, в которой хрящ взаимодействует с костью.

Предлагаю посмотреть видеоролик с Ютуб «АРТРОЗ КОЛЕННОГО СУСТАВА »

2. ЭЛАСТИЧЕСКАЯ ХРЯЩЕВАЯ ТКАНЬ

Локализация: ушная раковина, хрящи гортани (надгортанный, рожковидные, клиновидные, а также голосовой отросток у каждого черпаловидного хряща), евстахиевой трубы. Этот вид ткани необходим для тех участков органов, которые способны менять свой объем, форму и обладают обратимой деформацией.

Строение: клетки хряща хондроциты (описаны выше) и межклеточное вещество, состоящее из эластических волокон (до 95%) волокон и аморфного вещества. Для визуализации используются красители, выявляющие эластические волокна, например, орсеин.

3. ВОЛОКНИСТАЯ ХРЯЩЕВАЯ ТКАНЬ

Локализация: фиброзные кольца межпозвоночных дисков, суставные диски и мениски, в симфизе (лонное сочленение), суставные поверхности в височно-нижнечелюстном и грудинно-ключичном суставах, в местах прикрепления сухожилий к костям или гиалиновому хрящу.

Строение: хондроциты (чаще поодиночке) удлинённой формы и межклеточное вещество, состоящее из небольшого количества аморфного вещества и большого количества коллагеновых волокон. Волокна располагаются упорядоченно параллельными пучками.

← Вернуться

×
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:
Я уже подписан на сообщество «sinkovskoe.ru»