Сообщение по теме электронная эмиссия. Электронная эмиссия

Подписаться
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:

ПРОМЫШЛЕННАЯ ЭЛЕКТРОНИКА

Глава XII

ЭЛЕКТРОВАКУУМНЫЕ ПРИБОРЫ

В связи с автоматизацией производственных процессов всех отраслей промышленности большое значение приобрела промышленная электроника - наука о техническом использовании электронных, ионных и полупроводниковых приборов.
Главная особенность электронных приборов (электронных ламп) состоит в том, что прохождение электрического тока в них связано с перемещением электронов в вакууме, а управление перемещающимися электронами осуществляется электрическим полем.
Ионными приборами называются устройства, в которых электрический ток представляет собой поток электронов и заряженных частиц - ионов в сильно разреженной газовой среде под действием сил электрического поля.
Полупроводниковыми приборами являются такие приборы, в которых электрический ток создается перемещающимися под действием электрического поля электронами и дырками (процессы, связанные с дырочной проводимостью, изложены в § 146 главы XIV) в полупроводниковой среде.

§ 126. Электронная эмиссия

Работа электронных и ионных приборов основана на использовании электронной эмиссии. Последняя заключается в выходе в вакуум или разреженный газ электронов с поверхности металлов. Движение этих электрически заряженных частиц создает ток в электронных и ионных приборах. Основные виды электронной эмиссии, используемые в электронике: термоэлектронная, вторичная электронная и фотоэлектронная.
Термоэлектронная эмиссия. В металлах вокруг каждого атома имеются электроны, слабо связанные с ним. Часть этих электронов, оторвавшихся от своих ядер, находится в беспорядочном движении. Скорость хаотического движения этих свободных электронов зависит от температуры металла: чем выше температура, тем быстрее перемещаются электроны.
При некоторых значениях температуры (900 - 1000° С и выше) скорость движения части электронов становится настолько значительной, что, преодолевая силы притяжения ядер атомов, они вырываются из металла и вылетают за его пределы. Это явление носит название термоэлектронной эмиссии .
У различных металлов количество испускаемых при одинаковой температуре электронов различно. Наибольшей термоэлектронной эмиссией обладают натрий, калий, цезий, барий и некоторые другие металлы.
При очень высоких температурах нагретый металл начинает испаряться и это ограничивает возможность увеличения термоэлектронной эмиссии путем повышения температуры.
Вторичная электронная эмиссия. Если в вакууме на некотором расстоянии от электрода, из которого вылетают электроны, поместить металлическую пластинку и подать на нее положительный потенциал, то вылетающие с поверхности электрода электроны, несущие отрицательный электрический заряд, будут притягиваться к пластине и с большой скоростью ударять в нее. Под действием ударов быстро летящих электронов с поверхности этой пластины будут выбиваться другие электроны, носящие название электронов вторичной эмиссии .
Одной из разновидностей вторичной эмиссии является эмиссия электронов под воздействием бомбардировки материала электрически заряженных частиц - ионов, масса которых значительно больше массы электронов. Вылет электронов с поверхности материалов под действием ионной бомбардировки используется в работе ионных приборов.
Фотоэлектронная эмиссия. Фотоэлектронная эмиссия происходит под воздействием световых, ультрафиолетовых и других лучей, попадающих на поверхность материалов.
Световой поток можно рассматривать как поток мельчайших частиц, носящих название фотонов .
Скорость движения фотонов (скорость света) составляет около 300 000 км/сек . Фотоны, ударяясь о поверхность материала, выбивают из него электроны.
Явление, при котором под воздействием световой энергии из материала вырываются электроны, называется фотоэффектом . Это явление используется в фотоэлементах.

В узлах кристаллической решетки металлов находятся положительные ионы, а между ними свободно движутся электроны. Они как бы плавают по всему объему проводника, так как силы притяжения к положительным ионам решетки, действующие на свободные электроны, находящиеся внутри металла, в среднем взаимно уравновешиваются. Действие сил притяжения со стороны положительных ионов на электроны мешает последним выйти за пределы поверхности металла.

Лишь наиболее быстрые электроны могут преодолеть это притяжение и вылететь из металла. Однако совсем покинуть металл электрон не может, так как притягивается положительным поверхностным ионом и тем зарядом, который возник в металле в связи с потерей электрона. Равнодействующая этих сил притяжения не равна нулю, а направлена внутрь металла перпендикулярно его поверхности (рис. 1).

Через некоторое время электрон под действием этих сил может возвратиться в металл. Среди электронов, находящихся вблизи поверхности металла, найдется большое число таких, которые временно будут покидать металл, а затем возвращаться обратно. Этот процесс напоминает испарение жидкости. В конце концов устанавливается динамическое равновесие между покидающими и возвращающимися электронами. Таким образом, на границе металла с вакуумом возникает двойной слой электрических зарядов, поле которого подобно полю плоского конденсатора. Электрическое поле этого слоя можно считать однородным (рис. 2). Разность потенциалов в этом слое называется контактной разностью потенциалов между металлом и вакуумом.

Этот двойной электрический слой не создает поля во внешнем пространстве, но препятствует выходу электронов из металла.

Как показывают расчеты и специально поставленные опыты, толщина этого слоя мала и равна примерно 10 -10 м.

Таким образом, чтобы покинуть металл и уйти в окружающую среду, электрон должен совершить работу A в против сил притяжения со стороны положительного заряда металла и против сил отталкивания от отрицательно заряженного электронного облака. Она приблизительно равна A в = e, где e - заряд электрона. Для этого электрон должен обладать достаточной кинетической энергией.

Минимальную работу A в, которую должен совершить электрон за счет своей кинетической энергии для того, чтобы выйти из металла и не вернуться в него, называют работой выхода .

Работа выхода зависит только от рода металла и его чистоты. Работу выхода принято измерять в электронвольтах (эВ).

Для чистых металлов A в составляет несколько электронвольт. Так, например, для цезия ее значение равно 1,81 эВ, для платины 6,27 эВ.

Выход свободных электронов из металла называется эмиссией электронов . При нормальных внешних условиях электронная эмиссия выражена слабо, так как средняя кинетическая энергия хаотического теплового движения большинства свободных электронов в металлах гораздо меньше работы выхода. Для повышения интенсивности эмиссии следует увеличить кинетическую энергию свободных электронов до значений, равных или больших значения работы выхода. Этого можно достигнуть различными способами. Во-первых, созданием электрического поля очень большой напряженности (E ~ 10 6 В/см), способного вырвать электроны из металла, - холодная эмиссия . Такая эмиссия используется в электронных микропроекторах. Во-вторых, бомбардировкой металла электронами, предварительно разогнанными электрическим полем до очень большой скорости, - вторичная электронная эмиссия . В-третьих, интенсивным освещением поверхности металла - фотоэмиссия . На явлении фотоэмиссии основан внешний фотоэффект и устройство вакуумного фотоэлемента. В-четвертых, нагревание металла - термоэлектронная эмиссия . Электроны, испускаемые нагретым телом, называются термоэлектронами , а само это тело - эмиттером .

Электроны проводника свободно перемещаются в пределах его границ, а при поглощении достаточной энергии могут и выходить наружу, преодолев стенку потенциальной ямы у поверхности тела (рис. 10.6). Это явление называется эмиссией электронов (в отдельном атоме аналогичное явление называется ионизацией).

При Т = 0 энергия, необходимая для эмиссии, определяется разностью между уровнями W = 0 и уровнем Ферми Е Р (рис. 10.6) и называется работой выхода. Источником энергии могут быть фотоны (см. параграф 9.3), вызывающие фотоэмиссию (фотоэффект).

Рис. 10.6

Причиной термоэлектронной эмиссии является нагревание металла. При искажении функции распределения электронов (см. рис. 10.5, б) се «хвост» может выйти за пределы среза потенциальной ямы, т.с. у некоторых электронов хватает энергии, чтобы покинуть металл. Обычно этим пользуются для поставки электронов в вакуум.

Простейший прибор, использующий термоэмиссию, - электровакуумный диод (рис. 10.7, а). Его катод К накаляется от источника ЭДС ? и и испускает электроны, которые создают ток иод действием электрического ноля между анодом и катодом. Электровакуумный диод отличается от фотодиода в основном источником энергии, вызвавшей эмиссию электронов, поэтому их вольтамперные характеристики похожи. Чем больше напряжение U a между анодом и катодом, тем большую часть электронов из их облака у катода вытягивает электрическое поле в единицу времени. Поэтому с ростом напряжения U a ток I растет. При некоторых напряжениях ноле вытягивает уже все электроны, покидающие катод, и дальнейший рост напряжения к росту тока нс приводит - происходит насыщение.


Рис. 10.7

ВОПРОС. Почему ток насыщения при Т, больше, чем при Г, (рис. 10.7, б)? ОТВЕТ. При Т 2 > Г, больше электронов покидает катод в единицу времени.

При обратной полярности приложенного напряжения («минус» подключен к аноду, а «плюс» - к катоду) электроны не ускоряются, а тормозятся, поэтому электровакуумный диод способен пропускать ток только в одну сторону, т.е. он обладает односторонней проводимостью. Это позволяет применять его для выпрямления тока (рис. 10.7, в): во время действия положительной полуволны напряжения диод пропускает ток, а во время отрицательной - нет.

В 1907 г. американец Ли де Форест дополнил диод третьим электродом- сеткой, который позволил усиливать электрические сигналы. Такой триод стали затем дополнять и другими электродами, что позволило создавать разного рода усилители, генераторы и преобразователи. Это обусловило бурное развитие электротехники, радиотехники и электроники. Далее эстафету подхватили полупроводниковые приборы, вытеснившие электровакуумные лампы, но в ЭЛТ, рентгеновских трубках, электронных микроскопах и некоторых вакуумных лампах термоэмиссия ио-нрежнему актуальна.

Еще одним источником эмиссии электронов может быть бомбардировка поверхности материала различными частицами. Вторичная электрон-эле- ктронная эмиссия возникает в результате ударов внешних электронов, передающих часть своей энергии электронам вещества. Такую эмиссию используют, например, в фотоэлектронном умножителе (ФЭУ) (рис. 10.8, а). Его фотокатод 1 испускает электроны под действием света. Их ускоряют в направлении электрода (динода) 2, из которого они выбивают вторичные электроны, те ускоряются к диноду 3 и т.д. В результате первичный фототок умножается до такой степени, что ФЭУ способен регистрировать даже отдельные фотоны.

Рис. 10.8

Тот же принцип применили и в ЭОП (см. параграф 9.3) нового поколения. Он содержит сотни тысяч ФЭУ (по числу пикселей, формирующих изображения объектов), каждый из которых представляет собой металлизированный микроканал шириной ~ 10 мкм. По этому каналу так же зигзагообразно, как свет в оптоволокне и как электроны в ФЭУ, движутся электроны, размножаясь при каждом соударении со стенками канала вследствие вторичной эмиссии. Поскольку траектория электронов пренебрежимо мало отличается от прямолинейной (лишь в пределах ширины канала), то пакет таких каналов, расположенный между фотокатодом и экраном (рис. 10.8, б), избавляет от необходимости фокусировки фотоэлектронов (сравните с рис. 9.4). Каждый канал осуществляет не только размножение электронов, но и перенос их в требуемую точку, что обеспечивает четкость изображения.

При вторичной ионно-электронной эмиссии первичными частицами - носителями энергии являются ионы. В газоразрядных приборах они обеспечивают воспроизводство электронов из катода, которые затем размножаются путем ионизации молекул газа (см. параграф 5.9).

Существует и весьма экзотичный вид эмиссии, происхождение которого объясняется принципом неопределенности Гейзенберга. Если у поверхности металла есть электрическое поле, ускоряющее электроны, то на потенциальный уступ 1 накладывается прямая еЕх (2 на рис. 10.6), и уступ превращается в барьер 3. Если полная энергия электрона равна W, т.е. на АW меньше высоты барьера, то по классическим представлениям «взять» его, т.е. выйти наружу, он не может. Однако по квантовым представлениям электрон - это еще и волна, которая не только отражается от оптически более плотной среды, но и преломляется. При этом наличие функции у внутри барьера означает конечную вероятность обнаружить там электрон. На «классический» взгляд, это невозможно, так как полная энергия электрона W, а ее составляющая - потенциальная энергия - равна в этой области W + AVK, т.е. часть оказывается больше целого! В то же время существует некоторая неопределенность AVK энергии, которая зависит от времени At пребывания электрона внутри барьера: AWAt >h. С уменьшением At: неопределенность AW может достичь требуемой величины, и решение уравнения Шредингера дает конечные значения | р | 2 с внешней стороны барьера, т.е. существует вероятность того, что электрон выйдет наружу, не перепрыгивая через барьер! Она тем выше, чем меньше AW п At.

Эти выводы подтверждаются па практике наличием туннельного, или подбарьерного, эффекта. Он даже находит применение, обеспечивая эмиссию электронов из металла в полях напряженностью ~10 6 -10 7 В/см. Поскольку такая эмиссия происходит без нагревания, облучения или бомбардировки частицами, ее называют автоэлектронной. Обычно она происходит со всевозможных остриев, выступов и т.и., где напряженность ноля резко возрастает. Она может привести и к электрическому пробою вакуумного промежутка.

В 1986 г. Нобелевской премией по физике отмечено основанное на туннельном эффекте изобретение сканирующего электронного микроскопа. Ее лауреаты - немецкие физики Э. Руска и Г. Бинниг и швейцарский физик Г. Рорер. В этом приборе тонкая игла сканирует вдоль поверхности на малом от нее расстоянии. Возникающий при этом туннельный ток несет информацию об энергетических состояниях электронов. Таким образом удается получить изображение поверхности с атомной точностью, что особенно важно в микроэлектронике.

Туннельный эффект ответствен за рекомбинацию при ионно-электронной эмиссии (см. выше), за электризацию трением, при которой электроны из атомов одного материала туннелируют к атомам другого. Он определяет и обобществление электронов при ковалентной связи, ведущей к расщеплению энергетических уровней (см. рис. 10.5, а).

Уже отмечалось, при переходе границы раздела между проводником и вакуумом скачком изменяются напряженность и индукция электрического поля. С этим связаны специфические явления. Электрон свободен только в границах металла. Как только он пытается перейти границу «металл – вакуум», возникает кулоновская сила притяжения между электроном и образовавшимся на поверхности избыточным положительным зарядом (рис. 6.1).

Вблизи от поверхности образуется электронное облако, и на границе раздела формируется двойной электрический слой с разностью потенциалов (). Скачки потенциала на границе металла показаны на рисунке 6.2.

В занятом металлом объеме образуется потенциальная энергетическая яма, так как в пределах металла электроны свободны, и их энергия взаимодействия с узлами решетки равна нулю. За пределами металла электрон приобретает энергию W 0 . Это энергия притяжения Для того, чтобы покинуть металл, электрон должен преодолеть потенциальный барьер и совершить работу

(6.1.1)

Эту работу называют работой выхода электрона из металла . Для ее совершения электрону необходимо сообщить достаточную энергию

Термоэлектронная эмиссия

Величина работы выхода зависит от химической природы вещества, от его термодинамического состояния и от состояния поверхности раздела. Если энергия, достаточная для совершения работы выхода, сообщается электронам путем нагревания, то процесс выхода электронов из металла называют термоэлектронной эмиссией .

В классической термодинамике металл представляют в виде ионной решетки, заключающей в себе электронный газ. Считают, что сообщество свободных электронов подчиняется законам идеального газа. Следовательно, в соответствии с распределением Максвелла при температуре, отличной от 0 К, в металле есть какое-то количество электронов, тепловая энергия которых больше работы выхода. Эти электроны и покидают металл. Если температуру увеличить, то увеличивается и число таких электронов.

Явление испускания электронов нагретыми телами (эмиттерами) в вакуум или другую средуназываетсятермоэлектронной эмиссией . Нагрев необходим для того, чтобы энергии теплового движения электрона было достаточно для преодоления сил кулоновского притяжения между отрицательно заряженным электроном и индуцируемым им на поверхности металла положительным зарядом при удалении с поверхности (рис.6.1). Кроме того, при достаточно высокой температуре над поверхностью металла создается отрицательно заряженное электронное облако, препятствующее выходу электрона с поверхности металла в вакуум. Этими двумя и, возможно, другими причинами определяется величина работы выхода электрона из металла.

Явление термоэлектронной эмиссии открыто в 1883 г. Эдисоном, знаменитым американским изобретателем. Это явление наблюдалось им в вакуумной лампе с двумя электродами – анодом, имеющим положительный потенциал, и катодом с отрицательным потенциалом. Катодом лампы может служить нить из тугоплавкого металла (вольфрам, молибден, тантал и др.), нагреваемая электрическим током (рис. 6.3). Такая лампа называется вакуумным диодом. Если катод холодный, то ток в цепи катод – анод практически отсутствует. При повышении температуры катода в цепи катод – анод появляется электрический ток, который тем больше, чем выше температура катода. При постоянной температуре катода ток в цепи катод – анод возрастает с повышением разности потенциалов U между катодом и анодом и выходит к некоторому стационарному значению, называемому током насыщения I н. При этом все термоэлектроны, испускаемые катодом, достигают анода . Величина тока анода не пропорциональна U , и поэтому для вакуумного диода закон Ома не выполняется.

На рисунке 6.3 показаны схема вакуумного диода и вольт-амперные характеристики (ВАХ) I a (U a ). Здесь U з – задерживающее напряжение при котором I = 0.

Холодная и взрывная эмиссия

Электронную эмиссию, вызываемую действием сил электрического поля на свободные электроны в металле, называют холодной эмиссией или автоэлектронной . Для этого должна быть достаточной напряженность поля и должно выполняться условие

(6.1.2)

здесь d – толщина двойного электрического слоя на границе раздела сред. Обычно у чистых металлов и При получим На практике же холодная эмиссия наблюдается при значении напряженности порядка Такое несовпадение относят на счет несостоятельности классических представлений для описания процессов на микроуровне.

Автоэлектронную эмиссию можно наблюдать в хорошо откачанной вакуумной трубке, катодом которой служит острие, а анодом – обычный электрод с плоской или мало изогнутой поверхностью. Напряженность электрического поля на поверхности острия с радиусом кривизны r и потенциалом U относительно анода равна

При и , что приведет к появлению слабого тока, обусловленного автоэлектронной эмиссией с поверхности катода. Сила эмиссионного тока быстро нарастает с повышением разности потенциалов U . При этом катод специально не разогревается, поэтому эмиссия и называется холодной.

С помощью автоэлектронной эмиссии принципиально возможно получение плотности тока но для этого нужны эмиттеры в виде совокупности большого числа острий, идентичных по форме (рис. 6.4), что практически невозможно, и, кроме того, увеличение тока до 10 8 А/см 2 приводит к взрывообразному разрушению острий и всего эмиттера.

Плотность тока АЭЭ в условиях влияния объемного заряда равна (закон Чайльда-Ленгмюра)

где – коэффициент пропорциональности, определяемый геометрией и материалом катода.

Проще говоря, закон Чайльда-Ленгмюра показывает, что плотность тока пропорциональна (закон трех вторых).

Током автоэлектронной эмиссии при концентрации энергии в микрообъемах катода до 10 4 Дж×м –1 и более (при общей энергии 10 -8 Дж) может инициироваться качественно иной вид эмиссии, обусловленный взрывом микроострий на катоде (рис. 6.4).

При этом появляется ток электронов, который на порядки превосходит начальный ток – наблюдается взрывная электронная эмиссия (ВЭЭ). ВЭЭ была открыта и изучена в Томском политехническом институте в 1966 г. коллективом сотрудников под руководством Г.А. Месяца.

ВЭЭ – это единственный вид электронной эмиссии, позволяющий получить потоки электронов мощностью до 10 13 Вт с плотностью тока до 10 9 А/см 2 .

Рис. 6.4 Рис. 6.5

Ток ВЭЭ необычен по структуре. Он состоит из отдельных порций электронов 10 11 ¸ 10 12 штук, имеющих характер электронных лавин, получивших название эктонов (начальные буквы «explosive centre ») (рис. 6.5). Время образования лавин 10 -9 ¸ 10 -8 с.

Появление электронов в эктоне вызвано быстрым перегревом микроучастков катода и является, по существу, разновидностью термоэлектронной эмиссии. Существование эктона проявляется в образовании кратера на поверхности катода. Прекращение эмиссии электронов в эктоне обусловлено охлаждением зоны эмиссии за счет теплопроводности, уменьшения плотности тока, испарения атомов.

Взрывная эмиссия электронов и эктоны играют фундаментальную роль в вакуумных искрах и дугах, в разрядах низкого давления, в сжатых и высокопрочных газах, в микропромежутках, т.е. там, где в наличии есть электрическое поле высокой напряженности на поверхности катода.

Явление взрывной электронной эмиссии послужило основой для создания импульсных электрофизических установок, таких как сильноточные ускорители электронов, мощные импульсные и рентгеновские устройства, мощные релятивистские сверхвысокочастотные генераторы. Например, импульсные ускорители электронов имеют мощность 10 13 Вт и более при длительности импульсов 10 -10 ¸ 10 -6 с, токе электронов 10 6 А и энергии электронов 10 4 ¸ 10 7 эВ. Такие пучки широко используются для исследований в физике плазмы, радиационной физике и химии, для накачки газовых лазеров и пр.

Фотоэлектронная эмиссия

Фотоэлектронная эмиссия (фотоэффект ) заключается в «выбивании» электронов из металла при действии на него электромагнитного излучения.

Схема установки для исследования фотоэффекта и ВАХ аналогичны изображенным на рисунке 6.3. Здесь, вместо разогрева катода, на него направляют поток фотонов или γ-квантов (рис. 6.6).

Закономерности фотоэффекта еще в большей степени не согласуются с классической теорией, чем в случае холодной эмиссии. По этой причине мы рассмотрим теорию фотоэффекта при обсуждении квантовых представлений в оптике.

В физических приборах, регистрирующих γ – излучение, используют фотоэлектронные умножители (ФЭУ ). Схема прибора приведена на рисунке 6.7.

В нем используют два эмиссионных эффекта: фотоэффект и вторичную электронную эмиссию , которая заключается в выбивании электронов из металла при бомбардировке последнего другими электронами. Электроны выбиваются светом из фотокатода (ФК ). Ускоряясь между ФК и первым эмиттером (КС 1), они приобретают энергию, достаточную, чтобы выбить большее число электронов из следующего эмиттера. Таким образом, умножение электронов происходит за счет увеличения их числа при последовательном прохождении разности потенциалов между соседними эмиттерами. Последний электрод называют коллектором. Регистрируют ток между последним эмиттером и коллектором. Таким образом, ФЭУ служит усилителем тока, а последний пропорционален излучению, попадающему на фотокатод, что и используют для оценки радиоактивности.

Электронная эмиссия

испускание электронов поверхностью твёрдого тела или жидкости. Э. э. возникает в случаях, когда под влиянием внешних воздействий часть электронов тела приобретает энергию, достаточную для преодоления потенциального барьера (См. Потенциальный барьер) на границе тела, или если под действием электрического поля поверхностный потенциальный барьер становится прозрачным для части электронов, обладающих внутри тела наибольшими энергиями. Э. э. может возникать при нагревании тел (Термоэлектронная эмиссия), при бомбардировке электронами (Вторичная электронная эмиссия), ионами (Ионно-электронная эмиссия) или фотонами (Фотоэлектронная эмиссия). В определённых условиях (например, при пропускании тока через полупроводник с высокой подвижностью электронов или при приложении к нему сильного импульса электрического поля) электроны проводимости могут «нагреваться» значительно сильнее, чем кристаллическая решётка, и часть из них может покинуть тело (эмиссия горячих электронов).

Для наблюдения Э. э. необходимо создать у поверхности тела (эмиттера) внешне ускоряющее электроны электрическое поле, которое «отсасывает» электроны от поверхности эмиттера. Если это поле достаточно велико (≥ 10 2 в/см ), то оно уменьшает высоту потенциального барьера на границе тела и соответственно работу выхода (Шотки эффект), в результате чего Э. э. возрастает. В сильных электрических полях (Электронная эмиссия10 7 в/см ) поверхностный потенциальный барьер становится очень тонким и возникает туннельное «просачивание» электронов сквозь него (Туннельная эмиссия), иногда называемое также автоэлектронной эмиссией. В результате одновременного воздействия 2 или более факторов может возникать термоавто- или фотоавтоэлектронная эмиссия. В очень сильных импульсных электрических полях (Электронная эмиссия 5․10 7 в/см ) туннельная эмиссия приводит к быстрому разрушению (взрыву) микроострий на поверхности эмиттера и к образованию вблизи поверхности плотной плазмы (См. Плазма). Взаимодействие этой плазмы с поверхностью эмиттера вызывает резкое увеличение тока Э. э. до 10 6 а при длительности импульсов тока в несколько десятков нсек (взрывная эмиссия). При каждом импульсе тока происходит перенос микроколичеств (Электронная эмиссия 10 -11 г ) вещества эмиттера на анод.

Лит.: Добрецов Л. Н., Гомоюнова М. В., Эмиссионная электроника, М., 1966; Бугаев С. П., Воронцов-Вельяминов П. Н., Искольдский А. М., Месяц С, А., Проскуровский Д. И., Фурсей Г. Н., Явление взрывной электронной эмиссии, в сборнике: Открытия в СССР 1976 года, М., 1977.

Т. М. Лифшиц.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Электронная эмиссия" в других словарях:

    Электронная эмиссия явление испускания электронов поверхностью твёрдого тела или жидкости. Типы эмиссии Термоэлектронная эмиссия Электронную эмиссию, возникающую в результате нагрева, называют термоэлектронной эмиссией (ТЭ). Явление ТЭ… … Википедия

    Испускание электронов поверхностью конденсированной среды. Э. э. возникает в случаях, когда часть электронов тела приобретает в результате внеш. воздействия энергию, достаточную для преодоления потенц. барьера на его границе, или если внеш.… … Физическая энциклопедия

    Испускание эл нов поверхностью конденсированной среды. Э. э. возникает в случаях, когда часть эл нов тела приобретает в результате внеш. воздействий энергию, достаточную для преодоления потенциального барьера на его границе, или если внеш.… … Физическая энциклопедия

    ЭЛЕКТРОННАЯ эмиссия, испускание электронов твердым телом или жидкостью под действием электрического поля (автоэлектронная эмиссия), нагрева (термоэлектронная эмиссия), электромагнитного излучения (фотоэлектронная эмиссия), потока электронов… … Современная энциклопедия

    Большой Энциклопедический словарь

    Электронная эмиссия - ЭЛЕКТРОННАЯ ЭМИССИЯ, испускание электронов твердым телом или жидкостью под действием электрического поля (автоэлектронная эмиссия), нагрева (термоэлектронная эмиссия), электромагнитного излучения (фотоэлектронная эмиссия), потока электронов… … Иллюстрированный энциклопедический словарь

    электронная эмиссия - Испускание электронов с поверхности материала в окружающее пространство. [ГОСТ 13820 77] Тематики электровакуумные приборы … Справочник технического переводчика

    электронная эмиссия - испускание электронов поверхностью твердого тела или жидкости. Электронная эмиссия возникает в случаях, когда под влиянием внешних воздействий часть электронов тела приобретает энергию, достаточную для преодоления… … Энциклопедический словарь по металлургии

    Испускание электронов твердым телом или жидкостью под действием электрического поля (автоэлектронная эмиссия), нагрева (термоэлектронная эмиссия), электромагнитного излучения (фотоэлектронная эмиссия), потока электронов (вторичная электронная… … Энциклопедический словарь

    Испускание электронов в вом. В зависимости от способа возбуждения различают след. осн. типы Э. э.: термоэлектронная эмиссия, фотоэлектронная эмиссия (см. Фотоэффект внешний), вторичная электронная эмиссия, автоэлектронная эмиссия … Большой энциклопедический политехнический словарь

Книги

  • Взрывная электронная эмиссия , Г. А. Месяц , … Категория: Электричество и магнетизм
  • Вторичная электронная эмиссия , И. М. Бронштейн , Б. С. Фрайман , Книга посвящена одному из вопросов современной физической электроники - вторичной электронной эмиссии. Рассмотрены методы измерений: коэффициента вторичной эмиссии (ВЭ), неупругого и упругого… Категория: Физика твердого тела. Кристаллография Серия: Физико-математическая библиотека инженера Издатель:

← Вернуться

×
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:
Я уже подписан на сообщество «sinkovskoe.ru»