Названия самых крупных спутников юпитера. Спутники планеты юпитер

Подписаться
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:

Спутники Юпитера

© Владимир Каланов,
сайт
"Знания-сила".

Спутники Юпитера, снятые КА «Galileo»

Первые четыре спутника открыл ещё , когда в январе 1610 г (по новому стилю) он навёл в ночное небо собственноручно изготовленный им телескоп, точнее, зрительную трубу. Это открытие он посвятил семье герцога Тосканского Козимо II Медичи, у которого он служил придворным математиком. Спутники получили названия Ио, Европа, Ганимед и Каллисто. Эти спутники до сих пор считаются «галилеевыми спутниками», а раньше их называли «галилеевыми лунами».

Галилей рассматривал спутники в телескоп с увеличением в 32 раза. Увидеть эти спутники около Юпитера в виде маленьких светящихся точек можно в хороший современный бинокль.

Все четыре «галелеевы спутника» движутся в плоскости экватора Юпитера. Подчиняясь не совсем ясному закону движения, все они вращаются вокруг своей оси со скоростью, равной скорости обращения вокруг планеты. Поэтому они обращены к Юпитеру всегда одной стороной. Этот же феномен мы наблюдаем у нашей Луны.

До 1892 года были известны только эти четыре спутника. В 1892 году французский астроном Бернард с помощью телескопа открыл ещё один спутник – Амальтею. Это был последний спутник Юпитера, открытый визуально. Но когда Юпитер и его окрестности начали исследовать с помощью автоматических зондов, имеющих аппаратуру для фотографирования, то было обнаружено ещё несколько спутников. В настоящее время известно и в определённой мере изучено 16 спутников Юпитера. Но это не окончательная цифра. Автоматические межпланетные станции фиксируют наличие других, более мелких небесных тел, вращающихся вокруг планеты.

Основные характеристики спутников Юпитера

Основные характеристики спутников Юпитера, открытых Галилеем, приведены в таблице.

Спутники Медичи

Спутники Расстоя-ние до Юпитера (км) Орби-таль-ный период (дни) Радиус (км) Масса (гр) Сред-няя плот-ность (г/см³)
Ио 421600 1,77 1821 8,94 x10 25 3.57
Европа 670900 3,55 1565 4,8 x10 25 2,97
Ганимед 1070000 7,16 2634 1,48 x10 26 1,94
Каллисто 1883000 16,69 2403 1,08 x10 26 1,86

Приведём теперь основные све́дения о спутниках Юпитера, полученные в результате их исследования автоматическими межпланетными станциями.

Спутник Ио

По фотографиям, переданным зондом «Вояджер-1» (1979г.), а затем и Галилео (старт окт. 1989 - достижение орбиты Юпитера дек. 1995 - конец миссии сент.2003) установлено, что на этом спутнике происходит активная вулканическая деятельность. На одном из снимков видна впадина вулканического происхождения диаметром около 50 км со следами застывшей лавы. Этот огромный кратер с ровным дном мог сформироваться в результате обруше́ния вулкана или в процессе его извержения. Похожих образований диаметром более 25 км на поверхности Ио обнаружено более ста.

Цвет лавы, излива́ющейся из недр спутника, самый разнообразный: чёрный, желтый, красный, оранжевый, коричневый. Предположительно лава состоит из расплавленного базальта с примесью серы, или даже чистой серы.

«Вояджер-1» запечатлел на этом спутнике девять извержений вулканов, происходивших одновременно. Через четыре месяца «Вояджер-2» зафиксировал, что семь из этих вулканов продолжали действовать, выбрасывая столбы ды́ма и пепла на высоту до 300 км. отсюда можно сделать вывод, что извержения вулканов на Ио происходят часто, а их продолжительность измеряется многими месяцами и даже годами. Учёные связывают высокую вулканическую активность этого спутника с относительной близостью его к Юпитеру: Ио удалён от Юпитера в среднем на 420 тысяч километров. На поверхность Ио со стороны Юпитера оказывается приливное воздействие, гораздо более сильное, чем воздействие Земли на Луну. В твёрдой коре Ио амплитуда приливов достигает 100 метров. Это означает, что приливны́е силы выполняют на спутнике огромную работу, которая превращается в тепло, выделяемое из его недр. По расчетам учёных, мощность тепла, выделяемого недрами Ио с каждого квадратного метра поверхности в 30 раз выше, чем на Земле.

Ио имеет магнитное поле, которое создаётся его ядром, содержащим жидкий металл. Активные вулканы создали вокруг спутника разряжё́нную атмосферу, в которой почти не содержится свободного кислорода. Сера, в жидком виде выбрасываемая вулканами, накапливается на поверхности, т.к. для её сгорания не хватает кислорода. Этим объясняется преобладающий оранжевый цвет поверхности Ио.

Ионосфера спутника Ио испытывает воздействие заря́женных частиц окружающего пространства, которые разгоняются магнитным полем Юпитера. Возбуждение атомов ионосферы проявляется в виде интенсивных полярных сияний, отчетливо видимых на снимках, переданных зондом «Галилей».

Спутник Европа

Это не менее интересный спутник Юпитера. По размерам Европа в четыре раза меньше Земли. Предполагается, что в прошлые геологические эпохи на Европе существовал океан. На снимках, переданных зондом «Галилей» (1995 г.), видно, что поверхность Европы покрыта слоем льда с трещинами и разломами. Причиной трещин может оказаться вода в жидком состоянии, находящаяся под слоем льда и имеющая более высокую температуру. Причиной перепада температур учёные считают воздействие Юпитера, вызывающее «приливы-отливы» на спутнике. Приливное воздействие Юпитера на поверхности Европы более слабое, чем на поверхности Ио, но всё же достаточно заметное. Тёмный цвет трещин даёт основание считать, что по ним поднималась вода, впоследствии застывшая. Не исключается, что под ледяным слоем Европы и до настоящего времени находится океан, который, как считается, имеет контакт с силикатной мантией спутника, что обеспечивает приток элементов - "кирпичиков" жизни. На поверхности Европы имеются метеоритные кратеры, но их немного и они небольших размеров. Это можно объяснить тем, что при падении крупного метеорита кратер, возника́вший от удара, заполнялся водой, которая вскоре замёрзла. Мелкие метеориты не могут пробить ледяной панцирь и остаются на поверхности спутника, оставляя лишь небольшие воронки.

Предполагается, что Европа имеет металлическое ядро, радиус которого может достигать половины радиуса этого спутника, что составляет около 790 километров. По разным оценкам, толщина водно-ледяной оболочки Европы может быть в пределах от 80 до 170 км, а толщина ледяного покрова - от 2 до 20 км.

Гипотеза о наличии на Европе океана имеет в качестве своего логического следствия предположение о возможности жизни на Европе. Конечно, об организованных формах жизни здесь речь идти не может, но почему бы не допустить вероятность белковой жизни хотя бы на уровне бактерий? Жизнь - это расход энергии. Значит, нужен источник энергии. На Земле таким источником является Солнце. Но Европа удалена от Солнца на громадное расстояние (около 780 млн. км) и получает ничтожное количество солнечного тепла, находясь половину своего орбитального периода в огромной тени Юпитера. Но это обстоятельство для жизни на Европе было бы не так важно, ведь океан Европы получает тепловую энергию из её недр. Определённые условия для существования жизни в океане Европы, по-видимому могут создавать подводные вулканы, которые там наверняка имеются … и т.д. вероятность такого развития событий исчезающее мала, но её сбрасывать со счетов не хочется.

Гипотеза о возможности примитивной жизни на Европе может быть подтверждена или отброшена только после тщательного исследования этого спутника с помощью спускаемых зондов, если такое исследование станет когда-нибудь возможно.

Следует заметить, что сильная доза радиационного облучения вблизи Юпитера является серьёзной научно-технической проблемой при проектировании и изготовлении оборудования автоматических станций, которые будут по́сланы к спутникам Юпитера. Расчеты показывают, что при радиационной защите аппарата, которую можно обеспечить в ближайших планируемых космических проектах, за месяц пребывания посадочного модуля на поверхности Европы (в благоприятном месте) набирается около 250000 рад (2500 грей) поглощенной дозы радиоактивного облучения. Для сравнения: человек, находящийся в скафандре без дополнительной защиты на поверхности Европы ок. 90-150 минут уже не сможет выжить из-за поражения организма радиацией.

Спутник Ганимед

Это самый крупный из всех спутников Юпитера. Он больше Меркурия и во всей Солнечной системе по размерам занимает третье место после Титана (спутник Сатурна) и Тритона (Спутник Нептуна). Ганимед вполне мог бы считаться самостоятельной планетой, если бы обращался вокруг Солнца, а не вокруг Юпитера.

Поверхность Ганимеда покрыта слоем льда, по последним данным толщина льда больше, чем на Европе. На поверхности Ганимеда множество кратеров, образовавшихся в разные эпохи существования спутника. Характерной чертой поверхности является также наличие борозд шириной до 15 км и длиной в несколько десятков километров. Возможно, это результаты тектонической деятельности, места разломов коры, из которых когда-то вытекала лава. Вулканическая деятельность на Ганимеде имеет низкую активность, но действующие вулканы имеются. Предполагается, что при извержении вулканов на поверхность изливается не раскалённая лава, а водно-солевой раствор.

Под слоем льда находится жидкая вода в смеси с фрагментами грунта. Эта смесь составляет основную часть массы спутника, поэтому средняя плотность Ганимеда невелика - 1,93 (г/см³) . Для сравнения: средняя плотность вещества Европы равна 2,97 (г/см³) , а Ио - 3,57 (г/см³) . Тенденция ясна: чем дальше от центрального светила находится спутник, тем меньше в его веществе тяжелых элементов. По такому закону распределялась материя в момент рождения светила и спутников. В данном случае «светилом» мы называем Юпитер.

Ганимед имеет сильно разреженную атмосферу (как на Ио и Европе). Верхние слои её состоят из заря́женных частиц, т.е. являются ионосферой. Атмосферным явлением на Ганимеде является выпадение и́нея. Пока неясно, из чего состоит иней - из воды или углекислоты, или из того и другого вместе.

Ганимед обладает магнитным полем, что доказывает наличие у него металлического ядра.

Спутник Каллисто

По размерам и массе, а также внутреннему строению Каллисто близок к Ганимеду. Это последний, т.е. наиболее удаленный от Юпитера и наименее яркий из галилеевых спутников. Среднее расстояние Каллисто от Юпитера составляет 1883000 км. поверхность Каллисто покрыта льдом, под которым может находиться жидкий солёный океан. Мантия Каллисто представляет собой смесь льда и минералов. По направлению к центру количество льда убывает. Магнитное поле у Каллисто отсутствует, что может означать отсутствие сплошного металлического ядра. Ядро этого спутника состоит, вероятно, в основном из минералов в смеси с металлами. Поверхность Каллисто покрыта бо́льшим, чем на других галилеевых спутниках количеством кратеров различных размеров. Среди кратеров особо выделяется углубление диаметром около 600 км, которое обнаружено благодаря своему более светлому тону. Вероятно, такое углубление могло появиться в результате столкновения Каллисто с крупным небесным телом в ту эпоху, когда поверхность спутника была ещё недостаточно твёрдой. Как и у Ганимеда, основную массу спутника Каллисто составляют вода, лёд и включения минералов. Этим объясняется невысокая средняя плотность его вещества - 1,86 (г/см³) .

Малые спутники Юпитера

Кроме спутников, открытых Галилеем, вокруг Юпитера вращаются многочисленные спутники небольших размеров. Всего их обнаружено более шестидесяти. Радиусы их орбит составляют от нескольких сотен тысяч до нескольких десятков миллионов километров.

Основные характеристики 12-ти известных и в какой-то степени изученных малых спутников представлены в таблице.

Малые спутники Юпитера

Спутники Дата откры-тия Боль-шая полу-ось ор-биты (км) Орби-таль-ный период (дни) Радиус или раз-меры (км) Масса (кг) Плот-ность (г/см³)
Метида 1979 127691 0,295 86 1,2 x10 17 3,0
Адрастея 1979 128980 0,298 20 x16 x14 2,0 x10 15 1,8
Амальтея 1892 181365,8 0,498 250 x146 x128 2,1 x10 18 0,857
Теба 1979 221889 0,675 116 x98 x84 4,3 x10 17 0,86
Леда 1974 11160000 240,92 20 1,1 x10 16 2,6
Гималия 1904 11461000 250,56 85 6,74 x10 18 2,6
Лиситея 1938 11717100 259,2 18 6,2 x10 18 2,6
Элара 1905 11741000 259,65 43 8,69 x10 17 2,6
Ананке 1951 21276000 629,77 14 2,99 x10 16 2,6
Карме 1938 23404000 734,17 23 1,32 x10 17 2,6
Пасифе 1908 23624000 743,63 30 2,99 x10 17 2,6
Синопе 1914 23939000 758,9 19 7,49 x10 16 2,6

Наибольший интерес для астрономов представляют внутренние спутники Юпитера . Так условно названы четыре спутника: Мети́да, Адрастея, Амальтея и Теба, орбиты которых лежат внутри орбиты Ио. Крупнейший из этих спутников - Амальтея представляет собой каменную глыбу неправильной формы и внушительных (по земным меркам) размеров: 250x146x128 км . Астроному Бернарду, открывшему этот спутник визуально в 1892 году, конечно, не удалось разглядеть в телескоп это небесное тело, которое казалось ему крошечной светящейся точкой рядом с Юпитером. Некоторые физические характеристики спутника Амальтеи были получены с помощью автоматических зондов «Вояджер-1 и 2» . Поверхность спутника тёмного, коричневато-желтого цвета покрыта кратерами, среди которых два имеют огромные для габаритов Амальтеи размеры: у одного диаметр составляет 100 км, и другого - около 80 км. цвет спутника объясняется возможным осаждением на его поверхность серы, выбрасываемой вулканами спутника Ио.

Ближайшие к Юпитеру спутники Мети́да и Адрастея (Мети́да чуть ближе к Юпитеру) имеют почти круговые орбиты, находящиеся в плоскости экватора планеты. Эти спутники находятся вблизи внешнего края колец Юпитера. Существует предположение, подтвержденное данными, полученными от АМС «Галилео» , что кольца Юпитера основную массу своего вещества получили от внутренних спутников, в первую очередь от Метиды и Адрастеи. Определённую роль в этом процессе играют вулканы спутника Ио, которые выбрасывают вещество, попадающее затем на поверхность внутренних спутников. Ударами метеоритов вещество в виде пы́ли выбивается в окружающее космическое пространство, а гравитационное поле Юпитера направляет это вещество к планете, захватывая его и формируя из него ко́льца.

О других малых спутниках Юпитера известно пока немного. Группа из четырёх спутников - Леда, Гималия, Лиситея и Элара характеризуется тем, что их орбиты имеют большой наклон к экватору Юпитера - около 28°. Среди них Литисея - самый маленький по размеру спутник - его диаметр около 18 км.

Следующая группа из четырёх спутников - Ананке, Карме, Пасифе и Синопе примечательна тем, что орбиты этих спутников имеют большой наклон к плоскости экватора Юпитера - до 150°, причём движутся эти спутники в направлении, противоположном направлению движения других спутников. Спутники этой группы расположены на огромном расстоянии от Юпитера и представляют из себя не что иное, как крупные астероиды, захваченные гравитационным полем планеты-гиганта.

© Владимир Каланов,
"Знания-сила"

Уважаемые посетители!

У вас отключена работа JavaScript . Включите пожалуйста скрипты в браузере, и вам откроется полный функционал сайта!

Страница 2 из 5

Ио

(Io) Средний радиус: 1 821,3 км. Период вращения: повернут к Юпитеру одной стороной. Ио - самый близкий к планете спутник Юпитера , один из четырех галилеевых спутников. Ио является четвертым по величине в Солнечной системе, его диаметр равен 3 642 километрам. На Ио действуют более 400 вулканов, что делает его наиболее геологически активным во всей Солнечной системе. Это объясняется гравитационным взаимодействием с Юпитером и другими спутниками: Европой и Ганимедом. У некоторых вулканов выбросы серы и ее диоксида достигают 500 километров в высоту. На поверхности Ио обнаружены более 100 гор, которые образовались в результате обширного сжатия силикатной коры спутника. Некоторые из них превышают гору Эверест на Земле. Спутник состоит в основном из силикатных пород, окружающих расплавленное железное или сернистое железное ядро. Большую часть его поверхности занимают обширные равнины, покрытые замороженной серой или диоксидом серы.

Первым спутник увидел Галилео Галилей 7 января 1610 с помощью сконструированного им телескопа с увеличением в 20-крат. Ио способствовал принятию модели Солнечной системы Коперника, разработке законов движения планет Кеплера и первому измерению скорости света.

В 1979 году два КА «Вояджер» передали на Землю подробные изображения поверхности Ио. КА «Галилео» в 1990-ых и в начале 2000-ых годов получил данные о внутренней структуре Ио и составе поверхности. В 2000 году КА «Кассини-Гюйгенс» и космическая станция «Новые горизонты» в 2007 году, а также наземные телескопы и космический телескоп Хаббл продолжают исследования Ио.

Европа

(Europa) Средний радиус: 1560,8 км. Период вращения: повернут к Юпитеру одной стороной. Европа или Юпитер II - шестой и самый маленьким из галилеевых спутников Юпитера . Однако, он один из самых крупных спутников Солнечной системы. Большей частью Европа состоит из силикатных пород, а в ее центре, вероятно, находится железное ядро. У спутника есть разреженная атмосфера, состоящая в основном из кислорода. На поверхности лежит лед, что делает ее одной из самых гладких в Солнечной системе. Европа испещрена пересекающимися трещинами и полосами, кратеров практически нет. Существует гипотеза, что под поверхностью Европы находится океан из воды, который, вероятно, может служить пристанищем для внеземной микробиологической жизни. Такой вывод объясняется тем, что тепловая энергия от приливного ускорения позволяет океану оставаться жидким, а также стимулирует эндогенную геологическую активность, близкую к тектонике плит. Хотя Европа исследовалась космическими аппаратами эпизодически, ее необычные характеристики заставили ученых сформировать долгосрочную программу исследований спутника. В настоящее время большая часть имеющихся данных о Европе получено КА «Галилео», миссия которого началась в 1989 году. Начало новой миссии «Europa Jupiter System Mission» (EJSM) по изучению спутника Юпитера, запланировано на 2020 год. Это вызвано высокой вероятностью обнаружения на них внеземной жизни. Предполагается запустить от двух до четырех КА: «Jupiter Europa Orbiter» (NASA), «Jupiter Ganymede Orbiter» (ESA), «Jupiter Magnetospheric Orbiter» (JAXA) и «Jupiter Europa Lander» (Роскосмос). Последний планируется посадить па поверхность Европы в рамках миссии «Лаплас - Европа П».

Ганимед

(Ganimed) Средний радиус: 2 634,1 км. Период вращения: повернут к Юпитеру одной стороной. Ганимед - третий из галилеевых спутников Юпитера, крупнейший в Солнечной системе. По размерам он превосходит Меркурий , а его масса в 2 раза превышает массу земной Луны. Он всегда повернут к планете одной и той же стороной, поскольку совершает один оборот вокруг оси за время прохождения по орбите вокруг Юпитера. Спутник состоит приблизительно из равного количества силикатных пород и водяного льда. Он имеет жидкое ядро богатое железом. Предполагается, что на Ганимеде под поверхностью, толщиной примерно в 200 километров, между слоями льда существует океан. Сама же поверхность Ганимеда имеет два типа ландшафтов. Темные области с ударными кратерами и светлые области, которые содержат многочисленные углубления и гребни. Ганимед - единственный спутник в Солнечной системе, обладающий собственным магнитным полем. У него также имеется тонкая кислородная атмосфера, в которую входят атомарный кислород, кислород и, возможно, озон. Ганимед открыл Галилео Галилей, который первым увидел его 7 января 1610 года. Изучение Ганимеда началось с исследования системы Юпитера космическим аппаратом «Пионер-10». Позднее по программе «Вояджер» были произведены более точные и подробные исследования Ганимеда, в результате которых удалось оценить его размеры. Подземный океан и магнитное поле были обнаружены космическим аппаратом «Галилео». Новая миссия по исследованию спутников Юпитера «Europa Jupiter System Mission» (EJSM), утвержденная в 2009 году, возьмет старт в 2020 году. В ней примут участие США, ЕС, Япония и Россия.

Каллисто

(Callisto)Средний радиус: 2410,3 км. Период вращения: повернут к Юпитеру одной стороной. Каллисто - четвертый по дальности от Юпитера спутник, открытый в 1610 году Галилео Галилеем. Он является третьим по размерам в Солнечной системе, а в системе спутников Юпитера - вторым после Ганимеда. Диаметр Каллисто немного меньше Меркурия - приблизительно 99 %, а его масса составляеттреть от массы планеты. Спутник не находится в орбитальном резонансе, которому подвержены три остальные галилеевы луны: Ио, Европа и Ганимед, и, следовательно, не испытывает на себе эффектов приливного разогрева. Период вращения Каллисто синхронен с орбитальным периодом, поэтому спутник всегда повернут к Юпитеру одной стороной. Каллисто состоит из примерно равного количества горных пород и льдов, со средней плотностью около 1,83 г/см3. Спектроскопические исследования показали, что на поверхности Каллисто присутствует водяной лед, углекислый газ, силикаты и органика. Существует предположение, что у спутника есть силикатное ядро и, возможно, океан из жидкой воды на глубине свыше 100 км. Поверхность Каллисто испещрена кратерами. На ней видны многокольцевые геоструктуры, ударные кратеры, цепочки из кратеров (катены) и связанные с ними откосы, отложения и гребни. Также на поверхности заметны небольшие и яркие пятна инея на вершине возвышенностей, окруженные более низким гладким слоем из темного вещества. На Каллисто обнаружена тонкая атмосферы, состоящая из углекислого газа и, возможно, молекулярного кислорода. Начало изучения Каллисто положили космические аппараты «Пионер-10» и «Пионер-11», а затем продолжили «Галилео» и «Кассини».

Леда

(Leda) Диаметр: 20 км. Период обращения вокруг Юпитера: 240,92 дня. Леда - нерегулярный спутник Юпитера, известный также как Юпитер XIII. Нерегулярными называют спутники планет, характеристики движения которых могут значительно отличаться от общих правил движения большинства спутников. Например, спутник имеет орбиту с большим эксцентриситетом или движется по орбите в обратном направлении и так далее. Леда, также как и Лиситея, принадлежит к группе Гималии. Поэтому она обладает схожими характеристиками. Ее средний диаметр лишь составляет 20 км, что делает ее самым маленьким объектом группы. Плотность вещества оценивается в 2,6 г/см3. Предполагается что спутник состоит преимущественно из силикатных пород. Он имеет очень темную поверхность с ал ьбедо 0,04. Звездная величина при наблюдении с Земли равна 19,5"". Леда совершает один полный оборот вокруг Юпитера за 240 дней и 12 часов. Расстояние до Юпитера составляет в среднем 11,165 млн. км. Орбита спутника имеет не очень большой эксцентриситет 0,15. Леда была открыта известным американским астрономом Чарльзом Ковалем, который заметил изображение спутника на фотографических пластинках 14 сентября 1974 года. Сами пластинки были экспонированы в Паломарской обсерватории за три дня до этого. Поэтому официальной датой откры гия нового космического объекта считается 11 сентября 1974 года, Спутник был назван и честь Леды, возлюбленной Зепса из греческой мифологии. Коваль предложил название, которое Международный астрономический союз официально утвердил в 1975 году.

Значительная часть всех спутников была открыта на стыке двух тысячелетий, в последнее время. Многие из этих открытий еще не подтверждены, для большинства из них не проводилось нужного числа наблюдений и расчетов орбит. Почти все новые спутники имеют значительный угол наклона орбиты к экватору планеты и предпочитают вращаться в сторону, обратную направлению вращения Юпитера.

Юпитер из-за влияния на него приливных сил, вызванных галилеевыми спутниками, тормозится в своем вращении вокруг собственной оси. Однако он не остается в долгу, замедляя движение всех спутников по орбитам, и те медленно от него удаляются. Насколько это известно, все спутники Юпитера обращены к нему одной стороной, настолько сильно он замедлил их осевое вращение. Напомним, что то же произошло с нашей Луной под влиянием Земли.

По большей части, спутники Юпитера носят мифические имена любовниц Громовержца.

Размеры — 60 × 40 × 34 км.
Расстояние до Сатурна 127 690 км.
Период обращения 7 ч. 4 м. 29 с.
Метида обращается вокруг Юпитера быстрее, чем он - вокруг своей оси. Это одна из наименее изученных лун Юпитера. Необычная орбита защищает ее от любопытных человеческих глаз.

Размеры — 20 × 16 × 14 км.
Расстояние до Сатурна 128 690 км.
Период обращения 7 ч. 9 м. 30 с.
Адрастея движется непосредственно в системе колец Юпитера и, предположительно, является для кольца источником материала. Орбита Адрастеи почти совпадает с орбитой Метиды.

Размеры — 250 × 146 × 128 км.
Расстояние до Сатурна 181 366 км.
Период обращения 11 ч. 57 м. 23 с.
Амальтея - один из самых красных объектов Солнечной системы. Вопреки ледяному составу, поверхность Амальтеи красного цвета.

Размеры — 116 × 98 × 84 км.
Расстояние до Сатурна 221 889 км.
Период обращения 16 ч. 11 м. 17 с.
Фива - самый дальний из внутренних спутников Юпитера. Она ориентирована в пространстве так, что вытянутый конец оси всегда направлен к Юпитеру.

Диаметр — 3642 км.
Расстояние до Сатурна 421 700 км.
Период обращения 1,77 дня
Этот спутник является самым геологически активным телом Солнечной системы, на нём находится более 400 действующих вулканов.

Диаметр — 3122 км.
Расстояние до Сатурна 671 034 км.
Период обращения 3,55 дня
В наше время Европа рассматривается в качестве одного из основных мест в Солнечной системе, где возможна внеземная жизнь.

Диаметр — 5260 км.
Расстояние до Сатурна 1 070 412 км.
Период обращения 7,15 дня
Ганимед является самым крупным и самым массивным спутником в Солнечной системе. Ганимед - единственный спутник в Солнечной системе, обладающий собственной магнитосферой.

Диаметр — 4820 км.
Расстояние до Сатурна 1 882 709 км.
Период обращения 16,69 дня
Сильно изрытый кратерами поверхностный слой Каллисто покоится на холодной и жёсткой ледяной литосфере, толщина которой по разным оценкам составляет от 80 до 150 км.

Диаметр — 8 км.
Расстояние до Сатурна 7 393 216 км.
Период обращения 129,87 дня
В отличие от большинства спутников Юпитера, которые в соответствии со своими орбитальными свойствами образуют группы, Фемисто обращается в одиночестве.

Леда

Диаметр — 10 км.
Расстояние до Сатурна 11 187 781 км.
Период обращения 241,75 дня

Гималия

Диаметр — 170 км.
Расстояние до Сатурна 11 451 971 км.
Период обращения 250,37 дня

Лиситея

Диаметр — 36 км.
Расстояние до Сатурна 11 740 560 км.
Период обращения 259,89 дня

Элара

Диаметр — 86 км.
Расстояние до Сатурна 11 778 034 км.
Период обращения 261,14 дня

Дия

Диаметр — 4 км.
Расстояние до Сатурна 12 570 424 км.
Период обращения 287,93 дня

Диаметр — 3 км.
Расстояние до Сатурна 17 144 873 км.
Период обращения 458,62 дня
Карпо является одиночным спутником и не принадлежит ни к какой группе. Наклонение орбиты ограничивается эффектом Козаи, вызывающим периодический обмен между эксцентриситетом и наклонением орбиты.

S/2003 J 12

Диаметр — 1 км.
Расстояние до Сатурна 17 739 539 км.
Период обращения −482,69 дня

Эвпорие

Диаметр — 2 км.
Расстояние до Сатурна 19 088 434 км.
Период обращения −538,78 дня

S/2003 J 3

Диаметр — 2 км.
Расстояние до Сатурна 19 621 780 км.
Период обращения −561,52 дня

S/2003 J 18

Диаметр — 2 км.
Расстояние до Сатурна 19 812 577 км.
Период обращения −569,73 дня

S/2011 J 1

Диаметр — 1 км.
Расстояние до Сатурна 20 101 000 км.
Период обращения −580,7 дня

S/2010 J 2

Диаметр — 1 км.
Расстояние до Сатурна 20 307 150 км.
Период обращения −588,82 дня

Тельксиное

Диаметр — 2 км.
Расстояние до Сатурна 20 453 753 км.
Период обращения −597,61 дня

Эванте

Диаметр — 3 км.
Расстояние до Сатурна 20 464 854 км.
Период обращения −598,09 дня

Гелике

Диаметр — 4 км.
Расстояние до Сатурна 20 540 266 км.
Период обращения −601,40 дня

Ортозие

Диаметр — 2 км.
Расстояние до Сатурна 20 567 971 км.
Период обращения −602,62 дня

Иокасте

Диаметр — 5 км.
Расстояние до Сатурна 20 722 566 км.
Период обращения −609,43 дня

S/2003 J 16

Диаметр — 2 км.
Расстояние до Сатурна 20 743 779 км.
Период обращения −610,36 дня

Праксидике

Диаметр — 7 км.
Расстояние до Сатурна 20 823 948 км.
Период обращения −613,90 дня

Гарпалике

Диаметр — 4 км.
Расстояние до Сатурна 21 063 814 км.
Период обращения −624,54 дня

Мнеме

Диаметр — 2 км.
Расстояние до Сатурна 21 129 786 км.
Период обращения −627,48 дня

Гермиппе

Диаметр — 4 км.
Расстояние до Сатурна 21 182 086 км.
Период обращения −629,81 дня

Тионе

Диаметр — 4 км.
Расстояние до Сатурна 21 405 570 км.
Период обращения −639,80 дня

Ананке

Диаметр — 28 км.
Расстояние до Сатурна 21 454 952 км.
Период обращения −642,02 дня

Герсе

Диаметр — 2 км.
Расстояние до Сатурна 22 134 306 км.
Период обращения −672,75 дня

Этне

Диаметр — 3 км.
Расстояние до Сатурна 22 285 161 км.
Период обращения −679,64 дня

Кале

Диаметр — 2 км.
Расстояние до Сатурна 22 409 207 км.
Период обращения −685,32 дня

Тайгете

Диаметр — 5 км.
Расстояние до Сатурна 22 438 648 км.
Период обращения −686,67 дня

S/2003 J 19

Диаметр — 2 км.
Расстояние до Сатурна 22 709 061 км.
Период обращения −699,12 дня

Халдене

Диаметр — 4 км.
Расстояние до Сатурна 22 713 444 км.
Период обращения −699,33 дня

S/2003 J 15

Диаметр — 2 км.
Расстояние до Сатурна 22 720 999 км.
Период обращения −699,68 дня

S/2003 J 10

Диаметр — 2 км.
Расстояние до Сатурна 22 730 813 км.
Период обращения −700,13 дня

S/2003 J 23

Диаметр — 2 км.
Расстояние до Сатурна 22 739 654 км.
Период обращения −700,54 дня

Эриноме

Диаметр — 3 км.
Расстояние до Сатурна 22 986 266 км.
Период обращения −711,96 дня

Аойде

Диаметр — 4 км.
Расстояние до Сатурна 23 044 175 км.
Период обращения −714,66 дня

Каллихоре

Диаметр — 2 км.
Расстояние до Сатурна 23 111 823 км.
Период обращения −717,81 дня

Калике

Диаметр — 5 км.
Расстояние до Сатурна 23 180 773 км.
Период обращения −721,02 дня

Карме

Диаметр — 46 км.
Расстояние до Сатурна 23 197 992 км.
Период обращения −721,82 дня

Каллирое

Диаметр — 9 км.
Расстояние до Сатурна 23 214 986 км.
Период обращения −722,62 дня

Эвридоме

Диаметр — 3 км.
Расстояние до Сатурна 23 230 858 км.
Период обращения −723,36 дня

S/2011 J 2

Диаметр — 1 км.
Расстояние до Сатурна 23 267 000 км.
Период обращения −726,8 дня

Пазифее

Диаметр — 2 км.
Расстояние до Сатурна 23 307 318 км.
Период обращения −726,93 дня

S/2010 J 1

Диаметр — 2 км.
Расстояние до Сатурна 23 314 335 км.
Период обращения −724,34 дня

Коре

Диаметр — 2 км.
Расстояние до Сатурна 23 345 093 км.
Период обращения −776,02 дня

Киллене

Диаметр — 2 км.
Расстояние до Сатурна 23 396 269 км.
Период обращения −731,10 дня

Эвкеладе

Диаметр — 4 км.
Расстояние до Сатурна 23 483 694 км.
Период обращения −735,20 дня

S/2003 J 4

Диаметр — 2 км.
Расстояние до Сатурна 23 570 790 км.
Период обращения −739,29 дня

Пасифе

Диаметр — 60 км.
Расстояние до Сатурна 23 609 042 км.
Период обращения −741,09 дня

Гегемоне

Диаметр — 3 км.
Расстояние до Сатурна 23 702 511 км.
Период обращения −745,50 дня

Архе

Диаметр — 3 км.
Расстояние до Сатурна 23 717 051 км.
Период обращения −746,19 дня

Исоное

Диаметр — 4 км.
Расстояние до Сатурна 23 800 647 км.
Период обращения −750,13 дня

S/2003 J 9

Диаметр — 1 км.
Расстояние до Сатурна 23 857 808 км.
Период обращения −752,84 дня

S/2003 J 5

Диаметр — 4 км.
Расстояние до Сатурна 23 973 926 км.
Период обращения −758,34 дня

Синопе

Диаметр — 38 км.
Расстояние до Сатурна 24 057 865 км.
Период обращения −762,33 дня

Спонде

Диаметр — 2 км.
Расстояние до Сатурна 24 252 627 км.
Период обращения −771,60 дня

Автоное

Диаметр — 4 км.
Расстояние до Сатурна 24 264 445 км.
Период обращения −772,17 дня

Мегаклите

Диаметр — 5 км.
Расстояние до Сатурна 24 687 239 км.
Период обращения −792,44 дня

S/2003 J 2

Диаметр — 2 км.
Расстояние до Сатурна 30 290 846 км.
Период обращения −1077,02 дня

Галилеевы спутники (Ио, Европа, Ганимед и Каллисто) являются одними из самых интересных объектов для наблюдения в Солнечной системе. Обладая даже несложными инструментами и начальными навыками, Вы можете увидеть эти спутники и, так сказать, пойти по стопам самого Галилея. Спутники вращаются вблизи плоскости экватора Юпитера, а тот, в свою очередь, почти совпадает с плоскостью орбит Земли и Юпитера. Из-за этого мы наблюдаем движение галилеевых спутников сбоку. Все пять небесных тел выстраиваются для нас в цепочку. Иногда один, два, а еще реже три или четыре спутника увидеть не удается. Спутники могут находится либо прямо за планетой, либо перед ней. Сведения о всех явлениях в системе спутников Юпитера можно найти в астрономических календарях.

Юпитер является пятой планетой по удаленности от Солнца и самой крупной в Солнечной системе. Так же, как и Уран, Нептун и Сатурн, Юпитер относится к газовым гигантам. Про него человечество знало уже давно. Довольно часто встречаются упоминания о Юпитере в религиозных верованиях и мифологии. В современности планета получила свое имя в честь древнеримского бога.

По масштабам на Юпитере атмосферные явления намного превосходят земные. Самым примечательным образованием на планете считается Большое красное пятно, которое является гигантским штормом, известным нам еще с 17 века.

Примерное число спутников – 67, из которых самыми крупными являются: Европа, Ио, Каллисто и Ганимед. Первым их открыл Г. Галилей в 1610 году.

Все исследования планеты проводятся при помощи орбитальных и наземных телескопов. Начиная с 70-х годов к Юпитеру отправили 8 аппаратов НАСА. Во время великих противостояний планета была видна невооруженным глазом. Юпитер относится к самым ярким объектам неба после Венеры и Луны. А спутники и сам диск считаются самыми популярными для наблюдателей.

Наблюдения за Юпитером

Оптический диапазон

Если рассматривать объект в инфракрасной области спектра, можно обратить внимание на молекулы Не и Н2, точно так же становятся заметными линии остальных элементов. Количество Н говорит о происхождении планеты, а про внутреннюю эволюцию можно узнать благодаря качественному и количественному составу других элементов. Но молекулы гелия и водорода не обладают дипольным моментом, а это означает, что их абсорбционные линии не заметны до момента поглощения ударной ионизацией. Также данные линии появляются в верхних слоях атмосферы, откуда они не способны нести данные про более глубокие слои. Исходя из этого, самую достоверную информацию о количестве водорода и гелия на Юпитере можно получить, используя аппарат «Галилео».

Касательно остальных элементов, их анализ и интерпретация сильно затруднительны. Полной достоверности о происходящих процессах в атмосфере планеты сказать никак нельзя. Также под большим вопросом химический состав. Но, по мнению большинства астрономов, все процессы, которые могут влиять на элементы, локальны и ограничены. Из этого выходит, что они не несут особых изменений в распределение веществ.

Юпитер излучает энергии на 60% больше, чем потребляет от Солнца. Данные процессы влияют на размеры планеты. В год Юпитер уменьшается на 2 см. П. Боденхеймер в 1974 году выдвинул мнение, что в момент формирования планета была в 2 раза больше, нежели сейчас, а температура была значительно выше.

Гамма-диапазон

Изучение планеты в гамма-диапазоне касается полярного сияния и изучения диска. Космическая лаборатория Эйнштейна зарегистрировала это в 1979 году. С Земли области полярного сияния в ультрафиолете и рентгене совпадают, но к Юпитеру это не относится. Более ранние наблюдения установили пульсацию излучения с периодичностью в 40 минут, но поздние наблюдения эту зависимость проявили намного хуже.

Астрономы надеялись, что при помощи рентгеновского спектра авроральное сияние на Юпитере будет похоже на сияние комет, но наблюдения с Chandra опровергли эту надежду.

По данным космической обсерватории XMM-Newton, выходит, что излучение диска в спектре гамма – это солнечное рентгеновское отражение излучения. По сравнению с полярным сиянием нет никакой периодичности интенсивности излучения.

Радионаблюдения

Юпитер относится к самым мощным радиоисточникам Солнечной системы в метровом-дециметровом диапазонах. Радиоизлучение обладает спорадическим характером. Подобные всплески происходят в диапазоне от 5 до 43 МГц, со средней шириной – 1 МГц. Продолжительность всплеска сильно мала – 0,1-1 сек. Излучение поляризовано, а по кругу может достигать 100%.

Радиоизлучение планеты в короткосантиметровом-миллиметровом диапазонах обладает чисто тепловым характером, хоть в отличие от равновесной температуры яркостная значительно выше. Эта особенность говорит о потоке тепла из недр Юпитера.

Вычисления гравитационного потенциала

Анализ траекторий космических аппаратов и наблюдения движений естественных спутников показывают гравитационное поле Юпитера. Обладает сильными отличиями в сравнении со сферически симметричным. Как правило, гравитационный потенциал представлен в разложенном виде по полиномам Лежандра.

Аппараты «Пионер-10», «Пионер-11», «Галилео», «Вояджер-1», «Вояджер-2» и «Кассини» использовали для вычисления гравитационного потенциала насколько измерений: 1) передавали изображения, чтобы определить их местоположение; 2) эффект Доплера; 3) радиоинтерферометрия. Некоторым из них при измерениях приходилось учитывать гравитационное присутствие Большого красного пятна.

Помимо этого, обрабатывая данные, приходится постулировать теорию движения спутников Галилея, обращающихся вокруг центра планеты. Огромной проблемой для точных вычислений считается учет ускорения, у которого негравитационный характер.

Юпитер в Солнечной системе

Экваториальный радиус данного газового гиганта составляет 71,4 тыс. км, тем самым в 11,2 раза превышая Земной. Юпитер – это единственная в своем роде планета, у которой центр масс с Солнцем расположен вне Солнца.

Масса Юпитера превышает суммарный вес всех планет в 2,47 раза, Земли – в 317,8 раз. Но меньше от массы Солнца в 1000 раз. По плотности сильно схожа со Светилом и в 4,16 раз меньше, чем у нашей планеты. Зато сила тяжести превышает земную в 2,4 раза.

Планета Юпитер как «неудавшаяся звезда»

Некоторые исследования теоретических моделей показали, что если бы масса Юпитера была немного большей, чем она есть в действительности, то планета начала бы сжиматься. Хоть небольшие изменения особо не повлияли бы на радиус планеты, при условии если б реальная масса увеличилась в четыре раза, планетарная плотность выросла настолько, что начался б процесс уменьшения размеров из-за действия сильной гравитации.

Исходя из данного исследования, Юпитер обладает максимальным диаметром как для планеты с аналогичной историей и строением. Дальнейшее увеличение массы привело к продолжительности сжатия до тех пор, пока Юпитер в процессе формирования звезды не превратился бы в коричневого карлика с массой, превосходящей его нынешнюю массу в 50 раз. Астрономы считают, что Юпитер – это «неудавшаяся звезда», хоть до сих пор не ясно, существует ли схожесть между процессом формирования планеты Юпитер и теми планетами, которые формируют двойные звездные системы. По ранним данным выходит, что Юпитер должен был быть в 75 раз массивнее, чтобы стать звездой, но самый маленький известный красный карлик больший в диаметре всего на 30%.

Вращение и орбита Юпитера

Юпитер с Земли имеет видимую величину в 2,94m, что делает планету третьим объектом по яркости, которые видны невооруженным взглядом после Венеры и Луны. Максимально отдалившись от нас, видимый размер планеты равен 1,61m. Минимальное расстояние от Земли к Юпитеру равно 588 миллионов километров, а максимальное - 967 миллионов километров.

Противостояние между планетами происходит каждые 13 месяцев. Нужно отметить, что раз в 12 лет проходит великое противостояние Юпитера, в данный момент планета находится возле перигелия собственной орбиты, при этом угловой размер объекта с Земли равен 50 угловым секундам.

Юпитер удален от Солнца на 778,5 миллионов километров, при этом полный оборот вокруг Солнца планета делает за 11,8 земных года. Наибольшее возмущение на движение Юпитера по собственной орбите делает Сатурн. Существует два вида возмещения:

    Вековое – оно действует на протяжении 70 тысяч лет. При этом меняется эксцентриситет орбиты планеты.

    Резонансное - проявляется за счет соотношения близости 2:5.

Особенностью планеты можно назвать то, что она имеет большую близость между плоскостью орбиты и плоскостью планеты. На планете Юпитер не бывает смены сезонов года, за счет того, что ось вращения планеты наклонена 3,13°, для сравнения можно добавить, что наклон оси Земли равен 23,45°.

Вращение планеты вокруг своей оси является самым быстрым среди всех планет, которые входят в Солнечную систему. Таким образом, в районе экватора Юпитер делает оборот вокруг оси за 9 часов 50 минут и 30 секунд, а средние широты этот оборот делают на 5 минут и 10 дольше. В силу такого вращения радиус планеты на экваторе на 6,5% больше чем в средних широтах.

Теории о существовании жизни на Юпитере

Огромное количество исследований за все время говорит о том, что условия Юпитера не способствуют зарождению жизни. Прежде всего, это объясняется низким содержанием воды в составе атмосферы планеты и отсутствием твердой основы планеты. Нужно отметить, что в 70-х годах прошлого века была выдвинута теория о том, что в верхних слоях атмосферы Юпитера возможно существование живых организмов, которые живут на основе аммиака. В поддержку данной гипотезы можно сказать, что атмосфера планеты даже на небольших глубинах имеет высокую температуру и большую плотность, а это способствует химическим эволюционным процессам. Данная теория была высказана Карлом Саганом, после чего совместно с Э.Э. Солпитером ученые проделали ряд вычислений, которые позволили вывести три предполагаемых формы жизни на планете:

  • Флотеры – должны были выступать как огромные организмы, размером как большой город на Земле. Они подобны к воздушному шару, поскольку занимаются откачкой с атмосферы гелия и оставляя водород. Живут в верхних слоях атмосферы и вырабатывают молекулы для питания самостоятельно.
  • Синкеры – микроорганизмы, которые способны очень быстро размножаться, что и позволяет выжить виду.
  • Ханнтеры – хищники, которые питаются флотерами.

Но это только гипотезы, которые не подтверждены научными фактами.

Строение планеты

Современные технологии еще не позволяют ученым точно определить химический состав планеты, но все же верхние слои атмосферы Юпитера изучены с высокой точностью. Изучение атмосферы стало возможным только за счет спуска космического аппарата под названием «Галилео», он вошел в атмосферу планеты в декабре 1995 года. Это позволило точно говорить, что атмосфера состоит из гелия и водорода, кроме этих элементов, был обнаружен метан, аммиак, вода, фосфин и сероводород. Предполагается, что более глубокий шар атмосферы, а именно тропосфера, состоит из серы, углерода, азота и кислорода.

Также присутствуют инертные газы, такие как ксенон, аргон и криптон, причем их концентрация больше чем на Солнце. Возможность существования воды, диоксида и моноксидуглеродов возможна в верхних слоях атмосферы планеты за счет столкновения с кометами, как пример приводят комету Шумейкеров-Леви 9.

Красноватый цвет планеты объясняется присутствием соединений красного фосфора, углерода и серы или даже за счет органики, которая зародилась при воздействии электрических разрядов. Нужно отметить, что цвет атмосферы неоднороден, это говорит о том, что разные участки состоят из разных химических компонентов.

Структура Юпитера

Принято считать, что внутренняя структура планеты под облаками состоит со слоя гелия и водорода толщиной в 21 тысячу километров. Здесь вещество имеет плавный переход в своей структуре от газообразного состояния до жидкого, после чего идет слой с металлическим водородом мощностью в 50 тысяч километров. Средняя часть планеты занята твердым ядром с радиусом в 10 тысяч километров.

Наиболее признанная модель строения Юпитера:

  1. Атмосфера:
  2. Внешний водородный слой.

    Средний слой представлен гелием (10%) и водородом (90%).

  • Нижняя часть состоит из смеси гелия, водорода, аммония и воды. Этот слой подразделяют еще на три:

    • Верхний – аммиак в твердой форме, который имеет температуру в −145 °C с давлением в 1 атм.
    • Посередине находится гидросульфат аммония в кристаллизованном состоянии.
    • Нижнюю позицию занимает вода в твердом состоянии и возможно даже в жидком. Температура составляет порядка 130 °C, а давление 1 атм.
  1. Слой, состоящий из водорода в металлическом состоянии. Температуры могут меняться от 6,3 тысяч до 21 тысячи кельвинов. При этом давление так же изменчиво – от 200 и до 4 тысяч Гпа.
  2. Каменное ядро.

Создание данной модели стало возможным за счет анализа наблюдений и проведенных исследований с учетом законов экстраполяции и термодинамики. Нужно отметить, что данная структура строения не имеет четких границ и переходов между соседними слоями, а это в свою очередь говорит о том, что каждый слой полностью локализован, и исследовать их можно отдельно.

Атмосфера Юпитера

Температурные показатели роста по всей планете не монотонны. В атмосфере Юпитера, так же как и в атмосфере Земли, можно выделить несколько слоев. Верхние слои атмосферы обладают самыми высокими показателями температуры, а двигаясь к поверхности планеты, данные показатели значительно снижаются, но в свою очередь растет давление.

Термосфера планеты теряет большую часть тепла самой планеты, также здесь формируется так называемое полярное сияние. Верхней границей термосферы принято считать отметку давления в 1 нбар. При изучении были получены данные по температуре в этом слое, она достигает показателя в 1000 К. Ученым еще не удалось объяснить, почему здесь такая высокая температура.

Данные с аппарата «Галилео» показали, что температура верхних облаков составляет −107 °C при давлении в 1 атмосферу, а при спуске на глубину в 146 километров температура возрастает до показателя в +153 °C и давление в 22 атмосферы.

Будущее Юпитера и его спутников

Всем известно, что в итоге Солнце, как и другая звезда, исчерпает весь запас термоядерного топлива, при этом его светимость будет увеличиваться на 11% каждый миллиард лет. За счет этого привычная обитаемая зона значительно сместится за пределы орбиты нашей планеты вплоть до достижения поверхности Юпитера. Это позволит на спутниках Юпитера растопить всю воду, что позволит положить начало зарождения живых организмов на планете. Известно, что через 7,5 млрд лет Солнце как звезда превратится в красного гиганта, за счет этого Юпитер обретет новый статус и станет горячим Юпитером. При этом температура поверхности планеты будет составлять порядка 1000 К, а это приведет к свечению планеты. В этом случае спутники будут выглядеть как безжизненные пустыни.

Спутники Юпитера

Современные данные говорят, что Юпитер имеет 67 естественных спутников. Со слов ученых можно сделать вывод, что таких объектов вокруг Юпитера может быть больше сотни. Спутники планеты названы в основном в честь мифических персонажей, которые в какой-то мере связаны с Зевсом. Все спутники подразделены на две группы: внешние и внутренние. К внутренним относятся только 8 спутников, среди которых и галилеевы.

Первые спутники Юпитера были открыты еще в 1610 году известным ученым Галилео Галилеем, это Европа, Ганимед, Ио и Каллисто. Данное открытие стало подтверждением правоты Коперника и его гелиоцентрической системе.

Вторая половина XX века ознаменовалась активным изучением космических объектов, среди которых особого внимания заслуживает Юпитер. Эту планету исследовали с помощью мощных наземных телескопов и радиотелескопов, но самые большие достижения в этой отрасли были получены за счет применения телескопа «Хаббла» и запуска большого количества зондов к Юпитеру. Исследования активно продолжаются и на данный момент, поскольку Юпитер хранит еще много тайн и загадок.

← Вернуться

×
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:
Я уже подписан на сообщество «sinkovskoe.ru»