Что такое реликтовое излучение.

Подписаться
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:

Микроволновое фоновое излучение (реликтовое излучение)

- космич. излучение, имеющее спектр, характерный для при темп-ре ок. ЗК; определяет интенсивность фонового излучения Вселенной в коротковолновом радиодиапазоне (на сантиметровых, миллиметровых и субмиллиметровых волнах). Характеризуется высочайшей степенью изотропии (интенсивность практически одинакова во всех направлениях). Открытие М. ф. и. (А. Пензиас, Р. Вильсон, 1965 г., США) подтвердило т.н. , дало важнейшее экспериментальное свидетельство в пользу представлений об изотропии расширения Вселенной и её однородности в больших масштабах (см. ).

Согласно модели горячей Вселенной, вещество расширяющейся Вселенной имело в прошлом намного более высокую плотность, чем сейчас, и чрезвычайно высокую темп-ру. При Т > 10 8 К первичная , состоявшая из протонов, ионов гелия и электронов, непрерывно излучающих, рассеивающих и поглощающих фотоны, находилась в полном с излучением. В ходе последующего расширения Вселенной темп-ра плазмы и излучения падала. Взаимодействие частиц с фотонами уже не успевало за характерное время расширения заметно влиять на спектр излучения ( Вселенной по тормозному излучению к этому времени стала много меньше единицы). Однако даже при полном отсутствии взаимодействия излучения с веществом в ходе расширения Вселенной чернотельный спектр излучения остаётся чернотельным, уменьшается лишь темп-ра излучения. Пока темп-ра превышала 4000 К, первичное вещество было полностью ионизовано, пробег фотонов от одного акта рассеяния до др. был много меньше . При 4000 К произошла протонов и электронов, плазма превратилась в смесь нейтральных атомов водорода и гелия, Вселенная стала полностью прозрачной для излучения. В ходе её дальнейшего расширения темп-ра излучения продолжала падать, но чернотельный характер излучения сохранился как реликт, как "память" о раннем периоде эволюции мира. Это излучение обнаружили сначала на волне 7,35 см, а затем и на др. волнах (от 0,6 мм до 50 см).

Темп-ра М. ф. и. с точностью до 10% оказалась равной 2,7 К. Ср. энергия фотонов этого излучения крайне мала - в 3000 раз меньше энергии фотонов видимого света, но число фотонов М. ф. и. очень велико. На каждый атом во Вселенной приходится ~ 10 9 фотонов М. ф. и. (в среднем 400-500 фотонов в 1 см 3).

Наряду с прямым методом определения темп-ры М. ф. и. - по кривой распределения энергии в спектре излучения (см. ), существует также косвенный метод - по населённости нижних уровней энергии молекул в межзвёздной среде. При поглощении фотона М. ф. и. молекула переходит из осн. состояния в возбуждённое. Чем выше темп-ра излучения, тем выше плотность фотонов с энергией, достаточной для возбуждения молекул, и тем большая их доля находится на возбуждённом уровне. По количеству возбуждённых молекул (населённости уровней) можно судить о темп-ре возбуждающего излучения. Так, наблюдения оптич. линий поглощения межзвёздного циана (CN) показывают, что его нижние уровни энергии населены так, как будто молекулы CN находятся в поле трёхградусного чернотельного излучения. Этот факт был установлен (но не понят в полной мере) ещё в 1941 г., задолго до обнаружения М. ф. и. прямыми наблюдениями.

Ни звёзды и радиогалактики, ни горячий межгалактич. газ, ни переизлучение видимого света межзвёздной пылью не могут дать излучения, приближающегося по св-вам к М. ф. и.: суммарная энергия этого излучения слишком велика, и спектр его не похож ни на спектр звёзд, ни на спектр радиоисточников (рис. 1). Этим, а также практически полным отсутствием флуктуации интенсивности по небесной сфере (мелкомасштабных угловых флуктуации) доказывается космологич., реликтовое происхождение М. ф. и.

Флуктуации М. ф. и.
Обнаружение небольших различии в интенсивности М. ф. и., принимаемого от разных участков небесной сферы, позволило бы сделать ряд выводов о характере первичных возмущении в веществе, приведших в дальнейшем к образованию галактик и скоплений галактик. Современные галактики и их скопления образовались в результате роста незначительных по амплитуде неоднородностей плотности вещества, существовавших до рекомбинации водорода во Вселенной. Для любой космологич. модели можно найти закон роста амплитуды неоднородностей в ходе расширения Вселенной. Если знать, каковы были амплитуды неоднородности вещества в момент рекомбинации, можно установить, за какое время они могли вырасти и стать порядка единицы. После этого области с плотностью, значительно превышающей среднюю, должны были выделиться из общего расширяющегося фона и дать начало галактикам и их скоплениям. "Рассказать" об амплитуде начальных неоднородностей плотности в момент рекомбинации может лишь реликтовое излучение. Поскольку до рекомбинации излучение было жёстко связано с веществом (электроны рассеивали фотоны), то неоднородности в пространственном распределении вещества приводили к неоднородностям плотности энергии излучения, т. е. к различию темп-ры излучения в разных по плотности областях Вселенной. Когда после рекомбинации вещество перестало взаимодействовать с излучением и стало для него прозрачным, М. ф. и. должно было сохранить всю информацию о неоднородпостях плотности во Вселенной в период рекомбинации. Если неоднородности существовали, то темп-ра М. ф. и. должна флуктуировать, зависеть от направления наблюдения. Однако эксперименты по обнаружению ожидаемых флуктуации пока не обладают достаточно высокой точностью. Они дают лишь верхние пределы значений флуктуации. В малых угловых масштабах (от одной угловой минуты до шести градусов дуги) флуктуации не превышают 10 -4 К. Поиски флуктуации М. ф. и. осложняются также тем, что вклад во флуктуации фона дают дискретные космич. радиоисточники, флуктуирует излучение атмосферы Земли и т. д. Эксперименты в больших угловых масштабах также показали, что темп-ра М. ф. и. практически не зависит от направления наблюдения: отклонения не превышают К. Полученные данные позволили снизить оценку степени анизотропии расширения Вселенной в 100 раз по сравнению с оценкой по данным прямых наблюдений "разбегающихся" галактик.

М. ф. и. как "новый эфир".
М. ф. и. изотропно лишь в системе координат, связанной с "разбегающимися" галактиками, в т.н. сопутствующей системе отсчёта (эта система расширяется вместе с Вселенной). В любой др. системе координат интенсивность излучения зависит от направления. Этот факт открывает возможность измерения скорости движения Солнца относительно системы координат, связанной с М. ф. и. Действительно, в силу Доплера, эффекта фотоны, распространяющиеся навстречу движущемуся наблюдателю, имеют более высокую энергию, нежели догоняющие его, несмотря на то, что в системе, связанной с М. ф. и., их энергии равны. Поэтому и темп-ра излучения для такого наблюдателя оказывается зависящей от направления: , где T 0 - ср. по небу темп-ра излучения, v - скорость наблюдателя, - угол между вектором скорости и направлением наблюдения.

Дипольная анизотропия реликтового излучения, связанная с движением Солнечной системы относительно поля этого излучения, к настоящему времени твердо установлена (рис. 2): в направлении на созвездие Льва темп-ра М. ф. и. на 3,5 мК превышает среднюю, а в противоположном направлении (созвездие Водолея) на столько же ниже средней. Следовательно, Солнце (вместе с Землёй) движется относительно М. ф. и. со скоростью ок. 400 км/с по направлению к созвездию Льва. Точность наблюдений столь высока, что экспериментаторы фиксируют скорость движения Земли вокруг Солнца, составляющую 30 км/с. Учёт скорости движения Солнца вокруг центра Галактики позволяет определить скорость движения Галактики относительно М. ф. и. Она составляет 600 км/с. В принципе, существует метод, позволяющий определить скорости богатых скоплений галактик относительно реликтового излучения (см. ).

Спектр М. ф. и.
На рис. 1 приведены существующие экспериментальные данные о М. ф. и. и планковская кривая распределения энергии в спектре равновесного излучения абсолютно чёрного тела, имеющего темп-ру 2,7 К. Положения экспериментальных точек хорошо согласуются с теоретич. кривой. Это служит веским подтверждением модели горячей Вселенной.

Отметим, что в диапазоне сантиметровых и дециметровых волн измерения темп-ры М. ф. и. возможны с поверхности Земли при помощи радиотелескопов. В миллиметровом и особенно в субмиллиметровом диапазонах излучение атмосферы препятствует наблюдениям М. ф. и., поэтому измерения проводятся широкополосными , установленными на воздушных шарах (баллонах) и ракетах. Ценные данные о спектре М. ф. и. в миллиметровой области получены из наблюдений линий поглощения молекул межзвездной среды в спектрах горячих звезд. Выяснилось, что осн. вклад в плотность энергии М. ф. и. даёт излучение с от 6 до 0,6 мм, темп-ра к-рого близка к 3 К. В этом диапазоне длин волн плотность энергии М. ф. и. =0,25 эВ/см 3 .

Многие из космологич. теорий и теорий образования галактик, к-рые рассматривают процессы вещества и антивещества, диссипацию развитой , крупномасштабных потенциальных движений, испарение первичных малой массы, распад нестабильных , предсказывают значит. энерговыделение на ранних стадиях расширения Вселенной. В то же время любое выделение энергии align="absmiddle" width="127" height="18"> на этапе, когда темп-ра М. ф. и. менялась от до 3 К, должно было заметно исказить его чернотельный спектр. Т.о., спектр М. ф. и. несёт информацию о тепловой истории Вселенной. Более того, эта информация оказывается дифференцированной: выделение энергии на каждом из трёх этапов расширения ( K; 3Т 4000 К). Таких энергичных фотонов крайне мало (~10 -9 от общего их числа). Поэтому рекомбинационное излучение, возникающее при образовании нейтральных атомов, должно было сильно исказить спектр М. ф. и. на волнах 250 мкм.

Ещё один нагрев вещество могло испытать при образовании галактик. Спектр М. ф. и. при этом также мог измениться, поскольку рассеяние реликтовых фотонов на горячих электронах увеличивает энергию фотонов (см. ). Особенно сильные изменения происходят в этом случае в коротковолновой области спектра. Одна из кривых, демонстрирующих возможное искажение спектра М. ф. и., приведена на рис. 1 (штриховая кривая). Имеющиеся изменения в спектре М. ф. и. показали, что вторичный разогрев вещества во Вселенной произошел много позже рекомбинации.

М. ф. и. и космические лучи.

Космич. лучи (протоны и ядра высоких энергий; ультрарелятивнстские электроны, определяющие радиоизлучение нашей и др. галактик в метровом диапазоне) несут информацию о гигантских взрывных процессах в звездах и ядрах галактик, при к-рых они рождаются. Как оказалось, время жизни частиц высоких энергий во Вселенной во многом зависит от фотонов М. ф. и., обладающих малой энергией, но чрезвычайно многочисленных - их в миллиард раз больше, чем атомов во Вселенной (это соотношение сохраняется в процессе расширения Вселенной). При столкновении ультрарелятивистских электронов космич. лучей с фотонами М. ф. и. происходит перераспределение энергии и импульса. Энергия фотона возрастает во много раз, и радиофотон превращается в фотон рентг. излучения, энергия же электрона меняется незначительно. Поскольку этот процесс повторяется многократно, электрон постепенно теряет всю энергию. Наблюдаемое со спутников и ракет рентг. фоновое излучение, по-видимому, частично обязано своим происхождением этому процессу.

Протоны и ядра сверхвысоких энергий также подвержены воздействию фотонов М. ф. и.: при столкновениях с ними ядра расщепляются, а соударения с протонами приводят к рождению новых частиц (электрон-позитронных пар, -мезонов и т.д.). В результате энергия протонов быстро уменьшается до пороговой, ниже к-рой рождение частиц становится невозможным по законам сохранения энергии и импульса. Именно с этими процессами связывают практич. отсутствие в космич. лучах частиц с энергией 10 20 эВ, а также малое количество тяжёлых ядер.

Лит.:
Зельдович Я.Б., "Горячая" модель Вселенной, УФН, 1966, т. 89, в. 4, с. 647; Вайнберг С., Первые три минуты, пер. с англ., М., 1981.

В 2006 г. Джону Мазеру и Джорджу Смуту была присуждена Нобелевская премия по физике за открытие ими чернотельной формы спектра и анизотропии космического микроволнового фонового излучения. Эти результаты были получены на основе измерений, выполненных с помощью спутника COBE, запущенного NASA в 1988 г. Результаты Дж. Мазера и Дж. Смута явились подтверждением происхождения Вселенной в результате Большого взрыва. Крайне малое различие в температуре космического фонового излучения ΔT/T ~ 10 -4 является свидетельством механизма образования галактик и звезд.


Дж. Мазер
(р. 1946)

Дж. Смут
(р. 1945)


Рис. 52. Чернотельный спектр реликтового излучения.

Реликтовое излучение (или космическое микроволновое фоновое излучение) было обнаружено в 1965 г. А. Пензиасом и Р. Вильсоном. На ранней стадии эволюции Вселенной вещество было в состоянии плазмы. Такая среда непрозрачна для электромагнитного излучения − происходит интенсивное рассеяние фотонов электронами и протонами. Когда Вселенная остыла до 3000 К электроны и протоны объединились в нейтральные атомы водорода и среда стала прозрачной для фотонов. В это время возраст Вселенной составлял 300000 лет, поэтому реликтовое излучение дает информацию о состоянии Вселенной в эту эпоху. В это время Вселенная была практически однородной. Неоднородности Вселенной определяются по температурной неоднородности реликтового излучения. Эта неоднородность составляет ΔT/T ≈ 10 -4 −10 -5 . Неоднородности реликтового излучения − свидетели неоднородностей Вселенной: первых звезд, галактик, скоплений галактик. При расширении Вселенной длина волны реликтового излучения увеличилась Δλ/λ = ΔR/R и в настоящее время длина волны реликтового излучения находится в диапазоне радиоволн, температура реликтового излучения T = 2.7 К.


Рис. 53. Анизотропия реликтового излучения. Более темным цветом показаны участки спектра реликтового излучения, имеющие более высокую температуру.

Дж. Мазер: «В начале был Большой взрыв так мы теперь говорим с большой уверенностью. Спутник СОВЕ, предложенный как проект в 1974 г. в Национальное агентство по аэронавтике и исследованию космического пространства (NASA) и запущенный в 1989 г., предоставил очень сильные свидетельства в пользу этого: космическое микроволновое фоновое излучение (КМФИ, или реликтовое излучение) имеет спектр почти идеального черного тела с температурой
2.725 ±0.001 К, и это излучение изотропно (одинаково во всех направлениях) с относительным среднеквадратичным отклонением не более 10 на миллион на угловых масштабах 7° и более. Это излучение интерпретируется как след чрезвычайно горячей и плотной ранней стадии эволюции Вселенной. В такой горячей и плотной фазе рождение и уничтожение фотонов, а также установление равновесия между ними и со всеми другими формами материи и энергии происходило бы очень быстро по сравнению с характерным масштабом времени расширения Вселенной. Такое состояние немедленно произвело бы чернотельное излучение. Расширяющаяся Вселенная должна сохранять чернотельный характер этого спектра, поэтому измерение любого значительного отклонения от идеального спектра излучения черного тела либо сделало бы несостоятельной всю идею Большого взрыва, либо показало бы, что после быстрого установления равновесия к КМФИ была добавлена какая-то энергия (например, от распада неких первичных частиц). Тот факт, что это излучение изотропно в такой высокой степени является ключевым свидетельством того, что оно происходит от Большого взрыва».


Рис. 54. Роберт Вильсон и Арно Пензиас у антенны, на которой было зарегистрировано реликтовое излучение.

Дж. Смут: «Согласно теории горячей Вселенной, реликтовое излучение является остаточным излучением, сформировавшимся на самых ранних высокотемпературных стадиях эволюции Вселенной во времена близкие к началу расширения современной Вселенной 13,7 млрд. лет назад. Само реликтовое излучение может быть использовано как мощное средство для измерения динамики и геометрии Вселенной. Реликтовое излучение было открыто Пензиасом и Вилсоном в Лаборатории им. Белла в 1964 г.
Они обнаружили постоянное изотропное излучение с термодинамической температурой около 3,2 К. В это же время физики в Принстоне (Дике, Пиблз, Уилкинсон и Ролл) разрабатывали эксперимент по измерению реликтового излучения, предсказываемого теорией горячей Вселенной. Случайное открытие реликтового излучения Пензиасом и Вилсоном открыло новую эру в космологии, положив начало ее превращению из мифа и спекуляций в полноценное научное направление.
Открытие анизотропии температуры космического реликтового излучения произвело переворот в наших представлениях о Вселенной, и его современные исследования продолжают революцию в космологии. Построение углового спектра мощности флуктуаций температуры РИ с плато, акустическими пиками и затухающим высокочастотным концом привело к утверждению стандартной космологической модели, в которой геометрия пространства плоская (соответствует критической плотности), темная энергия и темная материя доминируют и есть лишь немного обычного вещества. Согласно этой успешно подтверждаемой модели, наблюдаемая структура Вселенной сформировалась благодаря гравитационной неустойчивости, которая усилила квантовые флуктуации, порожденные в очень раннюю инфляционную эпоху. Современные и будущие наблюдения проверят эту модель и определят ключевые космологические параметры с выдающейся точностью и значимостью».

Реликтовое излучение

Внегалактическое микроволновое фоновое излучение приходится на диапазон частот от 500 МГц до 500 ГГц, что соответствует длинам волн от 60 см до 0,6 мм. Это фоновое излучение несет информацию о процессах, происходивших во Вселенной до образования галактик, квазаров и др. объектов. Это излучение, названное реликтовым, было обнаружено в 1965 году, хотя оно было предсказано еще в 40-х годах Георгием Гамовым и исследовалось астрономами в течение десятилетий.

В расширяющейся Вселенной средняя плотность вещества зависит от времени – в прошлом она была больше. Однако при расширении изменяется не только плотность, но и тепловая энергия вещества, значит на ранней стадии расширения Вселенная была не только плотной, но и горячей. Как следствие, в наше время должно наблюдаться остаточное излучение, спектр которого такой же, как спектр абсолютно твердого тела, и это излучение должно быть в высшей степени изотропно. В 1964 году А.А.Пензиас и Р.Вилсон, испытывая чувствительную радиоантенну, обнаружили очень слабое фоновое микроволновое излучение, от которого никаким образом не могли избавиться. Его температура оказалась равной 2,73 К, что близко к предсказанной величине. Из экспериментов по исследованию изотропии было показано, что источник микроволнового фонового излучения не может находиться внутри Галактики, так как тогда должна была бы наблюдаться концентрация излучения к центру Галактики. Источник излучения не мог находиться и внутри Солнечной системы, т.к. наблюдалась бы суточная вариация интенсивности излучения. В силу этого был сделан вывод о внегалактической природе этого фонового излучения. Тем самым гипотеза горячей Вселенной получила наблюдательное основание.

Для понимания природы реликтового излучения необходимо обратиться к процессам, имевшим место на ранних стадиях расширения Вселенной. Рассмотрим, как менялись физические условия во Вселенной в процессе расширения.

Сейчас каждый кубический сантиметр пространства содержит около 500 реликтовых фотонов, а вещества на этот объем приходится гораздо меньше. Поскольку отношение числа фотонов к числу барионов в процессе расширения сохраняется, но энергия фотонов в ходе расширения Вселенной со временем уменьшается из-за красного смещения, можно сделать вывод, что когда-то в прошлом плотность энергии излучения была больше плотности энергии частиц вещества. Это время называется радиационной стадией в эволюции Вселенной. Радиационная стадия характеризовалась равенством температуры вещества и излучения. В те времена излучение полностью определяло характер расширения Вселенной. Примерно через миллион лет после начала расширения Вселенной температура понизилась до нескольких тысяч градусов и произошла рекомбинация электронов, бывших до этого свободными частицами, с протонами и ядрами гелия, т.е. образование атомов. Вселенная стала прозрачной для излучения, и именно это излучение мы сейчас улавливаем и называем реликтовым. Правда, с того времени из-за расширения Вселенной фотоны уменьшили свою энергию примерно в 100 раз. Образно говоря, кванты реликтового излучения «запечатлели» эпоху рекомбинации и несут прямую информацию о далеком прошлом.

После рекомбинации вещество впервые начало эволюционировать самостоятельно, независимо от излучения, и в нем начали появляться уплотнения – зародыши будущих галактик и их скоплений. Вот почему так важны для ученых эксперименты по изучению свойств реликтового излучения – его спектра и пространственных флуктуаций. Их усилия не пропали даром: в начале 90-х гг. российский космический эксперимент «Реликт-2» и американский «Кобе» обнаружили различия температуры реликтового излучения соседних участков неба, причем величина отклонения от средней температуры составляет всего около тысячной доли процента. Эти вариации температуры несут информацию об отклонении плотности вещества от среднего значения в эпоху рекомбинации. После рекомбинации вещество во Вселенной было распределено почти равномерно, а там, где плотность была хоть немного выше средней, сильнее было притяжение. Именно вариации плотности впоследствии привели к образованию наблюдаемых во Вселенной крупномасштабных структур, скоплений галактик и отдельных галактик. По современным представлениям, первые галактики должны были образоваться в эпоху, которая соответствует красным смещениям от 4 до 8.

А есть ли шанс заглянуть еще дальше в эпоху, предшествующую рекомбинации? До момента рекомбинации именно давление электромагнитного излучения в основном создавало гравитационное поле, тормозившее расширение Вселенной. На этой стадии температура менялась обратно пропорционально квадратному корню из времени, прошедшего с начала расширения. Рассмотрим последовательно различные стадии расширения ранней Вселенной.

При температуре примерно 1013 Кельвинов во Вселенной рождались и аннигилировали пары различных частиц и античастиц: протоны, нейтроны, мезоны, электроны, нейтрино и др. При понижении температуры до 5*1012 К почти все протоны и нейтроны аннигилировали, превратившись в кванты излучения; остались только те, для которых «не хватило» античастиц. Именно из этих «избыточных» протонов и нейтронов в основном состоит вещество современной наблюдаемой Вселенной.

При Т= 2*1010 К с веществом перестали взаимодействовать всепроникающие нейтрино – от того момента должен был остаться «реликтовый фон нейтрино», обнаружить который, возможно, удастся в ходе будущих нейтринных экспериментов.

Все, о чем сейчас говорилось, происходило при сверхвысоких температурах в первую секунду после начала расширения Вселенной. Спустя несколько секунд после момента «рождения» Вселенной началась эпоха первичного нуклеосинтеза, когда образовывались ядра дейтерия, гелия, лития и бериллия. Она продолжалась приблизительно три минуты, а ее основным результатом стало образование ядер гелия (25% от массы всего вещества Вселенной). Остальные элементы, более тяжелые, чем гелий, составили ничтожно малую часть вещества – около 0,01%.

После эпохи нуклеосинтеза и до эпохи рекомбинации (примерно 106 лет) происходило спокойное расширение и остывание Вселенной, а затем – спустя сотни миллионов лет после начала – появились первые галактики и звезды.

В последние десятилетия развитие космологии и физики элементарных частиц позволило теоретически рассмотреть и самый начальный, «сверхплотный» период расширения Вселенной. Оказывается, в самом начале расширения, когда температура была невероятно высока (больше 1028 К), Вселенная могла находиться в особом состоянии, при котором она расширялась с ускорением, а энергия в единице объема оставалась постоянной. Такую стадию расширения назвали инфляционной. Подобное состояние материи возможно при одном условии – отрицательном давлении. Стадия сверхбыстрого инфляционного расширения охватывала крошечный промежуток времени: она завершилась к моменту примерно 10–36 с. Считается, что настоящее «рождение» элементарных частиц материи в том виде, в каком мы их знаем сейчас, произошло как раз по окончании инфляционной стадии и было вызвано распадом гипотетического поля. После этого расширение Вселенной продолжалось уже по инерции.

Гипотеза инфляционной Вселенной отвечает на целый ряд важных вопросов космологии, которые до недавнего времени считались необъяснимыми парадоксами, в частности на вопрос о причине расширения Вселенной. Если в своей истории Вселенная действительно прошла через эпоху, когда существовало большое отрицательное давление, то гравитация неизбежно должна была вызвать не притяжение, а взаимное отталкивание материальных частиц. И значит, Вселенная начала быстро, взрывоподобно расширяться. Конечно, модель инфляционной Вселенной лишь гипотеза: даже косвенная проверка ее положений требует таких приборов, которые в настоящее время просто еще не созданы. Однако идея ускоренного расширения Вселенной на самой ранней стадии ее эволюции прочно вошла в современную космологию.

Говоря о ранней Вселенной, мы от самых больших космических масштабов вдруг переносимся в область микромира, которая описывается законами квантовой механики. Физика элементарных частиц и сверхвысоких энергий тесно переплетается в космологии с физикой гигантских астрономических систем. Самое большое и самое малое смыкаются здесь друг с другом. В этом и состоит удивительная красота нашего мира, полного неожиданных взаимосвязей и глубокого единства.

Проявления жизни на Земле чрезвычайно многообразны. Жизнь на Земле представлена ядерными и доядерными, одно- и многоклеточными существами; многоклеточные, в свою очередь, представлены грибами, растениями и животными. Любое из этих царств объединяет разнообразные типы, классы, отряды, семейства, роды, виды, популяции и индивидуумы.

Во всем, казалось бы, бесконечном многообразии живого можно выделить несколько разных уровней организации живого: молекулярный, клеточный, тканевый, органный, онтогенетический, популяционный, видовой, биогеоценотический, биосферный. Перечисленные уровни выделены по удобству изучения. Если же попытаться выделить основные уровни, отражающие не столько уровни изучения, сколько уровни организации жизни на Земле, то основными критериями такого выделения должны быть признаны наличие специфических элементарных, дискретных структур и элементарных явлений. При этом подходе оказывается необходимым и достаточным выделять молекулярно-генетический, онтогенетический, популяционно-видовой и биогеоценотический уровни (Н.В. Тимофеев-Ресовский и др.).

Молекулярно-генетический уровень. При изучении этого уровня достигнута, видимо, наибольшая ясность в определении основных понятий, а также в выявлении элементарных структур и явлений. Развитие хромосомной теории наследственности, анализ мутационного процесса, изучение строения хромосом, фагов и вирусов вскрыли основные черты организации элементарных генетических структур и связанных с ними явлений. Известно, что основные структуры на этом уровне (коды наследственной информации, передаваемой от поколения к поколению) представляют собой ДНК, дифференцированную по длине на элементы кода – триплеты азотистых оснований, образующих гены.

Гены на этом уровне организации жизни представляют элементарные единицы. Основными элементарными явлениями, связанными с генами, можно считать их локальные структурные изменения (мутации) и передачу хранящейся в них информации внутриклеточным управляющим системам.

Конвариантная редупликация происходит по матричному принципу путем разрыва водородных связей двойной спирали ДНК с участием фермента ДНК-полимеразы. Затем каждая из нитей строит себе соответствующую нить, после чего новые нити комплементарно соединяются между собой.Пиримидиновые и пуриновые основания комплементарных нитей скрепляются водородными связями между собой ДНК-полимеразой. Этот процесс осуществляется очень быстро. Так, на самосборку ДНК кишечной палочки (Escherichia coli), состоящей примерно из 40 тыс. пар нуклеотидов, требуется всего 100 с. Генетическая информация переносится из ядра молекулами иРНК в цитоплазму к рибосомам и там участвует в синтезе белка. Белок, содержащий тысячи аминокислот, в живой клетке синтезируется за 5–6 мин, а у бактерий быстрее.

Основные управляющие системы как при конвариантной редупликации, так и при внутриклеточной передаче информации используют «матричный принцип», т.е. являются матрицами, рядом с которыми строятся соответствующие специфические макромолекулы. В настоящее время успешно дешифруется заложенный в структуре нуклеиновых кислот код, служащий матрицей при синтезе специфических белковых структур в клетках. Редупликация, основанная на матричном копировании, сохраняет не только генетическую норму, но и отклонения от нее, т.е. мутации (основа процесса эволюции). Достаточно точное знание молекулярно-генетического уровня – необходимая предпосылка для ясного понимания жизненных явлений, происходящих на всех остальных уровнях организации жизни.

Космическое электромагнитное излучение, приходящее на Землю со всех сторон неба примерно с одинаковой интенсивностью и имеющее спектр, характерный для излучения абсолютно черного тела при температуре около 3 К (3 градуса по абсолютной шкале Кельвина, что соответствует -270°С). При такой температуре основная доля излучения приходится на радиоволны сантиметрового и миллиметрового диапазонов. Плотность энергии реликтового излучения 0,25 эВ/см 3 .
Радиоастрономы-экспериментаторы предпочитают называть это излучение «космическим микроволновым фоновым излучением» cosmic microwave background, CMB). Астрофизики-теоретики часто называют его «реликтовым излучением» (термин предложен русским астрофизиком И.С.Шкловским), поскольку в рамках общепринятой сегодня теории горячей Вселенной это излучение возникло на раннем этапе расширения нашего мира, когда его вещество было практически однородным и очень горячим. Иногда в научной и популярной литературе можно также встретить термин «трехградусное космическое излучение». Далее мы будем называть это излучение «реликтовым».
Открытие в 1965 реликтового излучения имело огромное значение для космологии; оно стало одним из важнейших достижений естествознания 20 в. и, безусловно, самым важным для космологии после открытия красного смещения в спектрах галактик. Слабое реликтовое излучение несет нам сведения о первых мгновениях существования нашей Вселенной, о той далекой эпохе, когда вся Вселенная была горячей и в ней еще не существовало ни планет, ни звезд, ни галактик. Проведенные в последние годы детальные измерения этого излучения с помощью наземных, стратосферных и космических обсерваторий приоткрывают завесу над тайной самого рождения Вселенной.
Теория горячей Вселенной. В 1929 американский астроном Эдвин Хаббл (1889-1953) открыл, что большинство галактик удаляется от нас, причем тем быстрее, чем дальше расположена галактика (закон Хаббла). Это было интерпретировано как всеобщее расширение Вселенной, начавшееся примерно 15 млрд. лет назад. Встал вопрос о том, как выглядела Вселенная в далеком прошлом, когда галактики только начали удаляться друг от друга, и даже еще раньше. Хотя математический аппарат, основанный на общей теории относительности Эйнштейна и описывающий динамику Вселенной, был создан еще в 1920-е годы Виллемом де Ситтером (1872-1934), Александром Фридманом (1888-1925) и Жоржем Леметром (1894-1966), о физическом состоянии Вселенной в раннюю эпоху ее эволюции ничего не было известно. Не было даже уверенности, что в истории Вселенной существовал определенный момент, который можно считать «началом расширения».
Развитие ядерной физики в 1940-е годы позволило начать разработку теоретических моделей эволюции Вселенной в прошлом, когда ее вещество, как предполагалось, было сжато до высокой плотности, при которой были возможны ядерные реакции. Эти модели, прежде всего, должны были объяснить состав вещества Вселенной, который к тому времени уже был достаточно надежно измерен по наблюдениям спектров звезд: в среднем они состоят на 2 / 3 из водорода и на 1 / 3 из гелия, а все остальные химические элементы вместе взятые составляют не более 2%. Знание свойств внутриядерных частиц - протонов и нейтронов - позволяло рассчитывать варианты начала расширения Вселенной, различающиеся исходным содержанием этих частиц и температурой вещества и находящегося с ним в термодинамическом равновесии излучения. Каждый из вариантов давал свой состав исходного вещества Вселенной.
Если опустить детали, то существуют две принципиально разные возможности для условий, в которых протекало начало расширения Вселенной: ее вещество могло быть либо холодным, либо горячим. Следствия ядерных реакций при этом в корне отличаются друг от друга. Хотя идею о возможности горячего прошлого Вселенной высказывал еще в своих ранних работах Леметр, исторически первой в 1930-е годы была рассмотрена возможность холодного начала.
В первых предположениях считалось, что все вещество Вселенной существовало сначала в виде холодных нейтронов. Позже выяснилось, что такое предположение противоречит наблюдениям. Дело в том, что нейтрон в свободном состоянии распадается в среднем за 15 минут после возникновения, превращаясь в протон, электрон и антинейтрино. В расширяющейся Вселенной возникшие протоны стали бы соединяться с еще оставшимися нейтронами, образуя ядра атомов дейтерия. Дальше цепочка ядерных реакций привела бы к образованию ядер атомов гелия. Более сложные атомные ядра, как показывают расчеты, при этом практически не возникают. В результате все вещество превратилось бы в гелий. Такой вывод находится в резком противоречии с наблюдениями звезд и межзвездного вещества. Распространенность химических элементов в природе отвергает гипотезу о начале расширения вещества в виде холодных нейтронов.
В 1946 в США «горячий» вариант начальных стадий расширения Вселенной предложил физик русского происхождения Георгий Гамов (1904-1968). В 1948 была опубликована работа его сотрудников - Ральфа Альфера и Роберта Хермана, в которой рассматривались ядерные реакции в горячем веществе в начале космологического расширения с целью получить наблюдаемое в настоящее время соотношение между количеством различных химических элементов и их изотопов. В те годы стремление объяснить происхождение всех химических элементов их синтезом в первые мгновения эволюции вещества было естественным. Дело в том, что тогда ошибочно оценивали время, протекшее с начала расширения Вселенной, всего в 2-4 млрд. лет. Это было связано с завышенным значением постоянной Хаббла, вытекавшим в те годы из астрономических наблюдений.
Сравнивая возраст Вселенной в 2-4 млрд.лет с оценкой возраста Земли - около 4 млрд. лет, - приходилось предполагать, что Земля, Солнце и звезды образовались из первичного вещества с уже готовым химическим составом. Считалось, что этот состав не изменился сколь-нибудь существенно, так как синтез элементов в звездах - процесс медленный и для его осуществления перед образованием Земли и других тел уже не было времени.
Последующий пересмотр шкалы внегалактических расстояний привел и к пересмотру возраста Вселенной. Теория эволюции звезд успешно объясняет происхождение всех тяжелых элементов (тяжелее гелия) их нуклеосинтезом в звездах. Отпала необходимость объяснять происхождение всех элементов, включая и тяжелые, на ранней стадии расширения Вселенной. Однако суть гипотезы горячей Вселенной оказалась верной.
С другой стороны, содержание гелия в звездах и межзвездном газе составляет около 30% по массе. Это гораздо больше, чем можно объяснить ядерными реакциями в звездах. Значит гелий, в отличие от тяжелых элементов, должен синтезироваться в начале расширения Вселенной, но при этом - в ограниченном количестве.
Основная идея теории Гамова как раз и состоит в том, что высокая температура вещества препятствует превращению всего вещества в гелий. В момент 0,1 сек после начала расширения температура была около 30 млрд. K. В таком горячем веществе имеется много фотонов большой энергии. Плотность и энергия фотонов столь велики, что происходит взаимодействие света со светом, приводящее к рождению электронно-позитронных пар. Аннигиляция пар может в свою очередь приводить к рождению фотонов, а также к возникновению пар нейтрино и антинейтрино. В этом «бурлящем котле» находится обычное вещество. При очень высоких температурах не могут существовать сложные атомные ядра. Они были бы моментально разбиты окружающими энергичными частицами. Поэтому тяжелые частицы вещества существуют в виде нейтронов и протонов. Взаимодействия с энергичными частицами заставляют нейтроны и протоны быстро превращаться друг в друга. Однако реакции соединения нейтронов с протонами не идут, так как возникающее при этом ядро дейтерия тут же разбивается частицами большой энергии. Так, из-за большой температуры в самом начале обрывается цепочка, ведущая к образованию гелия.
Только когда Вселенная, расширяясь, охлаждается до температуры ниже миллиарда кельвинов, некоторое количество возникающего дейтерия уже сохраняется и приводит к синтезу гелия. Расчеты показывают, что температуру и плотность вещества можно согласовать так, чтобы к этому моменту доля нейтронов в веществе составляла около 15% по массе. Эти нейтроны, соединяясь с таким же количеством протонов, образуют около 30% гелия. Остальные тяжелые частицы остались в виде протонов - ядер атомов водорода. Ядерные реакции заканчиваются по прошествии первых пяти минут после начала расширения Вселенной. В дальнейшем, по мере расширения Вселенной, температура ее вещества и излучения снижается. Из работ Гамова, Альфера и Хермана 1948 года следовало: если теория горячей Вселенной предсказывает возникновение 30% гелия и 70% водорода как основных химических элементов природы, то современная Вселенная неизбежно должна быть заполнена остатком («реликтом») первобытного горячего излучения, причем современная температура этого реликтового излучения должна быть около 5 K.
Однако на гипотезе Гамова анализ разных вариантов начала космологического расширения не закончился. В начале 1960-х годов остроумная попытка снова вернуться к холодному варианту была предпринята Я.Б.Зельдовичем, которые предположил, что первоначальное холодное вещество состояло из протонов, электронов и нейтрино. Как показал Зельдович, такая смесь при расширении превращается в чистый водород. Гелий и другие химические элементы, согласно этой гипотезе, синтезировались позже, когда образовались звезды. Заметим, что к этому моменту астрономы уже знали, что Вселенная в несколько раз старше Земли и большинства окружающих нас звезд, а данные об обилии гелия в дозвездном веществе были в те годы еще очень неопределенными.
Казалось бы, решающим тестом для выбора между холодной и горячей моделями Вселенной мог стать поиск реликтового излучения. Но почему-то долгие годы после предсказания Гамова и его коллег никто сознательно не пытался обнаружить это излучение. Открыто оно было совершенно случайно в 1965 радиофизиками из американской компании «Белл» Р.Уилсоном и А.Пензиасом, награжденными в 1978 Нобелевской премией.
На пути к обнаружению реликтового излучения. В середине 1960-х годов астрофизики продолжали теоретически изучать горячую модель Вселенной. Вычисление ожидаемых характеристик реликтового излучения было выполнено в 1964 А.Г.Дорошкевичем и И.Д.Новиковым в СССР и независимо Ф.Хойлом и Р.Дж.Тейлором в Великобритании. Но эти работы, как и более ранние работы Гамова с коллегами, не привлекли к себе внимания. А ведь в них уже было убедительно показано, что реликтовое излучение можно наблюдать. Несмотря на крайнюю слабость этого излучения в нашу эпоху, оно, к счастью, лежит в той области электромагнитного спектра, где все прочие космические источники в целом излучают еще слабее. Поэтому целенаправленный поиск реликтового излучения должен был привести к его открытию, но радиоастрономы не знали об этом.
Вот что сказал А.Пензиас в своей нобелевской лекции: «Первое опубликованное признание реликтового излучения в качестве обнаружимого явления в радиодиапазоне появилось весной 1964 в краткой статье А.Г.Дорошкевича и И.Д.Новикова, озаглавленной Средняя плотность излучения в Метагалактике и некоторые вопросы релятивистской космологии . Хотя английский перевод появился в том же году, но несколько позже, в широко известном журнале «Советская физика - Доклады», статья, по-видимому, не привлекла к себе внимания других специалистов в этой области. В этой замечательной статье не только выведен спектр реликтового излучения как чернотельного волнового явления, но также отчетливо сконцентрировано внимание на двадцатифутовом рупорном рефлекторе лаборатории «Белл» в Кроуфорд-Хилл, как на наиболее подходящем инструменте для его обнаружения!» (цит. по: Шаров А.С., Новиков И.Д. Человек, открывший взрыв Вселенной: Жизнь и труд Эдвина Хаббла М., 1989).
К сожалению, эта статья осталась незамеченной ни теоретиками, ни наблюдателями; она не стимулировала поиск реликтового излучения. Историки науки до сих пор гадают, почему долгие годы никто не пытался сознательно искать излучение горячей Вселенной. Любопытно, что мимо этого открытия - одного из крупнейших к 20 в. - ученые прошли несколько раз, не заметив его.
Например, реликтовое излучение могло быть открыто еще в 1941. Тогда канадский астроном Э.Мак-Келлар анализировал линии поглощения, вызываемые в спектре звезды Дзета Змееносца межзвездными молекулами циана. Он пришел к выводу, что эти линии в видимой области спектра могут возникать только при поглощении света вращающимися молекулами циана, причем их вращение должно возбуждаться излучением с температурой около 2,3 К. Конечно, никто не мог подумать тогда, что возбуждение вращательных уровней этих молекул вызывается реликтовым излучением. Лишь после его открытия в 1965 были опубликованы работы И.С.Шкловского, Дж.Филда и др., в которых показано, что возбуждение вращения межзвездных молекул циана, линии которых отчетливо наблюдаются в спектрах многих звезд, вызвано именно реликтовым излучением.
Еще более драматичная история произошла в середине 1950-х годов. Тогда молодой ученый Т.А.Шмаонов под руководством известных советских радиоастрономов С.Э.Хайкина и Н.Л.Кайдановского провел измерения радиоизлучения из космоса на длине волны 32 см. Эти измерения были выполнены с помощью рупорной антенны, подобной той, которая была использована много лет спустя Пензиасом и Уилсоном. Шмаонов со всей тщательностью изучил возможные помехи. Конечно, в его распоряжении тогда еще не было столь чувствительных приемников, которые появились впоследствии у американцев. Результаты измерения Шмаонова были опубликованы в 1957 в его кандидатской диссертации и в журнале «Приборы и техника эксперимента». Вывод из этих измерений был таков: «Оказалось, что абсолютная величина эффективной температуры радиоизлучения фона... равна 4± 3 К». Шмаонов отмечал независимость интенсивности излучения от направления на небе и от времени. Хотя ошибки измерений были велики и говорить о какой-либо надежности цифры 4 не приходится, теперь нам ясно, что Шмаонов измерял именно реликтовое излучение. К сожалению, ни он сам, ни другие радиоастрономы ничего не знали о возможности существования реликтового излучения и не придали должного значения этим измерениям.
Наконец, около 1964 к этой проблеме сознательно подошел известный физик-экспериментатор из Принстона (США) Роберт Дикке. Хотя его рассуждения основывались на теории «осциллирующей» Вселенной, которая многократно испытывает расширение и сжатие, Дикке ясно понимал необходимость поиска реликтового излучения. По его инициативе в начале 1965 молодой теоретик Ф.Дж.Э.Пиблс провел необходимые вычисления, а П.Г.Ролл и Д.Т.Уилкинсон начали сооружать маленькую низкошумящую антенну на крыше Пальмеровский физической лаборатории в Принстоне. Для поиска фонового излучения не обязательно использовать большие радиотелескопы, так как излучение идет со всех направлений. От того, что большая антенна фокусирует луч на меньшей площадке неба, ничего не выигрывается. Но группа Дикке не успела сделать запланированное открытие: когда их аппаратура уже была готова, им оставалось лишь подтвердить открытие, накануне случайно сделанное другими.

Реликтовое излучение

Астрономические наблюдения показывают, что, помимо отдельных источников излучения в виде звезд и галактик, во Вселенной есть излучение, неразделяемое на отдельные источники - фоновое излучение. Оно наблюдается во всех диапазонах электромагнитного спектра. В основном фоновое излучение есть сумма свечения различных источников (галактик, квазаров, межгалактического газа), настолько далеких, что современные средства астрономических наблюдений пока не могут разделить их суммарное излучение на отдельные слагаемые (вспомним, что и Млечный Путь вплоть до XVII века считался сплошной полосой света, и только в 1610 году Галилео Галилей, рассмотрев его в телескоп, обнаружил, что он состоит из отдельных звезд).

В 1965 г. американские радиоинженеры А. Пензиас и Р. Вильсон обнаружили фоновое излучение в микроволновом диапазоне (длина волны от 300 мкм до 50 см, частота от 6·10 8 Гц до 10 12 Гц). На этих частотах электромагнитных волн просто нет источников, которые могли бы дать фоновое излучение такой яркости. Это излучение очень однородно: с точностью до тысячных долей процента его интенсивность постоянна по всему небу. Заметим, что несколько процентов того “снега”, который возникает на экране телевизора на ненастроенном канале, обусловлены как раз микроволновым фоновым излучением.

Главным свойством микроволнового фонового излучения является его спектр (т.е. распределение интенсивности в зависимости от частоты или длины волны), показанный на рис. 5.1.2. Спектр этого излучения в точности ложится на теоретическую кривую, хорошо известную физике - кривую Планка. Спектр такого типа носит название спектра излучения абсолютно черного тела. Такой спектр характерен для полностью непрозрачного нагретого вещества. Температура микроволнового излучения составляет около 3 К (точнее, 2.728 К). Сложением излучений каких-либо источников невозможно добиться того, чтобы получился планковский спектр. Наиболее надежное подтверждение планковского характера спектра реликтового излучения было получено с помощью американского спутника COBE (Cosmic Background Explorer, Исследователь космического фона) в 1992 году.

Уравнение планковской кривой имеет вид

. (5.1)

Здесь ρ ν - спектральная плотность излучения (энергия излучения, приходящаяся на единичный объем и на единичный интервал частот), ν - частота, h - постоянная Планка, c - скорость света, k - постоянная Больцмана, T - температура излучения.

Микроволновое излучение Вселенной иначе называется реликтовым. Такое название связано с тем, что оно несет в себе информацию о физических условиях, царивших во Вселенной тогда, когда еще не успели образоваться звезды и галактики. Сам факт существования этого излучения говорит о том, что в прошлом свойства Вселенной были существенно иными, чем в настоящее время. Для обоснования этого вывода приведем следующую логическую цепочку.

  1. Поскольку спектр реликтового излучения является спектром абсолютно черного тела, это излучение формируется полностью непрозрачным нагретым телом.
  2. Поскольку это излучение равномерно приходит к нам со всех сторон, мы со всех сторон окружены каким-то непрозрачным телом.
  3. Однако Вселенная - в современном ее виде - почти полностью прозрачна для радиоволн в микроволновом (миллиметровом и сантиметровом) диапазоне. Стало быть, вещество, испускающее это излучение, отстоит от нас намного дальше, чем любые наблюдаемые объекты - галактики, квазары и т.д. Вспоминая принцип “чем дальше в пространстве - тем глубже во времени”, мы приходим к выводу, что Вселенная была полностью непрозрачной в глубоком прошлом, когда еще не образовались звезды и галактики; а раз непрозрачной, значит, очень плотной . Микроволновое фоновое излучение является реликтом, оставшимся от той далекой эпохи.

Отметим, что почти идеальная однородность этого излучения - лучший довод в пользу космологического принципа, в пользу однородности Вселенной на больших масштабах.

Приведем некоторые количественные данные о реликтовом излучении. По закону Вина, температура чернотельного излучения с длиной волны, на которую приходится максимум интенсивности λ max , вычисляется по формуле

Для реликтового излучения λ max =0.1 см. Средняя энергия кванта этого излучения примерно 1.05·10 -22 Дж. В настоящее время в каждом кубическом метре находится примерно 4·10 8 реликтовых фотонов. Это примерно в миллиард раз больше, чем частиц обычного вещества (точнее, протонов; имеется в виду, конечно, средняя плотность).

Изменение температуры реликтового излучения со временем

Для обоснования предположения Гамова об изначально горячем состоянии Вселенной мы привлечем данные о реликтовом излучении. Попытаемся понять, какой была его температура в прошлом. Другими словами, выясним, какую температуру реликтового излучения зафиксировал бы наблюдатель в галактике с красным смещением z. Для этого используем формулу (2.1) λ=λ 0 (1+z), показывающую зависимость длины волны любого (в том числе, реликтового) излучения, путешествующего в межгалактическом пространстве, от красного смещения z, и закон Вина (5.2) T·λ max =0.29 K·см. Комбинируя эти формулы, мы находим, что при красном смещении z температура реликтового излучения T была

T(z)=T 0 (1+z), (5.3)

Где T 0 =2.728 K - температура в настоящее время (т.е. при z=0). Из этой формулы следует, что раньше температура реликтового излучения была выше, чем сейчас.

Существуют и прямые экспериментальные подтверждения этой закономерности. Группа американских ученых использовала крупнейший в мире телескоп Кек (на Гавайских островах) с зеркалом диаметром 10 метров для получения спектров двух квазаров с красными смещениями z=1.776 и z=1.973. Как выяснили эти ученые, спектральные линии этих объектов показывают, что они облучаются тепловым излучением с температурой 7.4±0.8 К и 7.9±1.1 К соответственно, что находится в прекрасном согласии с температурой реликтового излучения, ожидаемой из формулы (5.3): T(1.776)=7.58 К и T(1.973)=8.11 К. Одновременно, кстати, эти факты дают дополнительный аргумент в пользу того, что микроволновое фоновое излучение приходит к нам из самых глубин Вселенной.

. Георгий Антонович Гамов (1904-1968).

Чем ближе к Большому Взрыву, тем горячее реликтовое излучение. При z~1000 (такое красное смещение соответствует эпохе, отстоящей на 300 тыс. лет от Большого Взрыва) его температура была T~3000 K, причем в каждом кубическом метре находилось около 4·10 17 реликтовых фотонов. Столь мощное излучение должно было ионизовать весь существовавший тогда газ. Итак, в далеком прошлом Вселенной не могло существовать звезд, и все вещество представляло собой плотную горячую непрозрачную плазму .

Именно это утверждение составляет суть теории горячей Вселенной, основы которой заложил выдающийся физик Георгий Антонович Гамов, который родился и получил образование в нашей стране, здесь же стал знаменит как физик, но был вынужден эмигрировать в США в годы сталинских репрессий. Эта теория кратко рассмотрена в настоящем параграфе.

← Вернуться

×
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:
Я уже подписан на сообщество «sinkovskoe.ru»