Порядок учет векселей в коммерческом банке. Учет (дисконт) векселей

Подписаться
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:

Около 1807 г. Дэви, пытавшийся осуществить электролиз глинозема, дал название предполагаемому в нем металлу алюмиум (Alumium). Впервые алюминий был получен Гансом Эрстедом в 1825 году действием амальгамы калия на хлорид алюминия с последующей отгонкой ртути. В 1827 г. Велер выделил металлический алюминий более эффективным способом - нагреванием безводного хлористого алюминия с металлическим калием.

Нахождение в природе, получение:

По распространенности в природе занимает 1-е среди металлов и 3-е место среди элементов, уступая только кислороду и кремнию. Содержание алюминия в земной коре по данным различных исследователей составляет от 7,45% до 8,14% от массы земной коры. В природе алюминий встречается только в соединениях (минералах).
Корунд: Al 2 O 3 - относится к классу простых оксидов, и иногда образует прозрачные драгоценные кристаллы - сапфира, и, с добавлением хрома, рубина. Накапливается в россыпях.
Бокситы: Al 2 O 3 *nH 2 O - осадочные алюминиевые руды. Содержат вредную примесь - SiO 2 . Бокситы служат важным сырьем для получения алюминия, а также красок, абразивов.
Каолинит: Al 2 O 3 *2SiO 2 *2H 2 O - минерал подкласса слоистых силикатов, главная составная часть белой, огнеупорной, и фарфоровой глины.
Современный метод получения алюминия был разработан независимо американцем Чарльзом Холлом и французом Полем Эру. Он заключается в растворении оксида алюминия Al 2 O 3 в расплаве криолита Na 3 AlF 3 с последующим электролизом с использованием графитовых электродов. Такой метод получения требует больших затрат электроэнергии, и поэтому оказался востребован только в XX веке. Для производства 1 т алюминия требуется 1,9 т глинозёма и 18 тыс. кВт·ч электроэнергии.

Физические свойства:

Металл серебристо-белого цвета, легкий, плотность 2,7 г/см 3 , температура плавления 660°C, температура кипения 2500°C. Высокая пластичность, прокатывается в тонкий лист и даже фольгу. Алюминий обладает высокой электропроводностью и теплопроводностью, обладает высокой светоотражательной способностью. Алюминий образует сплавы почти со всеми металлами.

Химические свойства:

При нормальных условиях алюминий покрыт тонкой и прочной оксидной плёнкой и потому не реагирует с классическими окислителями: с H 2 O (t°);O 2 , HNO 3 (без нагревания). Благодаря этому алюминий практически не подвержен коррозии и потому широко востребован современной индустрией. Однако, при разрушении оксидной плёнки (например, при контакте с растворами солей аммония NH 4 + , горячими щелочами или в результате амальгамирования), алюминий выступает как активный металл-восстановитель. Легко реагирует с простыми веществами: кислородом, галогенами: 2Al + 3Br 2 = 2AlBr 3
С другими неметаллами алюминий реагирует при нагревании:
2Al + 3S = Al 2 S 3 2Al + N 2 = 2AlN
Алюминий способен только растворять водород, но не вступает с ним в реакцию.
Со сложными веществами: алюминий реагирует со щелочами (с образованием тетрагидроксоалюминатов):
2Al + 2NaOH + 6H 2 O = 2Na + 3H 2
Легко растворяется в разбавленной и концентрированной серной кислотах:
2Al + 3H 2 SO 4 (разб) = Al 2 (SO 4) 3 + 3H 2 2Al + 6H 2 SO 4 (конц) = Al 2 (SO 4) 3 + 3SO 2 + 6H 2 O
Алюминий восстанавливает металлы из их оксидов (алюминотермия): 8Al + 3Fe 3 O 4 = 4Al 2 O 3 + 9Fe

Важнейшие соединения:

Оксид алюминия , Al 2 O 3: твердое, тугоплавкое вещество белого цвета. Кристаллический Al 2 O 3 химически пассивен, аморфный - более активен. Медленно реагирует с кислотами и щелочами в растворе, проявляя амфотерные свойства:
Al 2 O 3 + 6НСl(конц.) = 2АlСl 3 + ЗН 2 О Al 2 O 3 + 2NаОН(конц.) + 3Н 2 О = 2Na
(в расплаве щелочи образуется NaAlO 2).
Гидроксид алюминия , Al(OH) 3: белый аморфный (гелеобразный) или кристаллический. Практически не растворим в воде. При нагревании ступенчато разлагается. Проявляет амфотерные, равно выраженные кислотные и основные свойства. При сплавлении с NaOH образуется NaAlO 2 . Для получения осадка Аl(ОН) 3 щелочь обычно не используют (из-за легкости перехода осадка в раствор), а действуют на соли алюминия раствором аммиака - при комнатной температуре образуется Аl(ОН) 3
Соли алюминия . Соли алюминия и сильных кислот хорошо растворимы в воде и подвергаются в значительной степени гидролизу по катиону, создавая сильнокислотную среду, в которой растворяются такие металлы, как магний и цинк: Al 3+ + H 2 O =AlOH 2+ + H +
Нерастворимы в воде фторид AlF 3 и ортофосфат АlРO 4 , а соли очень слабых кислот, например Н 2 СО 3 , вообще не образуются осаждением из водного раствора.
Известны двойные соли алюминия - квасцы состава MAl(SO 4) 2 *12H 2 O (M=Na + , K + , Rb + , Cs + , ТI + , NH 4 +), самые распространенные из них алюмокалиевые квасцы KAl(SO 4) 2 *12Н 2 O.
Растворение амфотерных гидроксидов в щелочных растворах рассматривается как процесс образования гидроксосолей (гидроксокомплексов). Экспериментально доказано существование гидроксомплексов [Аl(ОН) 4 (Н 2 О) 2 ] - , [Аl(ОН) 6 ] 3- , [Аl(ОН) 5 (Н 2 O)] 2- ; из них первый - наиболее прочный. Координационное число алюминия в этих комплексах равно 6, т.е. алюминий является шестикоординированным.
Бинарные соединения алюминия Соединения с преимущественно ковалентными связями, например сульфид Al 2 S 3 и карбид Аl 4 С 3 полностью разлагаются водой:
Al 2 S 3 + 6Н 2 О = 2Аl(ОН) 3 + 3Н 2 S Аl 4 С 3 + 12H 2 O = 4Аl(ОН) 3 + 3СН 4

Применение:

Широко применяется как конструкционный материал. Основные достоинства алюминия в этом качестве - лёгкость, податливость штамповке, коррозионная стойкость, высокая теплопроводность. Алюминий является важным компонентом многих сплавов (медные - алюминиевые бронзы, магниевые и др.)
Применяется в электротехнике для изготовления проводов, их экранирования.
Алюминий широко используется и в тепловом оборудовании и в криогенной технике.
Высокий коэффициент отражения в сочетании с дешевизной и лёгкостью напыления делает алюминий идеальным материалом для изготовления зеркал.
Алюминий и его соединения используются в ракетной технике в качестве ракетного горючего. В производстве строительных материалов как газообразующий агент.

Аллаяров Дамир
ХФ ТюмГУ, 561 группа.

Впервые алюминий был получен лишь в начале XIX века. Cделал это физик Ганс Эрстед. Свой эксперимент он проводил с амальгамой калия, хлоридом алюминия и .

Кстати, название этого серебристого материала произошло от латинского слова «квасцы», потому что именно из них добывается этот элемент.

Квасцы

Квасцы – это природные минералы на основе металлов, которые объединяют в своем составе соли серной кислоты.

Раньше считался драгоценным металлом и стоил на порядок дороже, чем золото. Объяснялось это тем, что металл было довольно сложно отделить от примесей. Так что позволить себе украшения из алюминия могли только богатые и влиятельные люди.


Японское украшение из алюминия

Но в 1886 году Чарльз Холл придумал метод по добыче алюминия в промышленном масштабе, что резко удешевило этот металл и позволило применять его в металлургическом производстве. Промышленный метод заключался в электролизе расплава криолита, в котором растворен оксид алюминия.

Алюминий - очень востребованный металл, ведь именно из него изготавливаются многие вещи, которыми человек пользуется в быту.

Применение алюминия

Благодаря ковкости и легкости, а также защищенности от коррозии, алюминий является ценным металлом в современной промышленности. Из алюминия изготавливают не только кухонную посуду - он широко используется в авто- и авиастроительстве.

Также алюминий является одним из самых недорогих и экономичных материалов, так как его можно использовать бесконечно, переплавляя ненужные алюминиевые предметы, например, банки.


Алюминиевые банки

Металлический алюминий безопасен, но его соединения могут оказывать токсическое действие на человека и животных (особенно хлорид, ацетат и сульфат алюминия).

Физические свойства алюминия

Алюминий - достаточно легкий металл серебристого цвета, который может образовывать сплавы с большинством металлов, особенно с медью, и кремнием. Также он весьма пластичен, его без труда можно превратить в тонкую пластинку или же фольгу. Температура плавления алюминия = 660 °C, а температура кипения - 2470 °C.

Химические свойства алюминия

При комнатной температуре металл покрывается прочной пленкой оксида алюминия Al₂O₃, которая защищает его от коррозии.

С окислителями алюминий практически не реагирует из-за защищающей его оксидной пленки. Однако ее можно легко разрушить, чтобы металл проявил активные восстановительные свойства. Разрушить оксидную пленку алюминия можно раствором или расплавом щелочей, кислотами или же с помощью хлорида ртути.

Благодаря восстановительным свойствам алюминий нашел применение в промышленности - для получения других металлов. Этот процесс называется алюмотермией. Такая особенность алюминия заключается во взаимодействии с оксидами других металлов.


Алюмотермическая реакция с участием оксида железа (III)

Например, рассмотрим реакцию с оксидом хрома:

Cr₂O₃ + Al = Al₂O₃ + Cr.

Алюминий хорошо вступает в реакцию с простыми веществами. Например, с галогенами (за исключением фтора) алюминий может образовать иодид, хлорид, или бромид алюминия:

2Al + 3Cl₂ → 2Al­Cl₃

С другими неметаллами, такими как фтор, сера, азот, углерод и т.д. алюминий может реагировать только при нагревании.

Также серебристый металл вступает в реакцию и со сложными химическими веществами. Например, с щелочами он образует алюминаты, то есть комплексные соединения, которые активно используются в бумажной и текстильной промышленности. Причем в реакцию вступает как гидроксид алюминия

Al(ОН)₃ + NaOH = Na),

так и металлический алюминий или же оксид алюминия:

2Al + 2NaOH + 6Н₂О = 2Na + ЗН₂.

Al₂O₃ + 2NaOH + 3H₂O = 2Na

С агрессивными кислотами (например, с серной и соляной) алюминий реагирует довольно спокойно, без воспламенения.

Если опустить кусочек металла в соляную кислоту, то пойдет медленная реакция - сначала будет растворяться оксидная пленка - но затем она ускорится. Алюминий растворяется в соляной кислоте с выделением ртути на протяжении двух минут, а затем хорошо его промыть. В результате получится амальгама, сплав ртути и алюминия:

3Hg­CI₂ + 2Al = 2Al­CI₃ + 3Hg

Причем она не удерживается на поверхности металла. Теперь, опустив очищенный металл в воду, можно наблюдать медленную реакцию, которая сопровождается выделением водорода и образованием гидроксида алюминия:

2Al + 6H₂O = 2Al(OH)₃ + 3H₂.

1. Не взаимодействует с Н 2 .

2. Как активный металл реагирует почти со всеми неметаллами без нагревания, если снять оксидную пленку.

4Al + 3O 2 → 2Al 2 O 3

2Al + 3Cl 2 → 2AlCl 3

Al + P → AlP

3. Реагирует с Н 2 О:

Алюминий – активный металл с большим сродством к кислороду. На воздухе покрывается защитной пленкой оксида. Если пленку уничтожить, то алюминий активно взаимодействует с водой.

2Al + 6H 2 O = 2Al(OH) 3 + 3H 2 ­

4. С разбавленными кислотами:

2Al + 6HCl → 2AlCl 3 + 3H 2

2Al + 3H 2 SO 4 → Al 2 (SO 4) 3 + 3H 2

С концентрированными HNO 3 и H 2 SO 4 при обычных условиях не реагирует, а только при нагревании.

5. Со щелочами:

2Al + 2NaOH 2NaAlO 2 + 3H 2

С водными растворами щелочей алюминий образует комплексы:

2Al + 2NaOH + 10 H 2 O = 2Na + - + 3H 2

или Na,

Na 3 , Na 2 – гидроксоалюминаты. Продукт зависит от концентрации щелочи.

4Al + 3O 2 → 2Al 2 O 3

Al 2 O 3 (глинозем) встречается в природе в виде минерала корунда (по твердости близок к алмазу). Драгоценные камни рубин и сапфир – тоже Al 2 O 3 , окрашенный примесями железа, хрома

Оксид алюминия – амфотерен. При сплавлении его со щелочами получаются соли метаалюминиевой кислоты HAlO 2 . Например:

Также взаимодействует с кислотами

Белый студенистый осадок гидроксида алюминия растворяется как в кислотах

Al(OH) 3 + 3HCl = AlCl 3 + 3 H 2 O,

так и в избытке растворов щелочей, проявляет амфотерность

Al(OH) 3 + NaOH + 2H 2 O = Na

При сплавлении со щелочами гидроксид алюминия образует соли метаалюминиевой или ортоалюминиевой кислот

Аl(OH) 3 Al 2 O 3 + H 2 O

Соли алюминия сильно гидролизуются. Соли алюминия и слабых кислот превращаются в основные соли или подвергаются полному гидролизу:

AlCl 3 + HOH ↔ AlOHCl 2 + HCl

Al +3 + HOH ↔ AlOH +2 + H + pH>7 протекает по I ступени, но при нагревании может протекать и по II ступени.

AlOHCl 2 + HOH ↔ Al(OH) 2 Cl + HCl

AlOH +2 + HOH ↔ Al(OH) 2 + + H +

При кипячении может протекать и III ступень

Al(OH) 2 Cl + HOH ↔ Al(OH) 3 + HCl

Al(OH) 2 + + HOH ↔ Al(OH) 3 + H +

Соли алюминия хорошо растворимы.

AlCl 3 – хлорид алюминия является катализатором при переработке нефти и различных органических синтезах.

Al 2 (SO 4) 3 ×18H 2 O – сульфат алюминия применяется для очистки воды от коллоидных частиц, захватываемых Al(OH) 3 образовавшихся при гидролизе и снижении жесткости

Al 2 (SO 4) 3 + Ca(HCO 3) 2 = Al(OH) 3 + CO 2 + CaSO 4 ↓

В кожевенной промышленности служит протравой при крошении хлопчатобумажных тканей – KAl(SO 4) 2 ×12H 2 O –сульфат калия-алюминия (алюмокалиевые квасцы).

Основное применение алюминия – производство сплавов на его основе. Дюралюмин – сплав алюминия, меди, магния и марганца.

Силумин – алюминий и кремний.

Основное их достоинство – малая плотность, удовлетворительная стойкость против атмосферной коррозии. Из алюминиевых сплавов изготавливают корпуса искусственных спутников Земли и космических кораблей.

Используется алюминий как восстановитель при выплавке металлов (алюминотермия)

Cr 2 O 3 + 2 Al t = 2Cr + Al 2 O 3 .

Также применяют для термитной сварки металлических изделий (смесь алюминия и оксида железа Fe 3 O 4) называемая термитом дает температуру около 3000°С.

Алюминий — амфотерный металл. Электронная конфигурация атома алюминия 1s 2 2s 2 2p 6 3s 2 3p 1 . Таким образом, на внешнем электронном слое у него находятся три валентных электрона: 2 — на 3s- и 1 — на 3p-подуровне. В связи с таким строением для него характерны реакции, в результате которых атом алюминия теряет три электрона с внешнего уровня и приобретает степень окисления +3. Алюминий является высокоактивным металлом и проявляет очень сильные восстановительные свойства.

Взаимодействие алюминия с простыми веществами

с кислородом

При контакте абсолютно чистого алюминия с воздухом атомы алюминия, находящиеся в поверхностном слое, мгновенно взаимодействуют с кислородом воздуха и образуют тончайшую, толщиной в несколько десятков атомарных слоев, прочную оксидную пленку состава Al 2 O 3 , которая защищает алюминий от дальнейшего окисления. Невозможно и окисление крупных образцов алюминия даже при очень высоких температурах. Тем не менее, мелкодисперсный порошок алюминия довольно легко сгорает в пламени горелки:

4Аl + 3О 2 = 2Аl 2 О 3

с галогенами

Алюминий очень энергично реагирует со всеми галогенами. Так, реакция между перемешанными порошками алюминия и йода протекает уже при комнатной температуре после добавления капли воды в качестве катализатора. Уравнение взаимодействия йода с алюминием:

2Al + 3I 2 =2AlI 3

С бромом, представляющим собой тёмно-бурую жидкость, алюминий также реагирует без нагревания. Образец алюминия достаточно просто внести в жидкий бром: тут же начинается бурная реакция с выделением большого количества тепла и света:

2Al + 3Br 2 = 2AlBr 3

Реакция между алюминием и хлором протекает при внесении нагретой алюминиевой фольги или мелкодисперсного порошка алюминия в заполненную хлором колбу. Алюминий эффектно сгорает в хлоре в соответствии с уравнением:

2Al + 3Cl 2 = 2AlCl 3

с серой

При нагревании до 150-200 о С или после поджигания смеси порошкообразных алюминия и серы между ними начинается интенсивная экзотермическая реакция с выделением света:

сульфид алюминия

с азотом

При взаимодействии алюминия с азотом при температуре около 800 o C образуется нитрид алюминия:

с углеродом

При температуре около 2000 o C алюминий взаимодействует с углеродом и образует карбид (метанид) алюминия, содержащий углерод в степени окисления -4, как в метане.

Взаимодействие алюминия со сложными веществами

с водой

Как уже было сказано выше, стойкая и прочная оксидная пленка из Al 2 O 3 не дает алюминию окисляться на воздухе. Эта же защитная оксидная пленка делает алюминий инертным и по отношению к воде. При снятии защитной оксидной пленки с поверхности такими методами, как обработка водными растворами щелочи, хлорида аммония или солей ртути (амальгирование), алюминий начинает энергично реагировать с водой с образованием гидроксида алюминия и газообразного водорода:

с оксидами металлов

После поджигания смеси алюминия с оксидами менее активных металлов (правее алюминия в ряду активности) начинается крайне бурная сильно-экзотермическая реакция. Так, в случае взаимодействия алюминия с оксидом железа (III) развивается температура 2500-3000 о С. В результате этой реакции образуется высокочистое расплавленное железо:

2AI + Fe 2 O 3 = 2Fe + Аl 2 О 3

Данный метод получения металлов из их оксидов путем восстановления алюминием называется алюмотермией или алюминотермией .

с кислотами-неокислителями

Взаимодействие алюминия с кислотами-неокислителями, т.е. практически всеми кислотами, кроме концентрированной серной и азотной кислот, приводит к образованию соли алюминия соответствующей кислоты и газообразного водорода:

а) 2Аl + 3Н 2 SO 4(разб.) = Аl 2 (SO 4) 3 + 3H 2

2Аl 0 + 6Н + = 2Аl 3+ + 3H 2 0 ;

б) 2AI + 6HCl = 2AICl 3 + 3H 2

с кислотами-окислителями

-концентрированной серной кислотой

Взаимодействие алюминия с концентрированной серной кислотой в обычных условиях, а также низких температурах не происходит вследствие эффекта, называемого пассивацией. При нагревании реакция возможна и приводит к образованию сульфата алюминия, воды и сероводорода, который образуется в результате восстановления серы, входящей в состав серной кислоты:

Такое глубокое восстановление серы со степени окисления +6 (в H 2 SO 4) до степени окисления -2 (в H 2 S) происходит благодаря очень высокой восстановительной способности алюминия.

— концентрированной азотной кислотой

Концентрированная азотная кислота в обычных условиях также пассивирует алюминий, что делает возможным ее хранение в алюминиевых емкостях. Так же, как и в случае с концентрированной серной, взаимодействие алюминия с концентрированной азотной кислотой становится возможным при сильном нагревании, при этом преимущественно протекает реакция:

— разбавленной азотной кислотой

Взаимодействие алюминия с разбавленной по сравнению с концентрированной азотной кислотой приводит к продуктам более глубокого восстановления азота. Вместо NO в зависимости от степени разбавления могут образовываться N 2 O и NH 4 NO 3:

8Al + 30HNO 3(разб.) = 8Al(NO 3) 3 +3N 2 O + 15H 2 O

8Al + 30HNO 3(оч. разб) = 8Al(NO 3) 3 + 3NH 4 NO 3 + 9H 2 O

со щелочами

Алюминий реагирует как с водными растворами щелочей:

2Al + 2NaOH + 6H 2 O = 2Na + 3H 2

так и с чистыми щелочами при сплавлении:

В обоих случаях реакция начинается с растворения защитной пленки оксида алюминия:

Аl 2 О 3 + 2NaOH + 3H 2 O = 2Na

Аl 2 О 3 + 2NaOH = 2NaAlO 2 + Н 2 О

В случае водного раствора алюминий, очищенный от защитной оксидной пленки, начинает реагировать с водой по уравнению:

2Al + 6H 2 O = 2Al(OH) 3 + 3H 2

Образующийся гидроксид алюминия, будучи амфотерным, реагирует с водным раствором гидроксида натрия с образованием растворимого тетрагидроксоалюмината натрия:

Al(OH) 3 + NaOH = Na

← Вернуться

×
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:
Я уже подписан на сообщество «sinkovskoe.ru»