Митоз деление соматических клеток фазы биологическое значение. Ii.з

Подписаться
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:

G1-пресинтетический период Интенсивные процессы биосинтеза белка. Образование органоидов. На деспирализованных молекулах ДНК синтезируются и-РНК. Интенсивные процессы биосинтеза белка. Образование органоидов. На деспирализованных молекулах ДНК синтезируются и-РНК. S -синтетический период Синтез ДНК - самоудвоение молекулы ДНК. Построение второй хроматиды. Получаются двухроматидные хромосомы Синтез ДНК - самоудвоение молекулы ДНК. Построение второй хроматиды. Получаются двухроматидные хромосомы G2- постсинтетический период Синтез белка, накопление энергии, подготовка к делению.




При митозе происходит разделение клетки на две абсолютно идентичные, имеющие одинаковый с материнским состав хромосом и генетическую информацию. Почему так происходит? В конце интерфазы происходит удвоение числа хромосом. Вспомним принцип комплементарности:


ДНК: АТГ-ТАЦ-ЦЦГ-ААТ-ТГА-АГТ ТАЦ- АТГ-ГГЦ-ТТА -АЦТ-ТЦА РЕПЛИКАЦИЯ ДНК ДНК: АТГ-ТАЦ-ЦЦГ-ААТ-ТГА-АГТ ТАЦ- АТГ-ГГЦ-ТТА -АЦТ-ТЦА Фрагмент молекулы ДНК имеет следующую нуклеотидную последовательность ДНК: АТГ-ТАЦ-ЦЦГ-ААТ-ТГА-АГТ. Какую последовательность имеет вторая цепь ДНК? Какая двухцепочная молекула ДНК получится в результате репликации исходной ДНК?


















Митоз (от греч. mitos - нить), называемый также кариокинезом, или непрямым делением клеток, является универсальным механизмом деления клеток. Митоз следует за G2-периодом и завершает клеточный цикл. Он длится 1- 3 часа и обеспечивает равномерное распределение генетического материала в дочерние клетки.












Цитокинез Следует после кариокинеза В результате него по экватору клетки формируется перегородка и образуются 2 дочерние клетки. (Во многих учебниках в можете встретиться с тем, что под названием "митоз" объединены деление ядра(кариокинез) и деление цитоплазмы (цитокинез)).










Задача У человека 2n = 46. Подсчитайте: 1.Количество хромосом в интерфазе митоза 2.Количество спирализованных хромосом в профазе митоза 3.Сколько хромосом выстроится в клетке по экватору в метафазе митоза? 4.Какое количество хромосом отойдет к каждому полюсу клетки в анафазе митоза? 5.Какое количество хромосом будут иметь дочерние клетки в телофазе митоза? 6.Приведите примеры тканей человека, клетки которых делятся с помощью митоза?


Установите соответствие процессам и фазам митоза. Ответ оформите в виде таблицы 1.Деспирализация ДНК А. Телофаза 2.Репликация ДНК Б. Профаза 3.Расхождение хромосом В. Интерфаза к полюсам клетки 4. Расположение хромосом Г. Метафаза по экватору клетки 5. Спирализация хромосом Д. Анафаза 6. Накопление питательных веществ, АТФ, ферментов


Ответ АВДГБВ




Лабораторная работа «Рассматривание микропрепаратов процесса митоза в корешке лука» Цель: обнаружить и зарисовать фазы митоза. Ход работы: 1.Рассмотрите микропрепарат. 2.Найдите на микропрепарате делящиеся клетки. 3. Определите, какие фазы деления клеток зафиксированы на препарате. 4. Не сдвигая микропрепарат, сосчитайте количество делящихся клеток попавших в поле зрения. 5. Зарисуйте клетки, сделайте соответствующие обозначения на рисунках.

Каждая клетка начинает свою жизнь, когда отделяется от материнской, и заканчивает существование, давая возможность появиться своим дочерним клеткам. Природой предусмотрено больше одного способа деления их ядра, в зависимости от их строения.

Способы деления клеток

Бинарное деление (встречается у прокариотов).

Амитоз (прямой способ деления).

Митоз (встречается у эукариотов).

Мейоз (предназначен для деления половых клеток).

Типы детерминированы природой и соответствуют строению клетки и той функции, которую она выполняет в макроорганизме либо сама по себе.

Бинарное деление

Наиболее часто этот тип встречается у Заключается он в удвоении кольцевой молекулы ДНК. Бинарное деление ядра называется так потому, что из материнской клетки появляются две одинаковые по размеру дочерние.

После того как генетический материл (молекула ДНК или РНК) подготовлен соответствующим образом, то есть увеличен вдвое, из клеточной стенки начинает формироваться поперечная перегородка, которая постепенно сужается и разделяет цитоплазму клетки на две приблизительно одинаковые части.

Второй процесс деления называется почкованием, или неравномерным бинарным делением. В этом случае на участке клеточной стенки появляется выпячивание, которое постепенно растет. После того как размеры «почки» и материнской клетки сравняются, они разделятся. А участок синтезируется снова.

Амитоз

Ядра похоже на описанное выше, с той разницей, что отсутствует удвоение генетического материала. Этот способ был впервые описан биологом Ремаком. Данное явление встречается в патологически измененных клетках (опухолевое перерождение), а также является физиологической нормой для ткани печени, хрящей и роговицы.

Процесс деления ядра называется амитозом, потому что клетка сохраняет свои функции, а не утрачивает их, как во время митоза. Это объясняет патологические свойства, присущие клеткам с данным способом деления. Кроме того, прямое деление ядра проходит без веретена деления, поэтому хроматин в дочерних клетках распределен неравномерно. В последующем такие клетки не могут использовать митотический цикл. Иногда в результате амитоза образуются многоядерные клетки.

Митоз

Это непрямое деление ядра. Чаще всего встречается в Главное отличие этот процесса заключается в том, что дочерние клетки и материнская содержат одинаковое число хромосом. Благодаря этому в организме поддерживается необходимое количество клеток, а также возможны процессы регенерации и роста. Первым митоз в животной клетке описал Флемминг.

Процесс деления ядра в данном случае разделяется на интерфазу и непосредственно митоз. Интерфаза - это состояние покоя клетки в промежутке между делениями. В ней можно выделить несколько фаз:

1. Пресинтетический период - клетка растет, в ней накапливаются белки и углеводы, активно синтезируется АТФ (аденозинтрифосфат).

2. Синтетический период - генетический материал увеличивается вдвое.

3. Постсинтетический период - клеточные элементы удваиваются, появляются белки, из которых состоит веретено деления.

Фазы митоза

Деление ядра эукариотической клетки - это процесс, для которого необходимо образование дополнительной органеллы - центросомы. Она расположена рядом с ядром, и основной ее функцией является формирование новой органеллы - веретена деления. Данная структура помогает равномерно распределить хромосомы между дочерними клетками.

Выделяют четыре фазы митоза:

1. Профаза : хроматин в ядре конденсируется в хроматиды, которые возле центромеры собираются, попарно образуя хромосомы. Ядрышки распадаются, к полюсам клетки расходятся центриоли. Образуется веретено деления.

2. Метафаза: хромосомы располагаются в линию, проходящую через центр клетки, формируя метафазную пластинку.

3. Анафаза: хроматиды из центра клетки расходятся к полюсам, а затем и центромера разделяется надвое. Такое движение возможно благодаря веретену деления, нити которого сокращаются и растягивают хромосомы в разные стороны.

4. Телофаза: формируются дочерние ядра. Хроматиды снова превращаются в хроматин, формируется ядро, а в нем - ядрышки. Заканчивается все разделением цитоплазмы и образованием клеточной стенки.

Эндомитоз

Увеличение генетического материала, которое не предусматривает деление ядра, называется эндомитозом. Он обнаружен в клетках растений и животных. В данном случае не происходит разрушения цитоплазмы и оболочки ядра, но хроматин превращается в хромосомы, а затем снова деспирализуется.

Этот процесс позволяет получить полиплоидные ядра, в которых увеличено содержание ДНК. Подобное встречается в колониеобразующих клетках красного костного мозга. Кроме того, наблюдаются случаи, когда молекулы ДНК увеличиваются в два раза, а число хромосом остается прежним. Они носят название политенных, и их можно обнаружить в клетках насекомых.

Значение митоза

Митотическое деление ядра - это способ поддержания постоянного набора хромосом. Дочерние клетки имеют такой же набор генов, как и материнская, и все характеристики, ей присущие. Митоз необходим для:

Роста и развития многоклеточного организма (из слияния половых клеток);

Перемещения клеток из нижних слоев в более верхние, а также замены клеток крови (эритроцитов, лейкоцитов, тромбоцитов);

Восстановления поврежденных тканей (у некоторых животных способности к регенерации являются необходимым условием для выживания, например, у морских звезд или ящериц);

Бесполого размножения растений и некоторых животных (беспозвоночных).

Мейоз

Механизм деления ядер половых клеток несколько отличается от соматических. В результате него получаются клетки, которые имеют в два раза меньше генетической информации, чем их предшественники. Это необходимо для того, чтобы поддерживать постоянное количество хромосом в каждой клетке организма.

Мейоз проходит в два этапа:

Редукционный этап;

Эквационный этап.

Правильное течение данного процесса возможно только в клетках с четным тетраплоидным, гексапроидным и т. д.). Конечно, остается возможность прохождения мейоза и в клетках с нечетным набором хромосом, но тогда потомство может оказаться нежизнеспособным.

Именно этот механизм обеспечивает стерильность в межвидовых браках. Так как в половых клетках находятся различные наборы хромосом, это затрудняет их слияние и появление жизнеспособного или фертильного потомства.

Первое деление мейоза

Название фаз повторяет таковые в митозе: профаза, метафаза, анафаза, телофаза. Но имеется ряд существенных различий.

1. Профаза : удвоенный набор хромосом совершает ряд превращений, проходя пять стадий (лептотена, зиготена, пахитена, диплотена, диакинез). Происходит все это благодаря конъюгации и кроссинговеру.

Конъюгация - это сближение В лептотене между ними образуются тонкие нити, затем в зиготене хромосомы соединяются попарно и в результате получаются структуры из четырех хроматид.

Кроссинговер - процесс перекрестного обмена участками хроматид между сестринскими или гомологичными хромосомами. Это происходит на стадии пахитены. Формируются перекрестки (хиазмы) хромосом. У человека таких обменов может быть от тридцати пяти до шестидесяти шести. Результатом данного процесса является генетическая неоднородность получаемого материала, или изменчивость половых клеток.

Когда наступает стадия диплотены, комплексы из четырех хроматид разрушаются и сестринские хромосомы взаимоотталкиваются. Диакинез завершает переход от профазы к метафазе.

2. Метафаза : хромосомы выстраиваются возле экватора клетки.

3. Анафаза : хромосомы, все еще состоящие из двух хроматид, расходятся к полюсам клетки.

4. Телофаза : веретено деления разрушается, в результате чего образуются две клетки с гаплоидным набором хромосом, имеющие удвоенное количество ДНК.

Второе деление мейоза

Этот процесс еще иначе называют «митозом мейоза». В момент между двумя фазами удвоения ДНК не происходит, и во вторую профазу клетка вступает с тем же набором хромосом, который у нее остался после телофазы 1.

1. Профаза : хромосомы конденсируются, проходит разделение клеточного центра (его остатки расходятся к полюсам клетки), разрушается оболочка ядра и формируется веретено деления, расположенное перпендикулярно к веретену из первого деления.

2. Метафаза : хромосомы располагаются на экваторе, образуется метафазная пластинка.

3. Анафаза : хромосомы делятся на хроматиды, которые расходятся в разные стороны.

4. Телофаза : в дочерних клетках образуется ядро, хроматиды деспирализуются в хроматин.

В конце второй фазы из одной материнской клетки мы имеем четыре дочерних с половинным набором хромосом. Если мейоз происходит совместно с гаметогенезом (то есть образованием половых клеток), то деление проходят резко, неравномерно, и формируется одна клетка с гаплоидным набором хромосом и три редукционных тельца, не несущих необходимой генетической информации. Они необходимы для того, чтобы в яйцеклетке и сперматозоиде сохранялась только половина генетического материала родительской клетки. Кроме того, такая форма деления ядра обеспечивает появление новых комбинаций генов, а также наследование чистых аллелей.

У простейших существует вариант мейоза, когда происходит только одно деление в первую фазу, а во вторую наблюдается кроссинговер. Ученые предполагают, что данная форма является эволюционным предшественником обычного мейоза многоклеточных организмов. Возможно, существуют и другие способы деления ядра, о которых ученые еще не знают.

Деление соматической клетки и ее ядра (митоз) сопровождается сложными многофазными трансформациями хромосом: 1) в процессе митоза происходит удвоение каждой хромосомы на основе комплементарной репликации молекулы ДНК с образованием двух сестринских нитевидных копий (хроматид), соединенных в области центромеры; 2) в последующем сестринские хроматиды разъединяются и эквивалентно распределяются по ядрам дочерних клеток.

В результате в делящихся соматических клетках поддерживается идентичность хромосомного набора и генеетического материала. Отдельно следует сказать о нейронах - высокодифференцированньгх постмитотических клетках, не претерпевающих клеточных делений на протяжении жизни. Компенсаторные возможности нейронов в ответ на действие повреждающих факторов ограничиваются внутриклеточной регенерацией и репарацией ДНК в неделящемся ядре, чем в значительной степени обусловлена специфика нейропатологических процессов наследственной и ненаследственной природы.

Совершенно иной тип деления - мейоз - характерен для половых клехок. Главной особенностью мейозa являются два последовательных деления клетки-предшественника и ее ядра, в то время как хромосомы удваиваются лишь однажды. Схематично механизм мейоза выглядит следующим образом: 1) в первом делении мейоза дочерние клетки получают из каждой хромосомной пары по одной гомологичной хромосоме, состоящей из удвоенных сестринских хроматид (поскольку при этом число хромосом в дочерних клетках уменьшается вдвое, данное деление является редукционным); во втором делении сестринские хроматиды разъединяются и эквивалентно расходятся по образующимся зрелым половым клеткам - гаметам. В результате число хромосом в гаметах оказывается вдвое меньшим по сравнению с исходной родительской клеткой.

После слияния ядер половых клеток при оплодотворении зигота получает стандартный двойной набор хромосом. Данный: механизм обеспечивает постоянство числа хромосом у разных поколений организмов, размножающихся половым путем.

Важнейшей биологической ролью мейоза является обеспечение генетического разнообразия особей в результате «перемешивания» отцовских и материнских генов в гамете. Это достигается двумя путями. Во-первых, в первом делении мейоза распределение отцовских и материнских хромосом по дочерним клеткам происходит случайным образом, в результате чего гаметы несут различные комбинации родительских хромосом.

Второй фундаментальный механизм поддержания генетического разнообразия заслуживает того, чтобы быть разобранным более подробно, поскольку он имеет прямое отношение к теме настоящей монографии -ДНК-диагностике.

В начальной фазе первого деления мейоза гомологичные хромосомы располагаются друг напротив друга и спариваются, образуя одну или несколько зон контакта (хиазм) между отдельными несестринскими хроматидами. Далее пара хроматид, образовавшая хиазму, обменивается участками ДНК - процесс, носящий, название кроссинговер. В результате кроссинговера образуются рекомбинантные хромосомы, состоящие из участков, имеющих происхождение от разных родительских линий. По завершении мейоза рекомбинантные хромосомы разойдутся по разным гаметам.

Таким образом, кроссинговер представляет собой частный случай генетической рекомбинации - процесса перераспределения генетического материала родителей при передаче потомству. Важным следствием кроссинговера становится создание новой комбинации генов у потомков при соединении родительских гамет. Поскольку при рекомбинации происходит обмен генетического материала между отцовской и материнской хромосомами, этот феномен всегда должен приниматься во внимание при анализе наследования хромосом в процессе нроведения косвенной ДНК-диагностики и расчете генетического сцепления.

Клетка — это основная структурная единица большинства организмов на Земле. В основе ее деления лежат два процесса — митоз и мейоз.

Что такое соматические клетки?

Так называют все клетки живых организмов, кроме половых. Все они обладают двойным набором хромосом, в отличие от тех же половых клеток, у которых одинарный набор. Из них сформированы все, за исключением вирусов, живые организмы в мире. В основе их деления лежит процесс под названием митоз.

Что такое митоз и какова его роль в природе?

Во время означенного процесса из одной клетки образуются две идентичные дочерние, с точно таким же набором хромосом, как и у материнской. Это единственный способ размножения всех одноклеточных эукариотов, также данный процесс лежит в основе регенерации тканей растений, животных и грибов. Митоз играет важнейшую роль не только в бесполом размножении, но и в половом, обеспечивая деление клеток эмбриона. Точно таким же способом делятся клетки растений, грибов и животных во время роста организма.

Что такое мейоз?

Это второй способ, с помощью которого делятся соматические клетки. Однако он несколько специфический. В процессе мейоза из одной клетки с двойным набором хромосом образовывается несколько дочерних с одинарным. Именно таким способом вырабатываются половые клетки, то есть гаметы.

Фазы митоза

Деление соматических клеток происходит в несколько этапов, у каждого из которых есть свои отличительные черты. Весь процесс длится около трех часов. Этапов насчитывается четыре, не считая интерфазы: профаза, анафаза, метафаза и телофаза. Обо всех по порядку.

Интерфаза

Это промежуток времени между делениями клетки, на котором она готовится к митозу. В этой фазе клетка развивается и проявляет обычные для нее признаки жизнедеятельности. Данный период не входит непосредственно в процесс митоза.

Профаза

Это самая длительная по времени фаза митоза. На ее протяжении увеличивается ядро клетки, хромосомы формируются в спирали. В этот период все хромосомы представляют собой две хроматиды, которые соединены центромерами — своеобразными перетяжками. Эти структуры похожи на букву Х. Затем ядерная оболочка и ядрышко разрушаются, и хромосомы переходят в цитоплазму. Центриоли клетки располагаются по ее полюсам и между собой образуют нити веретена деления, которые потом, в конце фазы, крепятся к центромерам.

Метафаза

Это следующий этап в процессе, с помощью которого делятся соматические клетки. На протяжении этой фазы хромосомы располагаются вдоль экватора клетки. Таким образом формируется метафазная пластинка. В это время хромосомы имеют очень малый размер, так как они сильно скручены в спирали. Однако их хорошо видно в микроскоп благодаря четкому расположению. Поэтому исследование хромосом клеток проводится обычно на этом этапе митоза.

Анафаза

Это самый непродолжительный этап деления клетки посредством митоза. В этот период нити веретена, образованного центриолями, начинают оттягивать центромеры хромосомы в противоположные стороны, вследствие чего происходит разделение ее на две отдельные хроматиды. Теперь в каждом полюсе клетки расположены одинаковые наборы хроматид.

Телофаза

Это последний этап митоза. На его протяжении наблюдаются процессы, противоположные тем, что происходили в трех предыдущих фазах. А именно: спирали хромосом раскручиваются, снова образуются ядерные оболочки и ядрышка. Также на этом этапе происходит непосредственно само деление: разделяется цитоплазма, и каждая дочерняя клетка получает свой набор органелл. У растений происходит еще и формирование целлюлозной стенки вокруг мембраны двух новообразованных структур.

Мейоз

Еще один процесс, в результате которого делятся соматические клетки. Он предполагает формирование гамет, то есть половых клеток с одинарным набором хромосом. Соматические клетки во время этого процесса делятся последовательно два раза. Таким образом, выделяют мейоз І и мейоз ІІ. Каждый из них состоит из фаз под такими же названиями, как и у митоза. Рассмотрим подробнее процессы, которые происходят в клетке во время различных стадий мейоза.

Мейоз І

Во время этого процесса клетка делится таким образом, что образуются две дочерние с сокращенным вдвое набором хромосом:

  1. Профаза . На этом этапе происходит интереснейший процесс — кроссинговер. Он заключается в том, что хроматиды переплетаются между собой и обмениваются отдельными участками ДНК. Вследствие этого происходит перекомбинация генетической информации клетки, что обеспечивает разнообразность организмов одного вида. Затем хроматиды разъединяются, и происходит то же, что и в профазе митоза: исчезает оболочка ядра, ядрышко и формируется веретено деления.
  2. Метафаза . В это время хромосомы выстраиваются вдоль экватора клетки, гомологичные при этом располагаются попарно.
  3. Анафаза . На этом этапе хромосомы передвигаются к разным полюсам клетки. То есть каждая пара гомологичных структур разделяется, одна из хромосом располагается в одной стороне, другая — в другой.
  4. Телофаза . Здесь происходит заново формирование ядерных мембран и ядрышек, цитоплазма и органеллы разделяются, и образовываются две дочерние клетки с одинарным набором хромосом.

Мейоз ІІ

Сразу после первого мейоза начинается второй. Профаза очень короткая. Вслед за ней наступает анафаза , на протяжении которой хромосомы занимают положение вдоль экватора, к ним крепятся нитки веретена деления. В анафазе к полюсам расходятся отдельные половины хромосом. В телофазе формируются четыре клетки с одинарным набором генетической информации. Вместе мейоз І и мейоз ІІ называются гаметогенезом.

Разнообразие клеток

Соматические клетки позвоночных животных и других организмов делятся на группы, в зависимости от своего предназначения, роли и функций тканей, которые из них состоят. В связи с этим они имеют несколько разное строение.

Виды тканей и особенности их клеток

Среди тканей животных выделяют такие разновидности: покровная, соединительная, нервная, мышечная, кровь, лимфа. Все они состоят из соматических клеток, однако немного различных по строению:


Деление клетки – это биологический процесс, лежащий в основе размножения и индивидуального развития всех живых организмов. Наиболее широко распространенная форма воспроизведения клеток у живых организмов – непрямое деление или митоз (от греч. «митос» - нить).

Митоз – способ размножения соматических клеток человека, сущность которого состоит в удвоении генетического материала клетки и его равномерного распределения между двумя дочерними клетками. Митоз способ закономерного деления клетки, при котором каждая из двух дочерних клеток получает в точности такое же число и типы хромосом, какие имела материнская клетка. В действительности, каждая исходная хромосома синтезирует свою точную копию непосредственно около себя. Новая хромосома строится из имеющегося в ядре материала несколько раньше, чем можно увидеть начало митотического процесса. Старая и новая хромосомы тождественны как морфологически, так и функционально. Период жизни клетки между двумя митозами называется интерфазой . Она в десятки раз продолжительнее митоза и завершает ряд важных процессов, предшествующих делению клетки: идет интенсивный синтез молекулы АТФ, белков и других органических веществ, удваивается каждая хромосома, образуя две сестринские хроматиды, скрепленные общей центромерой. Набор хромосом – 2n, увеличивается число основных органоидов клетки.

Процесс митоза длится 1-2 часа, в нём различают четыре фазы: профазу, метафазу, анафазу и телофазу .

1. Профаза самая продолжительная фаза митоза. В ней спирализируются и вследствие этого утолщаются хромосомы, состоящие из двух сестринских хроматид, удерживаемых вместе центромерой. К концу профазы ядерная мембрана (оболочка) и ядрышко исчезают и хромосомы рассредоточиваются по всей клетке. В цитоплазме к концу профазы центриоли отходят к полюсам и образуется веретено деления.

2.Метафаза – хромосомы продолжают спирализацию, их центромеры располагаются по экватору (в этой фазе они наиболее видны). К ним прикрепляются нити веретена деления.

3.Анафаза – делятся центромеры, сестринские хроматиды отделяются друг от друга и за счёт сокращения нитей веретена отходят к противоположным полюсам клетки.

4. Телофаза – делится цитоплазма, образуются две дочерние клетки, каждая с диплоидным набором хромосом, хромосомы раскручиваются, вновь образуются ядрышки и ядерные мембраны, исчезает веретено мембраны. После этого образуется перетяжка в экваториальной зоне клетки, разделяющая две сестринские клетки.

Так, из одной исходной клетки (материнской), образуются две новые, дочерние, имеющие хромосомный набор, который по количеству и качеству, по содержанию наследственной информации, морфологическим, анатомическим и физиологическим особенностям полностью идентичен родительским. Таким образом, митотическое деление клетки лежит в основе развития организмов, их размножения, а также обеспечивает самообновление тканей на протяжении жизни организма и восстановление их целостности после повреждения.

Митоз состоит из четырех последовательных фаз. Благодаря митозу обеспечивается равномерное распределение генетической информации родительской клетки между дочерними клетками. В процессе клеточного деления каждая дочерняя клетка получает в точности такие же хромосомы, какими обладала материнская клетка, и точно в таком же числе. Если в дочерней клетке в результате нарушения процесса клеточного деления оказалось больше или меньше хромосом, чем было в материнской клетке, то это приводит к заметным отклонениям от нормы, а иногда даже к гибели клетки.

← Вернуться

×
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:
Я уже подписан на сообщество «sinkovskoe.ru»