Почему летит ракета. Реактивное движение и ракета

Подписаться
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:

Выбрасывающие языки пламени ракетные двигатели выводят космический корабль на орбиту вокруг Земли. Другие ракеты выводят корабли за пределы Солнечной системы.

Во всяком случае, когда мы думаем о ракетах, то представляем себе космические полеты. Но ракеты могут летать и в вашей комнате, например во время празднования вашего дня рождения.

Обычный воздушный шарик тоже может быть ракетой. Каким образом? Надуйте шарик и зажмите его горловину, чтобы воздух не выходил наружу. Теперь отпустите шарик. Он начнет летать по комнате совершенно непредсказуемо и неуправляемо, толкаемый силой вырывающегося из него воздуха.

Вот другая простенькая ракета. Поставим на железнодорожную дрезину – пушку. Направим ее назад. Допустим, что трение между рельсами и колесами очень мало и торможение будет минимальным. Выстрелим из пушки. В момент выстрела дрезина тронется вперед. Если начать частую стрельбу, то дрезина не остановится, а с каждым выстрелом будет набирать скорость. Вылетая из пушечного ствола назад, снаряды толкают дрезину вперед.

Сила, которая при этом создается, называется отдачей. Именно эта сила заставляет двигаться любую ракету, как в земных условиях, так и в космосе. Какие бы вещества или предметы ни вылетали из движущегося предмета, толкая его вперед, мы будем иметь образец ракетного двигателя.

Интересно:

Почему звезды не падают? Описание, фото и видео


Ракета намного лучше приспособлена для полетов в космической пустоте, чем в земной атмосфере. Чтобы вывести в космос ракету, инженерам приходится конструировать мощные ракетные двигатели. Свои конструкции они основывают на универсальных законах мироздания, открытых великим английским ученым Исааком Ньютоном, работавшим в конце 17 века. Законы Ньютона описывают силу тяжести и то, что происходит с физическими телами, когда они движутся. Второй и третий законы помогают отчетливо понять, что представляет из себя ракета.

Движение ракеты и законы Ньютона

Второй закон Ньютона связывает силу движущегося предмета с его массой и ускорением (изменением скорости в единицу времени). Таким образом, для со здания мощной ракеты надо, чтобы ее двигатель выбрасывал большие массы сгоревшего топлива с большой скоростью. Третий закон Ньютона гласит, что сила действия равна силе противодействия и направлена в противоположную сторону. В случае ракеты сила действия - это раскаленные газы, вырывающиеся из сопла ракеты, сила противодействия толкает ракету вперед.


Ракеты, выводящие на орбиты космические корабли, используют как источник силы раскаленные газы. Но роль газов может играть все что угодно, то есть от выброшенных в пространство с кормы твердых тел до элементарных частиц - протонов, электронов, фотонов.

За счет чего летит ракета?

Многие думают, что ракета движется оттого, что газы, выброшенные из сопла, отталкиваются от воздуха. Но это не так. Именно сила, которая выбрасывает газ из сопла, толкает ракету в космос. Действительно ракете легче летать в открытом космосе, где нет воздуха, и ничто не ограничивает полет частиц газа, выброшенного ракетой, а чем быстрее распространяются эти частицы, тем быстрее летит ракета.

Ракета – средство передвижения человека в воздухе, в атмосфере. Самолеты и другие летательные аппараты также служат для того, чтобы летать. Но они друг от...

Ракета – средство передвижения человека в воздухе, в атмосфере . Самолеты и другие летательные аппараты также служат для того, чтобы летать. Но они друг от друга отличаются. Ракета взлетает, самолеты и аппараты летают. Но законы полета разные. Ракета больше похожа на выпущенный в воздух большой снаряд. Ракета предназначена для полетов в космос. И взлетает она за счет реактивной тяги.

Как движется ракета? За счет реактивной тяги.
Может ли она летать не только в воздухе? Может. Она может лететь даже в вакууме. В космосе воздуха нет, но ракета, тем не менее, летит. И даже лучше, чем в воздухе.

Работает система полета ракеты по закону Ньютона . Газы в двигателе ускоряются, создается тяга, которая создает силу. С помощью этой силы ракета движется. Чтобы двигаться, нужно от чего-то отталкиваться. Когда едет машина или идет человек, они отталкиваются от земной поверхности и снова на нее опускаются. Получается движение вперед, поскольку действует сила тяги Земли. Ракета поднимается в космос, но обратно не опускается. С помощью реактивных газов она отталкивается от Земли, но не возвращается назад, преодолевая силу тяги . Примерно также действуют водные объекты: плавает подводная лодка, кальмар, акула.

Топливо, для того, чтобы ракета взлетела, используют самое разное. Оно может быть жидким и твердым. За счет сжигания топлива ракета поднимается в воздух. После камеры сгорания топлива находятся сопла. Из них извергается сгоревший газ, который поднимает ракету в космос. Поднимающуюся ввысь ракету можно сравнить с извергающимся вулканом. Когда она взлетает в воздух, можно наблюдать большие клубы дыма, запах гари, огонь. Именно как при вулкане или большом взрыве.

Ракета состоит из нескольких ступеней. По ходу ее полета эти ступени отделяются. В самом космосе, уже гораздо легче, летит космический корабль, который выкинул весь лишний груз, то, что было ракетой.

Пример отделения ступеней

Следует отметить то, что самолет в космос вылететь не может. Воздушный шар тоже. Из всех известных средств передвижения по воздуху ракета единственная поднимается в космос и может летать за пределами планеты Земля.

Это интересно: ракета не самый известный летательный аппарат на сегодняшний день. Известно, что в космосе когда-то летали виманы. Принцип полета напоминает полет сегодняшней ракеты. Верхнюю часть ракеты напоминает вимана, но она немного другой формы.

Как и почему взлетает ракета

Для того чтобы увидеть, как взлетает ракета, необходимо посмотреть специальные телевизионные репортажи или отыскать соответствующие видеозаписи в интернете. Стать непосредственными свидетелями взлета и собственными глазами с небольшого расстояния увидеть, куда направляется аппарат, могут лишь отдельные лица, причастные к данному процессу, при этом они должны находиться на территории космодрома.

Как происходит взлет

Стартовать космический аппарат сам по себе не может, для этого ему необходимо получить команду с пункта управления. Ракета находится в вертикальном положении на космодроме, затем двигатели начинают издавать мощный звук. Сначала внизу появляется яркое пламя внушительных размеров, слышен нарастающий гул. Потом эта ракета взлетает наверх: сначала с относительно небольшой скоростью, затем быстрее. С каждой секундой она отдаляется от Земли все дальше, звук при этом становится сильнее.

Довольно скоро космический аппарат располагается на высоте, на которую не в состоянии подняться как гражданские, так и боевые самолеты. На такой высоте летают только аппараты, предназначенные для работы в просторах Вселенной, находящихся вне границ атмосфер небесных тел. Буквально через минуту взлетающий аппарат оказывается в космосе, то есть в безвоздушном пространстве. Далее он продолжает свой путь в зависимости от маршрута, который был намечен на Земле. Этот аппарат, как и ранее, управляется из командного пункта.

Реактивные двигатели

Звук, который издает ракета при взлете, говорит о том, что она оборудована реактивными двигателями. Моторы приводятся в действие силой, которая возникает в результате появления мощной струи раскаленных газов. Эти газы образуются в специальной камере тогда, когда сгорает топливо. Может показаться невероятным, что они обладают способностью запросто выводить на космическую орбиту ракету весом в несколько тонн, при этом характерный звук слышен на достаточно большом расстоянии от места запуска.

Вместе с тем следует иметь в виду, что воздух, содержащийся в камерах велосипедов или автомобилей, успешно выдерживает массу как людей, управляющих двухколесными транспортными средствами, так и водителей машин, а также их пассажиров и грузов. Поэтому нет ничего удивительного в том, что чересчур раскаленный газ, с огромной силой вырывающийся из сопла ракеты, способен толкать ее наверх с большой скоростью. Практически после каждого запуска ракеты площадка для ее старта, сооруженная с использованием особо прочных материалов, нуждается в ремонте, ведь ракеты не должны взлететь с поврежденной поверхности.

Третий закон Ньютона

Речь идет о законе, под которым подразумевают закон сохранения импульса. Изначально ракета, неподвижно расположенная на стартовой площадке перед запуском, имеет импульс, равный нулю. После включения двигателей нарастает звук, при сгорании топлива образуются газообразные продукты высокой температуры, которые на высокой скорости вырываются из сопла летательного аппарата. Это приводит к созданию вектора импульса, который направлен вниз.

Однако существует закон сохранения импульса, согласно которому суммарный импульс, приобретенный взлетающим аппаратом относительно стартовой площадки, должен по-прежнему равняться нулю. Здесь возникает другой вектор импульса, действие которого направлено на уравновешивание изделия по отношению к уходящим газам. Он появляется за счет того, что космический аппарат, который стоял неподвижно, начинает движение. Импульс, направленный вверх, равняется весу изделия, умноженному на его скорость.

В случае если двигатели ракеты достаточно мощные, она набирает скорость быстро. Данной скорости достаточно, чтобы вывести космический корабль на околоземную орбиту в течение довольно непродолжительного времени. Взлетающий аппарат имеет мощность, которая напрямую зависит от заправленного в него топлива. В советский период ракетные двигатели работали на авиационном керосине. В настоящее время используется более сложная химическая смесь, которая при сгорании выделяет огромное количество энергии.

МУНИЦИПАЛЬНЫЙ ЭТАП ВСЕРОССИЙСКОГО ДЕТСКОГО КОНКУРСА

НАУЧНО-ИССЛЕДОВАТЕЛЬСКИХ И ТВОРЧЕСКИХ РАБОТ

« Я - исследователь »

Исследовательская работа

Кукса Дмитрий

ученик 3 «А» класса

МОУ СОШ №7

Руководитель:

г. Алексеевка

Нам в школе объявили, что будет проходить конкурс «Я – исследователь». Я решил: «Буду участвовать!» Пришёл домой и стал думать, какую же тему мне выбрать. А дед, который служил в ракетных войсках, сказал: «Давай, Дима, ракету запустим. Как только расскажешь, какая сила заставляет ракету двигаться, я своё обещание выполню». Мне понравилась эта идея. И задания такого я не испугался. Очень уж хотелось посмотреть на полёт ракеты.

Я поставил задачи

1. Изучить строение ракеты

2. Узнать какая сила заставляет ракету двигаться

Методы исследования:

Теоретические: изучение источников информации

Практические: опыты.

Объектом исследования является: ракета

Предмет исследования: полёт ракеты

Ожидаемый результат: исследования расширят мой кругозор, помогут узнать можно ли поднять ракету в воздух в домашних условиях.

Гипотеза: я думаю изготовить модель ракеты в домашних условиях можно, но поднять в воздух нельзя. Она не взлетит.

Чтобы доказать или опровергнуть гипотезу я сначала изучил литературу. Вот что я узнал.

Русское слово "ракета" произошло от немецкого слова "ракет". А это - уменьшительное от итальянского слова "рокка", что значит "веретено ". Ракета похожа на веретено с острым обтекаемым носом для уменьшения сопротивления воздуха при полёте в атмосфере и это обтекатель ракеты (1)

2 топливный бак - это часть конструкции ракеты, обеспечивающая её топливом. Для жидкотопливных ракет топливный бак делится на бак с горючим и бак с окислителем, который располагается над топливным баком Для твердотопливных ракет топливный бак соединен с камерой сгорания и в процессе горения топлива сам выполняет функцию камеры сгорания.

3 камера сгорания - служит для сгорания топлива и выброса образовавшихся газов.

4.Сзади ракета имеет стабилизатор . Он похож на оперение стрелы или на хвост самолёта. При движении в атмосфере он не даёт ракете «вилять» из стороны в сторону.

5. А в дне у ракеты дырка. Называется сопло . Из этого сопла газы вырываются сильной струёй. Это от них за ракетой словно огненный хвост остаётся.

Я провёл опрос в классе на тему: почему взлетает ракета.

Многие мои одноклассники написали, что ракеты взлетают, потому что они отталкиваются от земли. Некоторые, что это очень сложный вопрос для них и они не могут ответить. А вот что я узнал: по третьему закону механики, тела действуют друг на друга с силами, равными по модулю и противоположными по направлению. В ракетном двигателе этот закон, открытый гениальным ученым Исааком Ньютоном, выполняется очень просто: выбрасываются газообразные продукты сгорания назад, чтобы получить движение ракеты вперед.
Закон Ньютона можно легко проверить, например, при помощи воздушного шара , заполненного воздухом. Если из него выпускать воздух, то шар начнет двигаться

Отпустить шарик.

Прокомментировать: (правда, очень хаотично) в направлении, противоположном направлению выпускаемого воздуха. Фотографии с шариком:

Я попытался сделать движение шара устойчивым.

Мне потребовалась нитка, коктейльная трубочка и скотч. Опыт. Комментарий: полёт воздушного шара стал плавным. Воздух выходит из шарика и он далеко улетает по верёвке в противоположную сторону.

Ракеты человек изобрёл давно. Их придумали в Китае много сотен лет тому назад. Китайцы использовали их для того, чтобы делать фейерверки.

Ракетное оружие" href="/text/category/raketnoe_oruzhie/" rel="bookmark">ракетное оружие . Это очень грозное оружие. Современные ракеты могут точно поразить цель на расстоянии в тысячи километров. Военные ракеты обычно имеют твёрдотоплевные двигатели.

https://pandia.ru/text/80/331/images/image004_3.jpg" alt="РСЗО Катюша" width="216" height="141 src=">

Взлёт ракеты «земля-воздух». Ракетная установка «Катюша»

А в XX веке школьный учитель физики Константин Эдуардович Циолковский придумал ракетам новую профессию. Он мечтал о том, как человек станет летать в космос. Он назвал нашу планету колыбелью человечества. Для того чтобы выйти из этой колыбели и начать шагать в космическом пространстве, и нужны ракеты.

Циолковским была предложена ракета, работающая на жидком водороде или керосине и был введён второй компонент реактивного топлива – окислитель, в качестве которого был выбран жидкий кислород.
Летающие в настоящее время ракеты обязаны и пороху, и керосину, и жидкому кислороду, и металлам.

Последнее время используются многоступенчатые ракеты. Они оборудованы несколькими двигательными установками (ступенями). Первая ступень самая большая. Ступени последовательно установлены друг за другом. Последняя ступень может достигнуть значительно большей высоты, чем одноступенчатая ракета.
В момент старта работает двигатель только первой ступени, после окончания работы первая ступень отделяется и начинает работать двигатель второй ступени, а затем и третьей.

Вывод: Все ракеты, как самые малые промышленного производства или сконструированные любителями, так и большие, изготовление которых связано с большими затратами сил и средств, имеют одну общую черту - они основаны на принципе реактивного движения.

И я сказал деду: «Реактивная сила заставляет ракету двигаться»

Мы подняли нашу с дедом ракету в воздух. Она была на твёрдом топливе. Вот что у нас получилось.

Гипотеза не подтвердилась, так как ракета поднялась в воздух. Красиво поднялась, на уровне дома.

В результате исследования было выяснено, что запуски ракет вредят атмосфере планеты Земля, т. к. выделяют вредный газ.

Очень хотелось чтобы по – прежнему люди изучали землю и солнечную систему, проводили прогноз погоды и устанавливали связь с помощью ракет, спутников, но не вредили нашей атмосфере. Я надеюсь, что у меня получится исследовать этот вопрос и найти простое, но надёжное решение.

Ещё я понял как опасны могут быть некоторые вещества и скорость взлёта. Я считаю, что запускать ракету или фейерверки нужно только вместе с родителями. Этими наблюдениями и переживаниями я поделился в классе с ребятами.

Чтобы вырваться за пределы земной атмосферы, ракетам требуется огромное количество энергии. При сгорании ракетного топлива образуется поток горячих газов, вырывающийся наружу через реактивное сопло. В результате возникает сила, толкающая ракету вперед — так же как воздух, вырывающийся из воздушного шарика, заставляет его лететь в противоположном направлении.

«Спейс Шаттл» для выхода на околоземную орбиту использует сразу две ракеты. Когда корабль оказывается в космосе, ракеты-носители и главный топливный бак отсоединяются и падают обратно на Землю.
«Шаттл» выводит на орбиту спутники, проводит различные научные эксперименты. На обратном пути он планирует и приземляется, как обычный самолет.

  1. Топливные баки содержат около двух миллионов литров (около полумиллиона галлонов) ракетного топлива.
  2. Парашюты замедляют скорость падения ракетных ускорителей на Землю после их отсоединения.
  3. Экипаж “Шаттла” может состоять из семи человек.
  4. Ракетный ускоритель
  5. Грузовой отсек
  6. Спутник
  7. Шасси

Что такое спутник?

Спутником называется любое тело, вращающееся вокруг планеты. Луна — спутник Земли Точно так же спутником Земли становится вышедший на ее орбиту космический аппарат. Искусственные спутники Земли находят самое разнообразное применение. Метеорологические спутники фотографируют облачный покров Земли, что помогает ученым предсказывать погоду. Астрономические спутники передают на землю информацию о звездах и планетах Спутники связи ретранслируют по всему миру телефонные разговоры и телевизионные передачи.

На рисунке слева — сделанная спутником фотография бури, которая только что миновала Великобританию и приближается к Скандинавии.

Вы это знали?

Когда астрономы смотрят на звезды, они видят многие из них такими, какими они были тысячи или даже миллионы лет назад. Некоторые из этих звезд, возможно, давно уже не существуют. Свет звезд идет к Земле так долго потому, что расстояние до них невероятно велико.

Ракеты поднимаются в космическое пространство за счет сжигания жидких или твердых топлив. После воспламенения в высокопрочных камерах сгорания эти топлива, обычно состоящие из горючего и окислителя, выделяют огромное количество тепла, создавая очень высокое давление, под действием которого продукты сгорания движутся в сторону земной поверхности через расширяющиеся сопла.

Так как продукты сгорания истекают из сопел вниз, ракета поднимается вверх. Это явление объясняется третьим законом Ньютона, в соответствии с которым для каждого действия существует равное по величине и противоположное по направлению противодействие. Поскольку двигателями на жидком топливе легче управлять, чем твердотопливными, их обычно используют в космических ракетах, в частности, в показанной на рисунке слева ракете Сатурн-5. Эта трехступенчатая ракета сжигает тысячи тонн жидкого водорода и кислорода для вывода космического корабля на орбиту.

Для быстрого подъема вверх тяга ракеты должна превышать ее вес примерно на 30 процентов. При этом, если космический корабль должен выйти на околоземную орбиту, он должен развить скорость около 8 километров в секунду. Тяга ракет может доходить до нескольких тысяч тонн.

  1. Пять двигателей первой ступени поднимают ракету на высоту 50-80 километров. После того как топливо первой ступени будет израсходовано, она отделится и включатся двигатели второй ступени.
  2. Примерно через 12 минут после старта вторая ступень доставляет ракету на высоту более 160 километров, после чего отделяется с пустыми баками. Также отделяется ракета аварийного спасения.
  3. Разгоняемая единственным двигателем третьей ступени, ракета переводит космический корабль «Аполлон» на временную околоземную орбиту, высотой около 320 километров. После непродолжительного перерыва двигатели включаются снова, увеличивая скорость космического корабля примерно до 11 километров в секунду и направляя его в сторону Луны.


Двигатель F-1 первой ступени сжигает топливо и выводит продукты сгорания в окружающую среду.

После запуска на орбиту космический корабль «Аполлон» получает разгонный импульс в сторону Луны. Затем третья ступень отделяется и космический корабль, состоящий из командного и лунного модулей, выходит на 100-километровую орбиту вокруг Луны, после чего лунный модуль совершает посадку. Доставив побывавших на Луне космонавтов на командный модуль, лунный модуль отделяется и прекращает свое функционирование.

← Вернуться

×
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:
Я уже подписан на сообщество «sinkovskoe.ru»