Некоторые процессы в природе разрушают природные тела. Второй закон термодинамики

Подписаться
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:

Закон сохранения энергии утверждает, что количество энергии при любых ее превращениях остается неизменным. Но он ничего не говорит о том, какие энергетические превращения возможны. Между тем многие процессы, вполне допустимые с точки зрения закона сохранения энергии, никогда не протекают в действительности.

Примеры необратимых процессов . Нагретые тела постепенно остывают, передавая твою энергию более холодным окружающим телам. Обратный процесс передачи теплоты от холодного тела к горячему не противоречит закону сохранения энергии, но такой процесс никогда не наблюдался.

Другой пример. Колебания маятника, выведенного из положения равновесия, затухают (рис. 49; 1, 2, 3, 4 – последовательные положения маятника при максимальных отклонениях от положения равновесия). За счет работы сил трения механическая энергии убывает, а температура маятника и окружающего воздуха (а значит, и их внутренняя энергия) слегка повышается. Энергетически допустим и обратный процесс, когда амплитуда колебаний маятника увеличивается за счет охлаждения самого маятника и окружающей среды. Но такой процесс никогда не наблюдался. Механическая энергия самопроизвольно переходит во внутреннюю, но не наоборот. При этом упорядоченное движение тела как целого превращается в не упорядоченное тепловое движение слагающих его молекул.
Общее заключение о необратимости процессов в природе . Переход теплоты от горячего тела к холодному и механической энергии во внутреннюю – это примеры наиболее типичных необратимых процессов. Число подобных примеров можно увеличить практически неограниченно. Все они говорят о том, что процессы в природе имеют определенную направленность, никак не отраженную в первом законе термодинамики. Все макроскопические процессы в природе протекают только в одном определенном направлении. В обратном направлении они самопроизвольно протекать не могут. Все процессы в природе необратимы, и самые трагические из них старение и смерть организмов.

Точная формулировка понятия необратимого процесса . Для правильного понимания существа необратимости процессов необходимо сделать следующее уточнение. Необратимым называется такой процесс, обратный которому может протекать только как одно из звеньев более сложного процесса. Так, можно вновь увеличить размах колебаний маятника, подтолкнув его рукой. Но это увеличение возникает не само собой, а становится возможным в результате более сложного процесса, включающего движение руки.

Можно в принципе перевести теплоту от холодного тела к горячему. Но для этого нужна холодильная установка, потребляющая энергию.

Кино «наоборот» . Яркой иллюстрацией необратимости явлений в природе служит просмотр кинофильма в обратном направлении. Например, прыжок в воду будет при этом выглядеть следующим образом. Спокойная вода в бассейне начинает бурлить, появляются ноги, стремительно движущиеся вверх, а затем и весь ныряльщик. Поверхность воды быстро успокаивается. Постепенно скорость ныряльщика уменьшается, и вот уже он спокойно стоит на вышке. То, что мы видим на экране, могло бы происходить в действительности, если бы процессы можно было обратить. «Нелепость» происходящего проистекает из того, что мы привыкли к определенной направленности процессов и не сомневаемся в невозможности их обратного течения. А ведь такой процесс, как вознесение ныряльщика на вышку из воды, не противоречит ни закону сохранения энергии, ни законам механики, ни вообще каким-либо законам, кроме второго закона термодинамики .

Второй закон термодинамики. Второй закон термодинамики указывает направление возможных энергетических превращений и тем самым выражает необратимость процессов в природе. Он был установлен путем непосредственного обобщения опытных фактов.

Есть несколько формулировок второго закона, которые, несмотря на внешнее различие, выражают, в сущности, одно и то же и поэтому равноценны.

Немецкий ученый Р. Клаузиус сформулировал этот закон так: невозможно перевести тепло от более холодной системы к более горячей при отсутствии других одновременных изменений в обеих системах или в окружающих телах.

Здесь констатируется опытный факт определенной направленности теплопередачи: теплота сама собой переходит всегда от горячих тел к холодным. Правда, в холодильных установках осуществляется теплопередача от холодного тела к более теплому, но эта передача связана с «другими изменениями в окружающих телах»: охлаждение достигается за счет работы.

Важность этого закона состоит в том, что из него можно вывести заключение о необратимости не только процесса тепло- передачи, но и других процессов в природе. Если бы теплота в каких либо случаях могла самопроизвольно передаваться от холодных тел к горячим, то это позволило бы сделать обратимыми и другие процессы. В частности, позволило бы создать двигатели, полностью превращающие внутреннюю энергию в механическую.

- 40.00 Кб

Реферат по физике

на тему: «Необратимость процессов в природе»

Работу выполнил

Игорь Рубцов

    Введение

Давно было замечено, что в одну и ту же реку дважды войти нельзя. Мир вокруг нас меняется, наше общество меняется, и мы сами, члены общества, только стареем. Изменения необратимы.

Необратимые процессы – физические процессы, которые могут самопроизвольно протекать только в одном направлении - в сторону равномерного распределения вещества, теплоты и т. д.; характеризуются положительным производством энтропии. В замкнутых системах необратимые процессы приводят к возрастанию энтропии.

Классическая термодинамика, изучающая равновесные, обратимые процессы, устанавливает неравенства, которые указывают возможное направление необратимых процессов.

Необратимые процессы изучаются термодинамикой неравновесных процессов и статистической теорией неравновесных процессов. Термодинамика необратимых процессов дает возможность находить для различных необратимых процессов производство энтропии в системе в зависимости от параметров неравновесного состояния, а также получать уравнения, описывающие изменения во времени этих параметров.

Необратимые процессы

К необратимым процессам относятся: процессы диффузии, теплопроводности, термодиффузии, вязкого течения, расширения газа в пустоту и т.п.

Диффузия (от лат. diffusio - распространение, растекание, рассеивание), движение частиц среды, приводящее к переносу вещества и выравниванию концентраций или к установлению равновесного распределения концентраций частиц данного сорта в среде. В отсутствие макроскопического движения среды (напр., конвекции) диффузия молекул (атомов) определяется их тепловым движением (т. н. молекулярная диффузия). В неоднородной системе (газ, жидкость) при молекулярной диффузии в отсутствие внешних воздействий диффузионный поток (поток массы) пропорционален градиенту его концентрации. Коэффициент пропорциональности называется коэффициентом диффузии. В физике, кроме диффузии молекул (атомов), рассматривают диффузию электронов проводимости, дырок, нейтронов и других частиц.

Теплопроводность, перенос энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия составляющих его частиц. Приводит к выравниванию температуры тела. Обычно количество переносимой энергии, определяемое как плотность теплового потока, пропорционально градиенту температуры (закон Фурье). Коэффициент пропорциональности называют коэффициентом теплопроводности.

Термодиффузия (термическая или тепловая диффузия), диффузия, обусловленная наличием в среде (растворе, смеси) градиента температуры. При термодиффузии концентрация компонентов в областях пониженной и повышенной температур различна. Термодиффузию в растворах называют также эффектом Соре по имени швейцарского ученого Ш. Соре (Ch. Soret, 1879).

Неравновесные процессы, физические процессы, в которых система проходит через неравновесные состояния. Неравновесные процессы необратимы.

Термодинамика неравновесных процессов, раздел физики, изучающий неравновесные процессы (диффузию, вязкость, термоэлектрические явления и др.) на основе общих законов термодинамики. Для количественного изучения неравновесных процессов, в частности определения их скоростей в зависимости от внешних условий, составляются уравнения баланса массы, импульса, энергии, а также энтропии для элементарных объемов системы, и эти уравнения исследуются совместно с уравнениями рассматриваемых процессов. Термодинамика неравновесных процессов - теоретическая основа исследования открытых систем, в т. ч. живых существ.

Открытые системы, системы, которые могут обмениваться с окружающей средой веществом (а также энергией и импульсом). К открытым системам относятся, напр., химическая и биологическая системы (в т. ч. живые организмы), в которых непрерывно протекают химические реакции за счет поступающих извне веществ, а продукты реакций отводятся. Открытые системы могут находиться в стационарных состояниях, далеких от равновесных состояний.

Неравновесность систем

В абсолютно равновесных системах энтропия достигает максимально возможную величину при данном количестве элементов. Элементы при ЭО макс. действуют неограниченно "свободно", независимо от влияния других элементов. В системе отсутствует какая-либо упорядоченность.

Очевидно, абсолютного хаоса в системах не существует. Все существующие реально системы имеют в структуре менее или более заметный порядок и соответствующую ОНГ. Чем больше система имеет в структуре упорядочённость, тем больше она удаляется от равновесного состояния. С другой стороны неравновесные системы стремятся двигаться в сторону термодинамического равновесия, т.е. увеличивать свою ОЭ. Если они не получают дополнительную энергию или ОНГ, они не могут в длительное время сохранять своё неравновесное состояние. Но равновесие может быть и динамическим, где процессы протекают в равном объёме в противоположные стороны. Внешне сохраняется равновесие, т.е. устойчивость системы. Если скорость таких процессов мало изменяется, то такие режимы являются стационарными, т.е. относительно стабильными во времени. Скорость процессов может изменятся в очень широких пределах. Если скорость процессов очень маленькая, то система может находится в состоянии локального квазиравновесия, т.е. кажущегося равновесия. Неравновесность систем играет существенную роль в их инфообмене. Чем больше неравновесность, тем больше их чувствительность и способность принимать информацию и тем больше возможности саморазвития системы.

Возрастание энтропии в замкнутых системах

Энтропия первоначально была введена для объяснения закономерностей работы тепловой машины. В узком смысле энтропия характеризует равновесное состояние замкнутой системы из большого числа частиц.

В обычном понимании равновесие в системе означает просто хаос. Для человека максимум энтропии - это разрушение. Любое разрушение увеличивает энтропию.

Энтропия замкнутой системы необратима. Но в природе полностью замкнутых систем не существует. А для открытых неравновесных систем точного определения энтропии пока не известно. Измерить энтропию нельзя. Из строгих физических законов она не выводится. Энтропия вводится в термодинамике для характеристики необратимости протекающих в газах процессов.

Многие ученые не считают феноменологические законы термодинамики законами природы, а рассматривают их как частный случай при работе с газом с помощью тепловой машины. Поэтому не рекомендуются расширенная трактовка энтропии в физике.

С другой стороны необратимость протекающих физических процессов и самой нашей жизни – это факт. С этой позиции вполне оправдано использование понятия энтропии в нефизических дисциплинах для характеристики состояния системы. Все природные системы, включая человеческий организм и человеческие сообщества, не являются замкнутыми. Открытость системы позволяет локальным образом уменьшать энтропию за счет обмена энергией. Примеры необратимых процессов . Нагретые тела постепенно остывают, передавая свою энергию более холодным окружающим телам. Обратный процесс передачи теплоты от холодного тела к горячему не противоречит закону сохранения энергии, если количество теплоты, отданное холодным телом, равно количеству теплоты, полученному горячим, но такой процесс самопроизвольно никогда не происходит.
Другой пример. Колебания маятника, выведенного из положения равновесия, затухают (рис.13.9; 1, 2, 3, 4 - последовательные положения маятника при максимальных отклонениях от положения равновесия). За счет работы сил трения механическая энергия маятника убывает, а температура маятника и окружающего воздуха (а значит, и их внутренняя энергия) слегка повышается. Энергетически допустим и обратный процесс, когда амплитуда колебаний маятника увеличивается за счет охлаждения самого маятника и окружающей среды. Но такой процесс никогда не наблюдается. Механическая энергия самопроизвольно переходит во внутреннюю, но не наоборот. При этом энергия упорядоченного движения тела как целого превращается в энергию неупорядоченного теплового движения слагающих его молекул.

Общее заключение о необратимости процессов в природе . Переход тепла от горячего тела к холодному и механической энергии во внутреннюю - это примеры наиболее типичных необратимых процессов. Число подобных примеров можно увеличивать практически неограниченно. Все они говорят о том, что процессы в природе имеют определенную направленность, никак не отраженную в первом законе термодинамики. Все макроскопические процессы в природе протекают только в одном определенном направлении . В обратном направлении они самопроизвольно протекать не могут. Все процессы в природе необратимы, и самые трагические из них - старение и смерть организмов.
Точная формулировка понятия необратимого процесса. Для правильного понимания существа необратимости процессов необходимо сделать следующее уточнение: необратимыми называ ются такие процессы, которые могут самопроизвольно протекать лишь в одном определенном направлении; в обратном направлении они могут протекать только при внешнем воздействии. Так, можно вновь увеличить размах колебаний маятника, подтолкнув его рукой. Но это увеличение возникает не само собой, а становится возможным в результате более сложного процесса, включающего движение руки.
Математически необратимость механических процессов выражается в том, что уравнения движения макроскопических тел изменяются с изменением знака времени. Они, как говорят в таких случаях, не инвариантны при преобразовании t→-t . Ускорение не меняет знака при замене t→-t . Силы, зависящие от расстояний, также не изменяют знака. Знак при замене t на -t меняется у скорости. Именно поэтому при совершении работы силами трения, зависящими от скорости, кинетическая энергия тела необратимо переходит во внутреннюю.
Кино «наоборот». Яркой иллюстрацией необратимости явлений в природе служит просмотр кинофильма в обратном направлении. Например, прыжок в воду будет при этом выглядеть следующим образом. Спокойная вода в бассейне начинает бурлить, появляются ноги, стремительно движущиеся вверх, а затем и весь ныряльщик. Поверхность воды быстро успокаивается. Постепенно скорость ныряльщика уменьшается, и вот уже он спокойно стоит на вышке. То, что мы видим на экране, могло бы происходить в действительности, если бы процессы можно было обратить.
Нелепость происходящего на экране проистекает из того, что мы привыкли к определенной направленности процессов и не сомневаемся в невозможности их обратного течения. А ведь такой процесс, как вознесение ныряльщика на вышку из воды, не противоречит ни закону сохранения энергии, ни законам механики, ни вообще каким-либо законам, кроме второго закона термодинамики .
Второй закон термодинамики. Второй закон термодинамики указывает направление возможных энергетических превращений, т. е. направление процессов, и тем самым выражает необратимость процессов в природе. Этот закон был установлен путем непосредственного обобщения опытных фактов.
Есть несколько формулировок второго закона, которые, несмотря на внешнее различие, выражают, в сущности, одно и то же и поэтому равноценны.
Немецкий ученый Р. Клаузиус (1822-1888) сформулировал этот закон так: невозможно перевести тепло от более холодной системы к более горячей при отсутствии других одновременных изменений в обеих системах или в окружающих телах.
Здесь констатируется опытный факт определенной направленности теплопередачи: тепло само собой переходит всегда от горячих тел к холодным. Правда, в холодильных установках осуществляется теплопередача от холодного тела к более теплому, но эта передача связана с другими изменениями в окружающих телах: охлаждение достигается за счет работы.
Важность этого закона в том, что из него можно вывести заключение о необратимости не только процесса теплопередачи, но и других процессов в природе. Если бы тепло в каких-либо случаях могло самопроизвольно передаваться от холодных тел к горячим, то это позволило бы сделать обратимыми и другие процессы.
Все процессы самопроизвольно протекают в одном определенном направлении. Они необратимы. Тепло всегда переходит от горячего тела к холодному, а механическая энергия макроскопических тел - во внутреннюю.
Направление процессов в природе указывается вторым законом термодинамики.

Заключение

Подводя итог всему, что было сказано выше, отметим, что по мере того, как рациональная наука все глубже и глубже постигает сложность организации существующих в мире систем она все в большей мере осознает недостаточность ранее признанных редукционистских концепций. Поиски источников информации определяющей структуры и функции сложных систем, приводят науку к необходимости создания телеологических концепций, то есть, в конечном счете, к признанию некого организующего начала, которое и есть не что иное, как проявление воли Творца.

Основным резервуаром свободной энергии в биологических системах являются электронно-возбужденные состояния сложных молекулярных комплексов. Эти состояния непрерывно поддерживаются за счет кругооборота электронов в биосфере, источником которого является солнечная энергия, а основным "рабочим веществом" - вода. Часть состояний тратится на обеспечение текущего энергоресурса организма, часть может запасаться впредь, подобно тому, как это происходит в лазерах после поглощения импульса накачки.

Список литературы

    1. А.Н. Матвеев, "Молекулярная физика"

    2. Большая физическая энциклопедия

    3. Канке В.А. «Основные философские направления и концепции науки. Итоги ХХ столетия».-М.:Логос,2000.

    4. Лешкевич Т.Г. «Философия науки: традиции и новации» М.:ПРИОР,2001 «Философия» под. ред. Кохановского В.П. Ростов-н/Д.:Феникс,2000

    5. О. Наумов, газета "Монолог" 2000г,N4

    6. Г. Хакен, "Информация и самоорганизация".

Описание

Давно было замечено, что в одну и ту же реку дважды войти нельзя. Мир вокруг нас меняется, наше общество меняется, и мы сами, члены общества, только стареем. Изменения необратимы.
Необратимые процессы – физические процессы, которые могут самопроизвольно протекать только в одном направлении - в сторону равномерного распределения вещества, теплоты и т. д.; характеризуются положительным производством энтропии. В замкнутых системах необратимые процессы приводят к возрастанию энтропии.

  • Закон сохранения энергии утверждает, что количество энергии при любых ее превращениях остается неизменным. Но он ничего не говорит о том, какие энергетические превращения возможны. Между тем многие процессы, вполне допустимые с точки зрения закона сохранения энергии, никогда не протекают в действительности.

Нагретые тела сами собой остывают, передавая свою энергию более холодным окружающим телам. Обратный процесс передачи теплоты от холодного тела к горячему не противоречит закону сохранения энергии, но на самом деле не происходит.

Другой пример. Колебания маятника, выведенного из положения равновесия, затухают (рис. 5.11; 1, 2, 3, 4 - последовательные положения маятника при максимальных отклонениях от положения равновесия). За счет работы сил трения механическая энергия убывает, а температура маятника и окружающего воздуха слегка повышается. Энергетически допустим и обратный процесс, когда амплитуда колебаний маятника увеличивается за счет охлаждения самого маятника и окружающей среды. Но такой процесс никогда не наблюдался. Механическая энергия самопроизвольно переходит во внутреннюю, но не наоборот. При этом упорядоченное движение тела как целого превращается в неупорядоченное тепловое движение слагающих его молекул.

Число подобных примеров можно увеличить практически неограниченно. Все они говорят о том, что процессы в природе имеют определенную направленность, никак не отраженную в первом законе термодинамики. Все процессы в природе протекают только в одном определенном направлении. В обратном направлении самопроизвольно они протекать не могут. Все процессы в природе необратимы, и самые трагические из них - старение и смерть организмов.

Уточним понятие необратимого процесса. Необратимым процессом может быть назван такой процесс, обратный которому может протекать только как одно из звеньев более сложного процесса . Так, в примере с маятником можно вновь увеличить амплитуду колебаний маятника, подтолкнув его рукой. Но это увеличение амплитуды возникает не само собой, а становится возможным в результате более сложного процесса, включающего толчок рукой. Можно в принципе перевести теплоту от холодного тела к горячему, но для этого нужна холодильная установка, потребляющая энергию, и т. д.

Математически необратимость механических процессов выражается в том, что уравнения движения макроскопических тел изменяются с изменением знака времени. Они, как говорят, не инвариантны при преобразовании t -> -t. Ускорение не меняет знака при t -> -t. Силы, зависящие от расстояний, также не меняют знака. Знак при замене t на -t меняется у скорости. Именно поэтому при совершении работы силами трения, зависящими от скорости, кинетическая энергия тела необратимо переходит во внутреннюю.

Хорошей иллюстрацией необратимости явлений в природе служит просмотр кинофильма в обратном направлении. Например, падение хрустальной вазы со стола будет выглядеть следующим образом. Лежащие на полу осколки вазы устремляются друг к другу и, соединяясь, образуют целую вазу. Затем ваза возносится вверх и вот уже спокойно стоит на столе. То, что мы видим на экране, могло бы происходить в действительности, если бы процессы можно было обратить. Нелепость происходящего проистекает из того, что мы привыкли к определенной направленности процессов и не допускаем возможности их обратного течения. А ведь такой процесс, как восстановление вазы из осколков, не противоречит ни закону сохранения энергии, ни законам механики, ни вообще каким-либо законам, кроме второго закона термодинамики, который мы сформулируем в следующем параграфе.

Процессы в природе необратимы. Наиболее типичными необратимыми процессами являются:

  1. переход теплоты от горячего тела к холодному;
  2. переход механической энергии во внутреннюю.

Обратимые и необратимые процессы , пути изменения состояния термодинамической системы.

Процесс называют обратимым , если он допускает возвращение рассматриваемой системы из конечного состояния в исходное через ту же последовательность промежуточных состояний, что и в прямом процессе, но проходимую в обратном порядке. При этом в исходное состояние возвращается не только система, но и среда. Обратимый процесс возможен, если и в системе, и в окружающей среде он протекает равновесно. При этом предполагается, что равновесие существует между отдельными частями рассматриваемой системы и на границе с окружающей средой. Обратимый процесс - идеализированный случай, достижимый лишь при бесконечно медленном изменении термодинамических параметров. Скорость установления равновесия должна быть больше, чем скорость рассматриваемого процесса.

Если невозможно найти способ вернуть и систему, и тела в окружающей среде в исходное состояние, процесс изменения состояния системы называют необратимым .

Необратимые процессы могут протекать самопроизвольно только в одном направлении; таковы диффузия,теплопроводность, вязкое течение и другое. Для химической реакции применяют понятия термодинамической и кинетической обратимости, которые совпадают только в непосредственной близости к состоянию равновесия На практике нередко встречаются системы, находящиеся в частичном равновесии, т.е. в равновесии по отношению к определенного рода процессам, тогда как в целом система неравновесна. Например, образец закаленной стали обладает пространственной неоднородностью и является системой, неравновесной по отношению к диффузионным процессам, однако в этом образце могут происходить равновесные циклы механической деформации, поскольку времена релаксации диффузии и деформации в твердых телах отличаются на десятки порядков. Следовательно, процессы с относительно большим временем релаксации являются кинетически заторможенными и могут не приниматься во внимание при термодинамич. анализе более быстрых процессов.

Общее заключение о необратимости процессов в природе . Переход тепла от горячего тела к холодному и механической энергии во внутреннюю - это примеры наиболее типичных необратимых процессов. Число подобных примеров можно увеличивать практически неограниченно. Все они говорят о том, что процессы в природе имеют определенную направленность, никак не отраженную в первом законетермодинамики. Все макроскопические процессы в природе протекают только в одном определенном направлении . В обратном направлении они самопроизвольно протекать не могут. Все процессы в природе необратимы, и самые трагические из них - старение и смерть организмов.
Важность этого закона в том, что из него можно вывести заключение о необратимости не только процесса теплопередачи, но и других процессов в природе. Если бы тепло в каких-либо случаях могло самопроизвольно передаваться от холодных тел к горячим, то это позволило бы сделать обратимыми и другие процессы. Все процессы самопроизвольно протекают в одном определенном направлении. Они необратимы. Тепло всегда переходит от горячего тела к холодному, а механическая энергия макроскопических тел - во внутреннюю.
Направление процессов в природе указывается вторым законом термодинамики.

Второй закон термодинамики констатирует факт необратимости процессов в природе, но не дает ему никакого объяснения. Это объяснение может быть получено только на основе молекулярно-кинетической теории, и оно является далеко не простым.

Противоречие между обратимостью микропроцессов и необратимостью макропроцессов

Необратимость макропроцессов выглядит парадоксально, потому что все микропроцессы обратимы во времени. Уравнения движения отдельных микрочастиц, как классические, так и квантовые, обратимы во времени, ибо никаких сил трения, зависящих от скорости, не содержат. Сила трения - это макроскопический эффект от взаимодействия большого тела с огромным количеством молекул окружающей среды, и появление этой силы само нуждается в объяснении. Силы, посредством которых взаимодействуют микрочастицы (в первую очередь это электромагнитные силы), по времени обратимы. Уравнения Максвелла, описывающие электромагнитные взаимодействия, не меняются при замене t на - t .

Если взять простейшую модель газа - совокупность упругих шариков, то газ в целом будет обнаруживать определенную направленность поведения. Например, будучи сжат в половине сосуда, он начнет расширяться и займет весь сосуд. Снова он не сожмется. Уравнения же движения каждой молекулы-шарика обратимы по времени, так как содержат только силы, зависящие от расстояний и проявляющиеся при столкновении молекул.

Таким образом, задача состоит не только в объяснении происхождения необратимости, но и в согласовании факта обратимости микропроцессов с фактом необратимости макропроцессов.

Заслуга в нахождении принципиально правильного подхода к решению этой проблемы принадлежит Больцману. Правда, некоторые аспекты проблемы необратимости до сих пор не получили исчерпывающего решения.

Житейский пример необратимости

Приведем простой житейский пример, имеющий, несмотря на свою тривиальность, прямое отношение к решению проблемы необратимости Больцманом.

Допустим, с понедельника вы решили начать новую жизнь. Непременным условием этого обычно является идеальный или близкий к идеальному порядок на письменном столе. Вы расставляете все предметы и книги на строго определенные места, и у вас на столе царит состояние, которое с полным правом можно назвать состоянием «порядок».

Что произойдет с течением времени, хорошо известно. Вы забываете ставить предметы и книги на строго определенные места, и на столе воцаряется состояние хаоса. Нетрудно понять, с чем это связано. Состоянию «порядок» отвечает только одно определенное расположение предметов, а состоянию «хаос» - несравнимо большее число. И как только предметы начнут занимать произвольные положения, не контролируемые вашей волей, на столе само собой возникает более вероятное состояние хаоса, реализуемое гораздо большим числом распределений предметов на столе.

В принципе именно такие соображения были высказаны Больцманом для объяснения необратимости макропроцессов.

Микроскопическое и макроскопическое состояния

Нужно прежде всего различать макроскопическое состояние системы и ее микроскопическое состояние.

Макроскопическое состояние характеризуется немногим числом термодинамических параметров (давлением, объемом, температурой и др.), а также такими механическими величинами, как положение центра масс, скорость центра масс и др. Именно макроскопические величины, характеризующие состояние в целом, имеют практическое значение.

Микроскопическое состояние характеризуется в общем случае заданием координат и скоростей (или импульсов) всех частиц, составляющих систему (макроскопическое тело). Это несравненно более детальная характеристика системы, знание которой совсем не требуется для описания процессов с макроскопическими телами. Более того, знание микросостояния фактически недостижимо из-за огромного числа частиц, слагающих макротела.

В приведенном выше житейском примере с предметами на столе можно ввести понятия микро- и макросостояний. Микросостоянию отвечает какое-то одно определенное расположение предметов, а макросостоянию - оценка ситуации в целом: либо «порядок», либо «хаос».

Вполне очевидно, что определенное макросостояние может быть реализовано огромным числом различных микросостояний. Так, например, переход одной молекулы из данной точки пространства в другую точку или изменение ее скорости в результате столкновения изменяют микросостояние системы, но, конечно, не меняют термодинамических параметров и, следовательно, макросостояния системы.

Теперь введем гипотезу, не столь очевидную, как предшествующие утверждения: все микроскопические состояния замкнутой системы равновероятны; ни одно из них не выделено, не занимает преимущественного положения. Это предположение фактически эквивалентно гипотезе о хаотическом характере теплового движения молекул.

← Вернуться

×
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:
Я уже подписан на сообщество «sinkovskoe.ru»