Грушевидные клетки пуркинье находятся в. Физиология мозжечка

Подписаться
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:

14. Ssempebwa J. Waste crankcase oil: an environmental contaminant with potential to modulate estrogenic responses / J. Ssempebwa, D. Carpenter, B. Yilmaz // J. Toxicol. Environ. Health. - 2004. - V.67, №14. - P.1081-1094.

15. Toxicological profile for used mineral-based crankcase oil / A.S. Dorsey Jr., C.Rabe, S.Thampi. - Atlanta, Georgia: Agency for Toxic Substances and Disease Registry, 1997. - 208 p.

МОРФОЛОГИЧЕСКИЕ И МОРФОМЕТРИЧЕСКИЕ ИЗМЕНЕНИЯ В СЕМЕННИКАХ КРЫС ПРИ ДЛИТЕЛЬНОМ ДЕЙСТВИИ НА ОРГАНИЗМ ОТРАБОТАННОГО МОТОРНОГО МАСЛА Соловьева Н.В., Стецук Е.В.

В эксперименте на 25 белых крысах-самцах выявлено, что при введении отработанного моторного масла (ОММ, 500 мг/кг) в течение 90 суток в семенниках развиваются важные морфофункциональные нарушения. На 30-ые сутки после начала введения ВММ структурные изменения обнаруживаются в виде утолщения интерстиция семенника, уменьшения диаметра извитых семенных канальцев, расстройств микроциркуляторного русла, а также угнетения процесса дифференциации сперматид. На 60-90-е сутки эксперимента отмечаются прогрессирующие нарушения сперматогенеза, дискомплек-сация, дезориентация, а в последствии десквамация сперматогенного эпителия.

Ключевые слова: семенники, сперматогенный эпителий, сперматогенез, отработанное моторное масло.

MORPHOLOGICAL AND MORPHOMETRICAL CHANGES IN RATS’ TESTICLES UNDER LONG-TERM ACTION OF USED MOTOR OIL Solov"eva N.V., Stetsuk E.V.

In the experiment on 25 white male rats there have been found the introduction of the used motor oil (UMO, 500 mg / kg) for 90 days results in significant morphofunctional disorders in the testis. On 30th day of the experiment there has been detected the thickening of the testis’ interstitium, reducing in the diameter of the convoluted seminiferous tubules, microcirculatory disorders, and suppression of the spermatids’ differentiation. On the 60th - 90th days of the experiment there have been found progressive disturbances in spermatogenesis, decomposition, disorientation, and in consequence desquamation of the spermatogenic epithelia.

Key words: testis, spermatogenic

epithelia, spermatogenesis, used motor oil.

УДК: 611.817.1:611.018.84.-018

КЛЕТКИ ПУРКИНЬЕ В КОРЕ МОЗЖЕЧКА У ЛЮДЕЙ ЮНОШЕСКОГО ВОЗРАСТА И ИХ

ВЗАИМООТНОШЕНИЕ С КАПИЛЛЯРАМИ

Исследовано взаимоотношение клеток Пуркинье и капилляров в коре мозжечка человека в юношеском возрасте. Установлено, что в среднем на 1 КП приходится 0,8 капиллярных сечения, что соответствует средней длине капилляров в зоне васкуляризации одной клетки, равной 100 мкм, и удельной длине капиллярного русла вблизи КП - 346 мм/мм. КП обеспечиваются одним -четырьмя капиллярами. Капилляры, кровоснабжающие КП, располагаются во всех трех слоя коры мозжечка: в 75 % наблюдений капилляры располагаются в ганглионарном слое, в 16 % - в зернистом, в 9 % - в молекулярном. Эффективность трофического обеспечения КП достигается путем приближения капилляров к нейронам: в 25 % наблюдений капилляры находятся на расстоянии до 4 мкм до КП, в том числе непосредственно прилежат к телу нейрона.

Ключевые слова: кора мозжечка, клетки Пуркинье, капилляры.

Данное исследование является частью темы научно-исследовательской работы кафедры гистологии, цитологии и эмбриологии ХНМУ «Нейроно -глиально-капиллярные отношения в стволе головного мозга человека» (номер государственной регистрации

Грушевидные нейроны, или клетки Пуркинье (КП), образующие ганглионарный слой, являются центральным клеточным звеном, единственным источником эфферентных волокон коры мозжечка, организующих через нейроны ядер мозжечка активность кортико-спинальных проводящих путей . КП во многом уникальны: это одни из самых крупных нейронов мозга, они

имеют неповторимый характер ветвления дендритного дерева, располагаются несплошным слоем. Функционирование КП обеспечивается их трофическим микроокружением - глией и микроциркуляторным руслом, которые вместе, согласно гипотезе Шеррингтона, составляют единую метаболическую систему . Изучению васкуляризации КП, взаимоотношений КП и капилляров посвящено немало работ . Однако в литературе очень мало данных о количественных исследованиях васкуляризации КП.

Целью работы было установление морфометрических и стереометрических показателей, характеризующих взаимоотношение КП и окружающего их микроциркуляторного русла у лиц юношеского возраста. Юношеский возраст можно считать своего рода точкой отсчета динамики возрастных изменений, когда формирование органов и структур заканчивается, отмечается максимальный уровень структурно-функциональной организации, а возрастная инволюция еще не проявляется.

Материал и методы исследования. Проведены морфометрические исследования на полутонких срезах, представляющих собой фронтальные сечения листков коры мозжечка человека [б, б].

Изображения КП оцифровывали с помощью системы микроскоп - цифровая видеокамера - компьютер и затем проводили морфометрические исследования с помощью программы UTHSCSA Image Tool for Windows. Далее проводили стереометрический анализ: рассчитывали объем тела нейрона. Определяли стереометрические показатели: удельную длину капилляров (l, мм/мм3), удельную площадь поверхности (Sv, мкм2/мкм3) и удельный объем (Vv, мкм3/мкм3) капилляров. Удельную длину капилляров определяли по формуле l=2k/S, где k - количество сечений капилляров на площади S, площадь обменной поверхности капилляров - по формуле Sv =ndl, где d - средний диаметр капилляров, удельный объем капиллярного русла - по формуле V = nd2l/4. Для статистической обработки использовали программу MS. Excel.

Результаты и их обсуждение. КП - крупные нейроны округлой, овальной, треугольной, пирамидальной или веретеновидной формы, расположенные в один ряд между молекулярным и зернистым слоями коры мозжечка на расстоянии один от другого, значительно превышающем размеры клеток (рис. 1). КП округлой формы имеют центрально расположенное округлое или овальное ядро с крупным ядрышком, лежащим несколько эксцентрично. КП овальной или пирамидальной формы располагаются чаще на вершине листка, имеют овальное ядро, а их верхушечный отдел без четкой границы продолжается в толстый начальный сегмент дендрита (рис. 1).

Вертикальный размер центральных сечений КП колеблется от 27,8 до 60,0 мкм и в среднем равен (39,0±6,7) мкм (коэффициент вариации - 17 %), горизонтальный - от 21 до 47, в среднем (28,7±4,б) мкм (коэффициент вариации - 16 %), средний диаметр нейронов -(33,8±7,7) мкм. В ядрах Кп выявляется мелкая зернистость, преобладает деконденсированный хроматин. Встречаются ядра с неровным контуром. Ядрышко крупное, диаметром 4 мкм, правильной круглой формы, расположено либо в центре клетки, либо несколько эксцентрично. Цитоплазма нейронов хорошо прокрашивается, контурируя более светлое ядро. Скопления гранул «вещества Ниссля» занимают значительную часть цитоплазмы вокруг ядра. В основном встречается нормохромные КП, реже - гипохромные и гиперхромные нейроны (рис. 1).

Дендрит КП продолжается в молекулярный слой в вертикальном направлении, или несколько отклоняется от него. Недалеко от тела КП дендрит делится на две ветви. Иногда не один, а два главных дендрита начинаются от апикального полюса КП.

Аксон отходит от базального полюса клетки вертикально вниз, покрывается миелиновой оболочкой и теряется в зернистом слое. Благодаря полярному расхождению отростков КП вертикально ориентированы по отношению к поверхности коры. В глубине листков КП как бы лежат на боку: большим диаметров овального или веретеновидного перикариона такого нейрона является горизонтальный, его дендрит отходит от боковой поверхности, поворачивая затем вверх, в направлении мягкой мозговой оболочки (рис. 1).

Иногда перикарион КП погружены в зернистый слой так, что тела зернистых нейронов прилегают к боковой поверхности КП, а дендрит КП начинается на уровне границы молекулярного и зернистого слоев. Встречаются КП, эктопированные в молекулярный слой.

КП окружены нейропилем, главным образом отростками астроцитов. К телам КП часто прилегают проходящие в разных направлениях миелиновые волокна: горизонтальные (аксоны корзинчатых нейронов) и вертикальные (восходящие в молекулярный слой лиановидные волокна, теряющие миелиновую оболочку при достижении молекулярного слоя). Спутником КП могут быть крупные интернейроны зернистого слоя - клетки Гольджи, корзинчатые клетка, глиоциты-сателлиты и капилляры (рис. 2).

Рис. 1. Многообразие КП коры мозжечка человека: а - гипохромный и б - нормохромный нейроны округлой формы, в - веретеновидный гиперхромный нейрон. Полутонкий срез. Окр. Метиленовым синим. Ув. Объектива 60х.

Рис. 2. Контакт тела КП с корзинчатой клеткой и клеткой Гольджи (а), глиоцитом-сателлитом и капилляром (б).

Рис. 4. Близкое расположение капилляра (а), артериолы (б) и венулы (в) и тела КП.

Капилляры, лежащие на расстоянии величины зоны трофического обеспечения КП, находятся в каждом из 3 слоев: чаще всего - в 75 % случаев - они встречаются по боковой поверхности КП, в ганглионарном слое; вблизи вершины или начального сегмента главного дендрита КП, в молекулярном слое, находится 9 % сечений капилляров; на границе ЗС и МС либо в глубине ЗС лежат 16 % капилляров. В последнем случае они отделяются от КП телами нескольких зернистых нейронов.

Сечения капилляров встречаются вокруг КП неравномерно: у половины КП (49,6 %) в зоне трофического обеспечения находится одно сечение капилляра, у примерно каждого десятого нейрона (9,1 %) - два, у 2,3 % КП - 3 и 0,4 % КП - 4 сечения. Капиллярные сечения отсутствуют около 38,9 % нейронов. В среднем на 1 КП приходится 0,8 капилляров. Такое значение капиллярного индекса соответствует удельной длине капилляров, равной 350 мм/мм3. Так как капилляры вокруг КП распределены равномерно, количество сечений на срезе пропорционально длине участка одного капилляра вблизи КП: если капилляр огибает КП на отрезке, превышающем половину дуги окружности, его сечение попадает в срез 1-2 раза, если меньше - 1 раз или не попадает вовсе. Кроме того, сравнивая разные сечения,

по строению, диаметру сечений можно определить, принадлежат они одному капилляру или разным; чаще КП окружены 2-3 разными капиллярами. Средний диаметр капилляров 8,8 мкм. Рассчитанные стереометрические показатели: средняя длина капилляров вокруг одной КП - 100 мкм, удельная обменная площадь капилляров 10 мм2/мм3, удельный объем капиллярного русла - 1,5 %. Данные показатели капиллярного обеспечения КП меньше, чем нейронов коры полушарий головного мозга (1400 мм/мм3), что, возможно, связано с тем, что мозжечок - эволюционно более древнее образование, чем кора полушария мозга.

Сечения капилляров располагаются на разном расстоянии от тел КП. На рис. 3 представлена зависимость частоты нахождения сечения капилляра от расстояния до тела нейрона. Обращает на себя внимание, что почти четверть капиллярных сечений находится практически вплотную к телам нейронов, еще один максимум на графике соответствует среднему расстоянию (11,7 мкм), также много капилляров на противоположном конце зоны трофического обеспечения КП. Данное распределение может свидетельствовать о неодинаковой функциональной активности КП: капилляры ближе прилегают к телам более активных нейронов, нейроны средней активности обеспечиваются питательными веществами из капилляров, равномерно распределенных вдоль ганглионарного слоя.

Рис. 3. Распределение капиллярных сечений вокруг нейронов в зависимости от их расстояния до КП, в % к их общему числу

Когда капилляр практически вплотную прилегает к телу КП, он, как правило, контактирует с телом нейрона на некотором протяжении (рис. 4, а). Вблизи КП могут располагаться и более крупные элементы микроциркуляторного русла - артериолы и венулы (рис. 8, б, в).

1. КП находятся в тесных взаимоотношениях с капиллярами. Каждая КП обеспечивается либо одним, либо несколькими капиллярами. В среднем на 1 КП приходится 0,8 капилляров, что соответствует их средней длине в зоне васкуляризации, равной 100 мкм; удельная длина капиллярного русла вблизи КП - 346 мм/мм3.

2. Капилляры, обеспечивающие КП, располагаются во всех трех слоя коры мозжечка: в 75 % наблюдений капилляры располагаются в ганглионарном слое, в 16 % - в зернистом, в 9 % - в молекулярном.

3. Эффективность трофического обеспечения КП достигается путем приближения капилляров к нейронам: в 25 % наблюдений капилляры находятся на расстоянии до 4 мкм до КП, в том числе непосредственно прилежат к телу нейрона.

Перспективы дальнейших исследований в данном направлении. Дальнейшие исследования должны установить различия исследуемых показателей в филогенетически разных отделах коры мозжечка. Полученные данные представляют практический интерес в плане исследования чувствительности КП к ишемии и воздействию фармакологических препаратов.

1. Боголепов Н. Н. Методы электронно-микроскопического исследования мозга / Н. Н. Боголепов. -М., 1976. - 72 с.

2. Duvernoy H. The vascularisation of the human cerebellar cortex / H. Duvernoy, S. Delon, J. L. Vannson // Brain Res. Bull. - 1983. - V. 11 (4). - P. 419-480.

3. Lange W. Comparative studies on the pre- and postterminal blood vessels in the cerebellar cortex of Rhesus monkey, cat, and rat / W. Lange, Z. Halata // Anat. Embryol. (Berl.). - 1979. - V. 158 (1). - P. 51-62.

4. Мотавкин П. А. Капилляры головного мозга / П. А. Мотавкин, А. В. Ломакин, В. М. Черток. -Владивосток: Ин-т биологии моря ДВНЦ АН СССР, 1983. - 140 с.

5. Коцкович Р. П. Взаимоотношение клеток Пуркинье, капилляров и глии в коре мозжечка кошки в норме и при гипокинезии / Р. П. Коцкович // Научные доклады академии наук. Биологические науки. - 1981. - № 3. - С. 50-54.

6. Руководство по гистологии: в 2 т. - СПб. : СпецЛит, 2001. - Т. II. - С. 573-580.

7. Heinsen H. Cerebellar capillaries. Qualitative and quantitative observation in young and senile rats / H. Heinsen, Y. L. Heinsen // Anat. Embryol. (Berl.). - 1983. - V. 168 (1). - P. 101-116.

8. Castejon O. J. Light, scanning and transmission electron microscopy study of fish cerebellar capillaries / O. J. Castejon // Scan. Electron Microsc. - 1983. - P. 1. - P. 151-160.

9. Sobaniec-Lotowska M. Morphometric analysis of the cerebellar cortex capillaries in the course of experimental valproate encephalopathy and after chronic exposure to sodium valproate using transmission electron microscopy / M. Sobaniec-Lotowska, W. Sobaniec, A. Augustynowicz // Folia Neuropathol. - 2001. - V. 39 (4). - P. 277-280.

10. Scharrer E. The functional significance of capillary bed in the brain of the opossum / E. Scharrer // Anatom. Record. - 1939. - V. 75. - P. 319.

КЛІТИНИ ПУРКІН’Є В КОРІ МОЗОЧКА ТА ЇХНІЙ ВЗАЄМОЗВ’ЯЗОК З КАПІЛЯРАМИ У ЛЮДЕЙ ЮНАЦЬКОГО ВІКУ Степаненко О.Ю.

Встановлено, що в середньому на 1 клітину Пуркін’є припадає 0,8 капілярних розтинів, що відповідає середній довжині капілярів у зоні васкуляризації 1 клітини, яка дорівнює 100 мкм, і питомій довжині капілярного русла поблизу клітин Пуркін’є - 346 мм/мм3. Клітини Пуркін’є забезпечуються 1-4 капілярами, які є в усіх шарах кори мозочка: в 75 % спостережень в

гангліонарному шарі, в 16 % - у зернистому, в 9 % - у молекулярному. Наближення капілярів до нейронів у 25 % спостережень на відстані до 4 мкм до клітин Пуркін’є.

Ключові слова: кора мозочка, клітини Пуркін’є, капіляри.

Стаття надійшла 14.01.10.

CEREBELLAR PURKINJE CELLS AND THEIR RELATION WITH CAPILLARIES IN YOUNG AGE Stepanenko A.Yu.

Average number of capillaries 0,8 per one Purkinje Cells, average length -100 mcm per cell, specific length 346 mm per cubic mm. Every Purkinje Cells has from 1 till 4 capillaries. Capillaries may lie both in ganglionic (75%), granular (16%) and molecular (9%) layers. Diffusion distance tends to be small - 25% capillaries lie less than 4 mcm to neuron body.

Key words: Cerebellar Cortex,

Purkinje Cells, Capillaries.

УДК: 617.735-002.092.9:61836-001.8-089.843

МОРФОФУНКЦІОНАЛЬНИЙ СТАН СІТКІВКИ ЩУРІВ ПРИ ПІДШКІРНІЙ ТРАНСПЛАНТАЦІЇ КРІОКОНСЕРВОВАНОЇ ПЛАЦЕНТИ НА ТЛІ АСЕПТИЧНОГО РЕТИНІТУ

Гострий експериментальний ретиніт має стадійний характер. В мікроциркуляторному руслі сітківки виявлялись зміни у резистивних та емнісних ланок мікроциркуляторного русла, які тримались до 5-ї доби експерименту. В стадії ексудації виявлявсь наростаючий набряк сполучної тканини, він був переважно позаклітинний. Середні величини діаметрів та об’ємів ядер шарів сітківки знаходились в прямій кореляційний залежності. Каріометричні дослідження LgV підтверджують наростаючі зміни у всіх шарів сітківки з максимальними показниками на 5 добу експерименту.

Ключові слова: криоконсервована плацента, Л-карагинен, сітківка, асептичний ретиніт.

Робота є фрагментом НДР „Розробка нових кріобіологічних технологій, використання кріоконсервованих ембріональних клітин, тканин людини та тварини в медицині", № державної реєстрації 0199и000323

Вже на початку ХХ-го сторіччя вивчалися можливості застосування біологічного матеріалу при лікуванні різних захворювань у людини. Ці погляди в медицині виникли не без впливу ідей И.И. Мечникова, що першим обґрунтував і розвив гуморальну теорію захисту від старості, у тому числі стимуляцію імунітету. У 20-30 роках у Москві був відкритий спеціальний

Клетки рабочего миокарда принадлежат исчерченным мышечным клеткам и кардиомиоциты имеют вытянутую форму, длин достигает 50мкм, диаметр – 10-15 мкм. Волокна состоят из миофибрилл, наименьшей рабочей структурой которых является саркомер. Последний имеет толстые - миозиновые и тонкие – актиновые ветви. На тонких нитях имеются регуляторные белки – тропанин и тропомиозин. В кардииомиоцитах имеются также продольная система L трубочек и поперечные T трубочки. Однако Т трубочки, в отличии от Т-трубочек скелетных мышц, отходят на уровне мембран Z (в скелетных - на границе диска A и I). Соседние кардиомиоциты соединяются с помощью вставочного диска- область контакта мембран. При этом структура вставочного диска неоднородная. ВО вставочном диске можно выделить область щели(10-15Нм). Вторая зона плотного контакта – десмосомы. В области десмосом наблюдается утолщение мембраны, здесь же проходят тонофибриллы(нити связывающие соседние мембраны). Десмосомы имеют протяженность 400нм. Есть плотные контакты, они получили название нексусов, при котором происходит слияние наружных слоев соседних мембран, сейчас обнаружены – конексоны – скрепление за счет специальных белко – конексинов. Нексусы – 10-13%, эта область имеет очень низкое электрическое сопротивление 1,4 Ома на кВ.см. Это обеспечивает возможность передачи электрического сигнала с одной клетки на др. и поэтому кардиомиоциты включаются одновременно в процесс возбуждения. Миокард – функциональный сенсидий.

Физиологические свойства сердечной мышцы .

Кардиомиоциты изолированы друг от друга и контактируют в области вставочных дисков, где соприкасаются мембраны соседних кардиомиоциов.

Коннесксоны- это соединение в мембране соседних клеток. Образуются эти структуры за счет белков коннексинов. Коннексон окружают 6 таких белков, внутри коннексона образуется канал, который позволяет проходит ионам, таким таким образом электрический ток распространяется от одной клетки к другой. “f область имеет сопротивление 1,4 ом на см2(низкое). Возбуждение охватывает кардиомиоциты одновременно. Они функционирую как функциональный сенсициы. Нексусы очень чувствительны к недостатку кислорода, к действию катехоламинов, к стрессовым ситуациям, к физической нагрузке. Это может вызывать нарушение проведения возбуждения в миокарде. В экспериментальных условиях нарушение плотных контактов можно получить при помещении кусочков миокарда в гипертонический раствор сахарозы. Для ритмической деятельности сердца важна проводящая система сердца – эта система состоит из комплекса мышечных клеток, образующих пучки и узлы и клетки проводящей системы отличаются от клеток рабочего миокарда – они бедны миофибриллами, богаты саркоплазмой и содержат высокое содержание гликогена. Эти особенности при световой микроскопии делают их более светлыми с малой поперечной исчерченностью и они были названы атипическими клетками.

В состав проводящей системы входят:

1. Синоатриальный узел (или узел Кейт-Фляка), расположенный в правом предсердии у места впадения верхней полой вены

2. Атриовентрикулярный узел(или узел Ашоф-Тавара), который лежит в правом предсердии на границе с желудочком - это задняя стенка правого предсердия

Эти два узла связаны внутрипредсердными трактами.

3. Предсердные тракты

Передний - с ветвью Бахмена (к левому предсердию)

Средний тракт (Венкебаха)

Задний тракт (Тореля)

4. Пучок Гисса (отходит от атриовентрикулярного узла. Проходит через фиброзную ткань и обеспечивает связь миокарда предсердия с миокардом желудочка. Проходит в межжелудочковую перегородку, где разделяется на правую и илевую ножку пучка Гисса)

5. Правая и левая ножки пучка Гисса (они идут вдоль межжелудочковой перегородки. Левая ножка имеет две ветви – переднюю и заднюю. Конечными разветвлениями будут являться волокна Пуркинье).

6. Волокна Пуркинье

В проводящей системе сердца, которая образована видоизмененными типами мышечных клеток, имеются три вида клеток: пейсмейкерные (P), переходные клетки и клетки Пуркинье.

1. P-клетки . Находятся в сино-артриальном узле, меньше в атриовентрикулярном ядре. Это самые мелкие клетки, в них мало т – фибрилл и митохондрий, т-система отсутствует, l. система развита слабо. Основной функцией этих клеток является генерация потенциала действия за счет врожденного свойства медленной диастолической деполяризации. В них происходит периодическое снижение мембранного потенциала, которое приводит их к самовозбуждению.

2. Переходные клетки осуществляют передачу возбуждения в области атривентрикуярного ядра. Они обнаруживаются между P клетками и клетками Пуркинье. Эти клетки вытянутой формы, у них отсутствует саркоплазматический ретикулум. Эти клетки облают замедленной скоростью проведения.

3. Клетки Пуркинье широкие и короткие, в них больше миофибрилл, лучше развит саркоплазматический ретикулум, T-система отсутствует.

1. Тела грушевидных нейронов Пуркинье
2. грушевидных нейронов
3. грушевидного нейрона
4. корзинчатые
5. дендриты и
6. аксон корзинчатого нейрона
7. звёздчатый нейрон
8. большие звёздчатые нейроны
9. дендриты большого звёздчатого нейрона
10. аксон большого звёздчатого нейрона
11. зерновидные нейроны (клетки-зёрна)
12. аксон клетки-зерна
13. дендриты клеток-зёрен
14. моховидные

Зернистый слой

Очень богат нейронами зернистый слой. Состоит из нейронов трёх типов:

  1. Первым типом клеток этого слоя являются зерновидные нейроны , или клетки-зёрна (лат. neuronum granuloformis ). У них небольшой объём (5-8 мкм в диаметре), бедный цитоплазмой перикарион с крупным круглым ядром. В отличие от клеток Пуркинье клетки-зёрна являются одними из самых маленьких и в то же время многочисленных (у человека их количество достигает 50 миллиардов) нейронов мозга. Клетка имеет 3-4 коротких дендрита, заканчивающихся в этом же слое концевыми ветвлениями в виде лапки птицы. Вступая в синаптическую связь с окончаниями проходящих в мозжечок возбуждающих афферентных (моховидных) волокон, дендриты клеток-зёрен образуют характерные структуры, именуемые клубочками мозжечка (лат. glomerulus cerebellaris ). Моховидные волокна несут возбуждающие импульсы к клеткам зёрнам, в то время как клетки Гольджи - тормозящие.
    Тонкие, немиелинизированные аксоны клеток-зёрен поднимаются в верхний молекулярный слой коры мозжечка и в нём Т-образно делятся на 2 ветви, ориентированные параллельно поверхности коры вдоль извилин мозжечка. Преодолевая большие расстояния, эти параллельные волокна пересекают ветвления дендритов многих клеток Пуркинье и образуют с ними и дендритами корзинчатых и звёздчатых нейронов синапсы. Таким образом, нейроны клеток-зёрен передают, используя в виде нейротрансмиттера глутамат, полученное ими от моховидных волокон , на значительное расстояние грушевидным клеткам Пуркинье.
  2. Вторым типом клеток зернистого слоя мозжечка являются тормозные большие звёздчатые нейроны (лат. neuronum stellatum magnum ). Различают два вида таких клеток: с короткими и длинными аксонами. Нейроны с короткими аксонами (клетки Гольджи) (лат. neuronum stellatum breviaxonicum ) лежат вблизи ганглионарного слоя. Их разветвлённые дендриты распространяются в молекулярном слое и образуют синапсы с параллельными волокнами - аксонами клеток-зёрен. Аксоны направляются в зернистый слой к клубочкам мозжечка и заканчиваются синапсами на концевых ветвлениях дендритов клеток-зёрен проксимальнее синапсов моховидных волокон. Возбуждение звёздчатых нейронов может блокировать импульсы, поступающие по моховидным волокнам. Немногочисленные звёздчатые нейроны с длинными аксонами (лат. neuronum stellatum longiaxonicum ) имеют обильно ветвящиеся в зернистом слое дендриты и аксоны, выходящие в белое вещество. Предполагается, что эти клетки обеспечивают связь между различными областями коры мозжечка.
  3. Третий тип клеток составляют веретеновидные горизонтальные клетки (лат. neuronum fusiformie horizontale ). Они встречаются преимущественно между зернистым и ганглионарным слоями, имеют небольшое вытянутое тело, от которого в обе стороны отходят длинные горизонтальные дендриты, заканчивающиеся в ганглионарном и зернистом слоях. Аксоны этих клеток дают коллатерали в зернистый слой и уходят в белое вещество.

Белое вещество

Белое вещество состоит из аксонов нервных клеток, поступающих в мозжечок, и аксонов клеток Пуркинье, идущих к глубоким ядрам мозжечка и вестибулярному ядру Дейтерса. Афферентные волокна, поступающие в кору мозжечка, представлены двумя видами - моховидными и так называемымилазающими волокнами .

Моховидные волокна идут от ядер моста, вестибулярных ядер и опосредованно через клетки-зёрна оказывают на грушевидные клетки Пуркинье возбуждающее действие. Они заканчиваются в клубочках зернистого слоя мозжечка, где вступают в контакт с дендритами клеток-зёрен. Каждое волокно даёт ветви ко многим клубочкам мозжечка, и каждый клубочек получает ветви от многих моховидных волокон. Таким образом происходит усиление поступающих по моховидным волокнам в мозжечок сигналов (каждое волокно образует синаптические взаимосвязи с 400-600 клетками-зёрнами). Аксоны клеток-зёрен по параллельным волокнам молекулярного слоя передают импульс дендритам грушевидных, корзинчатых, звёздчатых нейронов, больших звёздчатых нейронов зернистого слоя.

Лазающие волокна поступают в кору мозжечка из нижнего ядра оливы. Нижнее ядро оливы располагается в варолиевом мосту и получает информацию из , коры головного мозга, которую и передаёт в мозжечок. Они пересекают зернистый слой, прилегают к грушевидным нейронам и стелются по их дендритам, заканчиваясь на их поверхности синапсами. Лазящие волокна передают возбуждение непосредственно грушевидным нейронам. Дегенерация грушевидных нейронов ведёт к расстройству координации движений.

Таким образом, возбуждающие импульсы, поступающие в кору мозжечка, достигают грушевидных нейронов Пуркинье или непосредственно по лазающим волокнам, или по параллельным волокнам клеток-зёрен. Торможение - функция звёздчатых нейронов молекулярного слоя, корзинчатых нейронов, а также больших звёздчатых нейронов зернистого слоя (клеток Гольджи). Аксоны двух первых, следуя поперёк извилин и тормозя активность грушевидных клеток, ограничивают их возбуждение узкими дискретными зонами коры. Поступление в кору мозжечка возбуждающих сигналов по моховидным волокнам, через клетки-зёрна и параллельные волокна, может быть прервано тормозными синапсами больших звёздчатых нейронов, локализованными на концевых ветвлениях дендритов клеток-зёрен проксимальнее возбуждающих синапсов.

Глиальные элементы

Кора мозжечка содержит различные глиальные элементы. В зернистом слое имеются волокнистые и протоплазматические астроциты. Ножки отростков волокнистых астроцитов образуют периваскулярные мембраны. Во всех слоях в мозжечке имеются олигодендроциты. Особенно богаты этим клетками зернистый слой и белое вещество мозжечка. В ганглионарном слое между грушевидными нейронами лежат с тёмными ядрами. Отростки этих клеток направляются к поверхности коры и образуют глиальные волокна молекулярного слоя мозжечка, поддерживающие ветвения дендритов грушевидных клеток (лат. gliofibra sustenans ). Микроглия в большом количестве содержится в молекулярном и ганглионарном слоях.

Когда нейробиологи говорят о дендритах — части нейронов, обычно используемые для получения информации от других нейронов, они представляют себе клетки Пуринье.

Они образуют обширную специализированную сеть, взаимодействующую с минутами желудочков для инициации сокращения желудочков.

Вычислительные исследования показывают, что клеточные источники аритмии, такие как ранняя последеполяризация, может происходить из-за их уникальных электрофизиологических особенностей.

Общие сведения

Клетки Пуркинье, известные также как нейроны Пуркинье, расположены в коре головного мозга. Они были первыми идентифицированными . Ян Эвангелиста Пуркинье, работавший в университете Бреслау в Пруссии (сегодня Вроцлавский университет, Польша) обнаружил клетки в середине XIX века. В 1932 ученый стал владельцем ахроматического микроскопа, одновременно фокусирующего два цвета. Благодаря микроскопу анатом начал изучение клеток овцы. Он описал структуры, впоследствии названные его именем, в статье о гистологии «Новейшие исследования анатомии нервов и мозга», представленной в сентябре 1837 в Праге, Богемия (территория современной Чехии).

В конце XIX века Камилло Гольджи из университета Павия в Ломбардии, Италия, изучал клетки, окрашивая их нитратом серебра. Пятна нитрата серебра помогли ученому описать тело клетки с его отростками. Сантьяго Рамон-и-Кахаль из Барселонского университета в Барселоне, Испания, усовершенствовал технологию Гольджи и обнаружил, что в клетках есть дендритические отростки, похожие на маленькие шарообразные дверные ручки на дендритах. Гольджи и Рамон-и-Кахаль совместно стали лауреатами Нобелевской премии в области медицины в 1906 за исследования структуры .

Строение

Тело клетки имеет грушевидную форму с множеством нитевидных отростков (дендриты), которые получают импульсы от других малых клеток, известных как гранулярные. Их аксоны (выходные элементы) передают импульсы той части мозга, которая контролирует движение (мозжечок). Тело образования составляет 8 микрон в диаметре. Клетки имеют большую разветвленную двухмерную (плоскую) древовидную структуру.

Функции

Клетки Пуркинье – ингибирующие нейроны: выделяют нейротрансмиттеры, связующие с рецепторами и уменьшают активацию других нейронов. Они:

  • участвуют в процессе контроля моторики и обучения;
  • единственные получают сигналы из коры мозжечка (его внешнего слоя), и также получают информацию от других сотен тысяч клеток организма, подавляют возбуждающие нейроны спинного мозга и других областей, от которых получают информацию;
  • регулируют активацию возбуждающих нейронов благодаря взаимодействию с дендритами;
  • выделяют гамма-аминомаслянную кислоту (нейротрансмиттер), ингибирующею нейроны от передающихся импульсов. Их выход осуществляется через переносящие электрические импульсы аксоны.
  • ингибируют выходные центры, глубокие ядра и вестибулярные ядерные нейроны в мозжечке, координируют время отклика на электрический сигнал (потенциал действия) на аксоны ядер нейронов. Те, в свою очередь, регулируют выходные сигналы мозжечка.
  • через синхронизированные сигналы контролируют скорость, с которой сигналы достигают мозжечка для получения точного выхода из ядер нейронов, способствуя координации движений, как, например, движения рук, достигая высшего развития к восьмилетнему возрасту человека.

Именно поэтому маленькие дети выглядят неуклюжими и неловкими. Исследования млекопитающих показали, что клетки синтезируют гормоны прогестерон и эстрадиол в процессе образования мозжечковых цепей во время развития эмбрионов. Прогестерон и эстрадиол способствуют росту дендритов, развитию (синаптогенез) и развитию отростков дендритов в развивающейся клетке.

Исследование эмбрионов мышей и цыплят демонстрируют, что производя белки под названием звуковой еж, эти клетки необходимы для роста и формирования паттернов мозжечка. Они восприимчивы как к генетическим, так и к окружающим воздействиям, которые могут нарушить их регулярные функции. Эмбриональные исследования штамма мышей C65Dn (генетическая модель синдрома Дауна) показали дегенерацию клеток. Воздействие алкоголем на плод во время эмбрионального роста может их уничтожить и привести к фетальному алкогольному синдрому (отклонение, которым подвержены дети, чьи мамы вовремя беременности принимали алкоголь). У людей с синдромом аутизма (расстройство, возникающее вследствие нарушения развития головного мозга) клеток Пуркинье меньше, чем у здоровых людей. Люди с меньшим количеством клеток сильнее подвержены болезни Ниманна-Пика (типа С), редкой наследственной лизосомной болезни накопления.

Клетки Пуркинье в коре мозжечка собаки, импрегнация нитратом серебра

Клетки Пуркинье - это ГАМК-эргические (передающие сигнал при помощи нейромедиатора гамма-аминомасляной кислоты) нейроны. Длина аксона у мышей – 2 миллиметра, у крыс - 3 миллиметра. Толщина дендритов 2-5 мкм - толстые ветви, 0.5-1 мкм - тонкие. Тело клетки Пуркинье имеет грушевидную форму, от которой отходит множество дендритов , обильно разветвляющихся в плоскости, строго перпендикулярной извилинам мозжечка, и образующих множество синапсов с пересекающими слои таких деревьев параллельными волокнами - расположенными вдоль поверхности извилин аксонами гранулярных клеток мозжечка. Длинный аксон , который берёт своё начало от расположенного в глубине коры мозжечка основания клетки, направляется через белое вещество к ядрам мозжечка , образуя синапсы с их нейронами, а также к вестибулярным ядрам .

Интересные факты [ | ]

В мозжечковой коре клеток Пуркинье насчитывается до 26 млн. Они достигают окончательного развития только к восьми годам жизни человека. Поэтому маленькие дети не умеют рассчитывать движения и выглядят неуклюжими и неловкими, а из-под карандаша у них выходят каракули. Тренировки ускоряют созревание клеток Пуркинье - самым развитым мозжечком обладают гимнасты, балерины и фигуристы. А ещё клетки Пуркинье очень чувствительны к алкоголю - даже небольшие дозы спиртного приводят к сбою в мозжечке, который определяет траекторию движения и согласованность работы рук и ног [ ]

← Вернуться

×
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:
Я уже подписан на сообщество «sinkovskoe.ru»