Формирование атмосферных вихрей. Атмосферные вихри и их изучение в школе

Подписаться
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:

Борьба тёплых и холодных течений, стремящихся выровнять разность температур между севером и югом, происходит с переменным успехом. То тёплые массы берут перевес и проникают в виде тёплого языка далеко к северу, иногда до Гренландии, Новой Земли и даже до Земли Франца Иосифа; то массы арктического воздуха в виде гигантской «капли» прорываются на юг и, сметая на своём пути тёплый воздух, обрушиваются на Крым и республики Средней Азии. Особенно резко выражена эта борьба зимой, когда разность температур между севером и югом возрастает. На синоптических картах северного полушария всегда можно видеть несколько языков тёплого и холодного воздуха, проникающих на различную глубину к северу и к югу.
Арена, на которой развёртывается борьба воздушных течений, приходится как раз на самые насе...

Введение. 2
1. Образование атмосферных вихрей. 4
1.1 Атмосферные фронты. Циклон и антициклон 4
1.2 Приближение и прохождение циклона 10
2. Изучение атмосферных вихрей в школе 13
2.1 Изучение атмосферных вихрей на уроках географии 14
2.2 Изучение атмосферы и атмосферных явлений с 6 класса 28
Заключение.35
Список используемой литературы.

Введение

Введение

Атмосферные вихри - тропические циклоны, смерчи, бури, шквалы и ураганы.
Тропические циклоны - это вихри, с низким давлением в центре; они бывают летом и зимой. Tропические циклоны возникают только в низких широтах около экватора. По разрушениям циклоны могут сравнится с землетрясениями или вулканами.
Скорость циклонов превышает 120 м/с, при этом возникает мощная облачность, бывают ливни, грозы и град. Ураган может уничтожать целые селения. Количество осадков кажется невероятным в сравнении с интенсивностью дождей при самых сильных циклонах в умеренных широт.
Смерч -разрушительное атмосферное явлене. Это огромный вертикальный вихрь высотой в несколько десятков метров.
Люди пока не могут активно бороться с тропическими цикло нами, но важно вовремя подготовиться, будь то на суше или на море. Для этого круглосуточно вахту несут метеорологические спутники, которые оказывают большую помощь в прогнозе путей перемещения тропических циклонов. Они фотографируют вихри, а по фотографии можно довольно точно определить положение центра циклона и проследить его движение. Поэтому в последние время удавалось предупредить население о приближении тайфунов, которые нельзя было обнаружить обычными метеорологическими наблюдениями.
Не смотря на то, что смерч имеет разрушительный эффект в то же время он является эффектным атмосферным явлением. Он сконцентрирован на небольшой площади и весь как бы на глазах. На берегу можно видеть, как из центра мощного облака вытягивается воронка, а навстречу ему с поверхности моря поднимается другая воронка. После смыкания, образуется огромный, перемещающийся столб, который вращается против часовой стрелки. Смерчи

Образуются тогда, когда воздух в нижних слоях очень теплый, а в верхних - холодный. Начинается очень интенсивный воздухообмен, который
сопровождается вихрем, имеющим большую скорость - несколько десятков метров в секунду. Диаметр смерча может достичь нескольких сот метров, а скорость 150-200 км/ч. Внутри образуется низкое давление, поэтому смерч втягивает в себя все, что встречает на пути. Известны, например, «рыбные»
дожди, когда смерч из пруда или озера вместе с водой втягивал в себя и находящуюся там рыбу.
Буря - это сильный ветер, при помощи которого на море может начаться большое волнение. Буря может наблюдаться при прохождении циклона, смерча.
Скорость ветра бури превышает 20 м/с и может достигать 100 м/с., а при скорости ветра больше 30 м/с начинаеться ураган, а усиления ветра до скоростей 20-30 м/с называются шквалами.
Если на уроках географии изучают лишь явления атмосферных вихрей, то во время уроков ОБЖ учатся способам защиты от этих явлений, и это очень важно, поскольку зная способы защиты сегодняшние ученики, смогут защитить от атмосферных вихрей не только себя но друзей и близких тоже.

Фрагмент работы для ознакомления

19
В районе Северного Ледовитого океана и в Сибири формиру­ются области с высоким давлением. Оттуда на территорию России направляются холодные и сухие воздушные массы. Со стороны Сибири идут континентальные умеренные массы, приносящие морозную ясную погоду. Морские воздушные массы зимой при­ходят с Атлантического океана, который в это время теплее, чем материк. Следовательно, эта воздушная масса приносит осадки в виде снега, возможны оттепели, снегопады.
III. Закрепление нового материала
Какие воздушные массы способствуют образованию засух и суховеев?
Какие воздушные массы приносят потепление, снегопады, а летом смягчают жару, приносят часто пасмурную погоду и осадки?
Почему летом на Дальнем Востоке идут дожди?
Почему зимой восточный или юго-восточный ветер на Восточно-Европейской равнине часто бывает намного холоднее, чем северный?
На Восточно-Европейской равнине выпадает снега боль­ше. Почему тогда в конце зимы толщина снежного покрова больше в Западной Сибири?
Домашнее задание
Ответить на вопрос: «Как вы объясните тип погоды сегодня? Откуда он пришел, по каким признакам вы это определили?»
Атмосферные фронты. Атмосферные вихри: циклоны и антициклоны
Цели: сформировать представление об атмосферных вихрях, фронтах; показать связь между сменой погоды и процессами в атмосфере; познакомить с причинами образования циклонов, антициклонов.
20
Оборудование: карты России (физическая, климатическая), демонстрационные таблицы «Атмосферные фронты» и «Атмо­сферные вихри», карточки с баллами.
Ход урока
I. Организационный момент
II. Проверка домашнего задания
1. Фронтальный опрос
Что такое воздушные массы? (Крупные объемы воздуха, от­личающиеся по своим свойствам: температуре, влажности и прозрачности.)
Воздушные массы делятся на типы. Назовите их, чем они отличаются? (Примерный ответ. Над Арктикой формирует­ся арктический воздух - всегда холодный и сухой, прозрач­ный, т. к в Арктике нет пыли. Над большей частью России в умеренных широтах формируется умеренная воздушная масса - зимой холодная, а летом теплая. В Россию летом приходят тропические воздушные массы, которые форми­руются над пустынями Средней Азии и приносят жаркую и сухую погоду с температурой воздуха до 40 °С.)
Что такое трансформация воздушных масс? (Примерный ответ. Изменение свойств воздушных масс при их пере­движении над территорией России. Например, морской умеренный воздух, приходящий с Атлантического океана, теряет влагу, летом прогревается и становится континен­тальным - теплым и сухим. Зимой морской умеренный воздух теряет влагу, но охлаждается и становится сухим и холодным.)
Какой океан и почему оказывает большее влияние на кли­мат России? (Примерный ответ. Атлантический. Во-первых, большая часть России
21
находится в господствующем запад­ном переносе ветров, во-вторых, препятствий для проник­новения западных ветров с Атлантики фактически нет, т. к. на западе России - равнины. Низкие Уральские горы пре­пятствием не являются.)
2. Тест
1.Общее количество радиации, достигающей поверхности Земли, называется:
а) солнечной радиацией;
б) радиационным балансом;
в) суммарной радиацией.
2.Самый большой показатель отраженной радиации имеет:
а) песок; в) чернозем;
б) лес; г) снег.
3.Над Россией зимой перемещаются:
а) арктические воздушные массы;
б) умеренные воздушные массы;
в) тропические воздушные массы;
г) экваториальные воздушные массы.
4.Роль западного переноса воздушных масс усиливается на большей части России:
а) летом; в) осенью.
б) зимой;
5.Самый большой показатель суммарной радиации в России имеет:
а) юг Сибири; в) юг Дальнего Востока.
б) Северный Кавказ;
22
6.Разница между суммарной радиацией и отраженной радиа­цией и тепловым излучением называется:
а) поглощенной радиацией;
б)радиационным балансом.
7.При движении к экватору величина суммарной радиации:
а) уменьшается; в) не изменяется.
б) увеличивается;
Ответы: 1 - в; 3 - г; 3 - а, б; 4 - а; 5 - б; 6 - б; 7 - б.
3. Работа по карточками
- Определите, какой тип погоды описан.
1.На рассвете мороз ниже 35 °С, а снег едва виден сквозь туман. Скрип слышен на несколько километра. Дым из труб вертикально поднимается вверх. Солнце красное как раскаленный ме­тал. Днем сверкает и солнце и снег. Туман уже растаял. Небо голубое, пронизано светом, если по­смотреть вверх, то такое впечатление как будто лето. А на дворе стужа, сильный мороз, воздух сух, ветра нет.
Мороз становится крепче. По тайге слышен гул от звуков растрес­кивающихся деревьев. В Якутске средняя температура января -43 °С, а с декабря по март выпадает в среднем 18 мм осадков. (Континентальный умеренный.)
2.Лето 1915 г. было очень ненастное. Шли все время дожди с боль­шим постоянством. Однажды два дня подряд шел очень сильный ливень. Он не позволял людям выходить из домов. Опасаясь, что лодки унесет водой, вытащили их подальше на берег. В течение одного дня несколько раз
23
опрокидывали их и выливали воду. К концу второго дня вдруг сверху вода пришла валом и сразу затопила все берега. (Муссонный умеренный.)
III. Изучение нового материала
Комментарии. Учитель предлагает прослушать лекцию, по ходу которой учащиеся дают определение терминов, заполняют табли­цы, делают рисунки-схемы в тетради. Затем учитель с помощью консультантов проверяет работу. Каждый ученик получает по три карточки с указанием баллов. Если в течение
урока ученик отдал карточку-балл консультанту, значит, ему требуется еще работа с учителем или консультантом.
Вы уже знаете, что на территории нашей страны движутся воздушные массы трех видов: арктические, умеренные и тропи­ческие. Они достаточно сильно отличаются друг от друга по глав­ным показателям: температура, влажность, давление и т. д. При сближении воздушных масс, имеющих
различные характери­стики, в зоне между ними увеличивается разница температуры воздуха, влажности, давления, возрастает скорость ветра. Пе­реходные зоны в тропосфере, в которых происходит сближение воздушных масс с различными характеристиками, называются фронтами.
В горизонтальном направлении протяженность фронтов, как и воздушных масс, имеет тысячи километров, по вертика­ли - около 5 км, ширина фронтальной зоны у поверхности Зем­ли - порядка сотни километров, на высотах - несколько сотен километров.
Время существования атмосферных фронтов составляет более двух суток.
Фронты вместе с воздушными массами перемещаются со ско­ростью в среднем 30-50 км/ч, а скорость холодных фронтов не­редко достигает 60-70 км/ч (а иногда 80-90 км/ч).
24
Классификация фронтов по особенностям перемещения
1.Теплыми называются фронты, перемещающиеся в сторо­ну более холодного воздуха. За теплым фронтом в данный регион приходит теплая воздушная масса.
2.Холодными называются фронты, перемещающиеся в сто­рону более теплой воздушной массы. За холодным фрон­том в данный регион приходит холодная воздушная масса.

IV. Закрепление нового материала
1. Работа с картой
1.Определите, где расположены арктические и полярные фрон­ты над территорией России летом. {Примерный ответ}. Аркти­ческие фронты летом расположены в северной части Барен­цева моря, над северной частью Восточной Сибири и морем Лаптевых и над Чукотским полуостровом. Полярные фронты: первый летом протягивается от побережья Черного моря над Среднерусской возвышенностью к Предуралью, второй рас­положен на юге
Восточной Сибири, третий - над южной ча­стью Дальнего Востока и четвертый - над Японским морем.)
2. Определите, где расположены арктические фронты зимой. {Зимой арктические фронты сдвигаются к югу, но остается фронт над центральной частью Баренцева моря и над Охот­ским морем и Корякским нагорьем.}
3. Определите, в каком направлении происходит сдвиг фрон­тов зимой.
25
{Примерный ответ}. Зимой фронты перемещают­ся к югу, т. к. все воздушные массы, ветры, пояса давления сдвигаются к югу вслед за видимым движением
Солнца.
Солнце 22 декабря находится в зените в Южном полушарии над Южным тропиком.)
2. Самостоятельная работа
Заполнение таблиц.
Атмосферные фронты
26
Циклоны и антициклоны
Признаки
Циклон
Антициклон
Что это?
Атмосферные вихри, переносящие воздушные массы
Как показаны на картах?
Концентрические изобары
Атмосфер
ное давление
Вихрь с низким давлени­ем в центре
Высокое давление в цен­тре
Движение воз­духа
От периферии к центру
От центра к окраинам
Явления
Охлаждение воздуха, конденсация, образова­ние облаков, выпадение осадков
Прогревание и иссуше­ние воздуха
Размеры
2-3 тыс. км в поперечнике
Скорость пере
мещения
30-40 км/ч, подвижны
Малоподвижны
Направле
ние движения
С запада на восток
Место рожде­ния
Северная Атлантика, Баренцево море, Охотское море
Зимой - сибирский анти­циклон
Погода
Пасмурная, с осадками
Малооблачная, летом - теплая, зимой - морозная
27
3. Работа с синоптическими картами (картами погоды)
Благодаря синоптическим картам можно судить о продви­жении циклонов, фронтов, облачности, сделать прогноз на бли­жайшие часы, сутки. Синоптические карты имеют свои услов­ные знаки, по которым можно узнать о погоде в любом районе. Изолиниями, соединяющими точки с одинаковым атмосферным давлением (их называют изобарами), показаны циклоны и ан­тициклоны. В центре концентрических изобар стоит буква Н (низкое давление, циклон) или В (высокое давление, антицик­лон). Изобары указывают и давление воздуха в гектопаскалях (1000 гПа = 750 мм рт. ст.). Стрелками показано направление движения циклона или антициклона.
Учитель показывает, как на синопти­ческой карте отражена различная информация: давление воздуха, атмосферные фронты, антициклоны и циклоны и их давление, области с осадками, характер осадков, скорость и направление ветра, температура воздуха.)
- Из предложенных признаков выберите, что характерно для
циклона, антициклона, атмосферного фронта:
1) атмосферный вихрь с высоким давлением в центре;
2) атмосферный вихрь с низким давлением в центре;
3) приносит пасмурную погоду;
4) устойчив, малоподвижен;
5) устанавливается над Восточной Сибирью;
6) зона столкновения теплых и холодных воздушных масс;
28
7) восходящие потоки воздуха в центре;
8) нисходящее движение воздуха в центре;
9) движение от центра к периферии;
10) движение против часовой стрелки к центру;
11) бывает теплым и холодным.
{Циклон - 2, 3, 1, 10;. антициклон - 1, 4, 5, 8, 9; атмосферный фронт - 3,6, 11.}
Домашнее задание

Список литературы

Список используемой литературы

1. Теоретические основы методики обучения географии. Под ред. А. Е. Бибик и
др., М., «Просвещение», 1968 г.
2. География. Природа и люди. 6кл._Алексеев А.И. и др_2010 -192с
3. География. Начальный курс. 6 класс. Герасимова Т.П., Неклюкова
Н.П. (2010, 176с.)
4. География. 7кл. В 2ч. Ч.1._Домогацких, Алексеевский_2012 -280с
5. География. 7кл. В 2ч. Ч.2._Домогацких Е.М_2011 -256с
6. География. 8кл._Домогацких, Алексеевский_2012 -336с
7. География. 8 класс. учебник. Раковская Э.М.
8. География. 8кл. Поурочные планы по учебнику Раковской и Баринова_2011
348с
9. География России. Хозяйство и географические районы. Учебник для 9
класса. Под. ред. Алексеева А.И. (2011, 288с.)
10. Изменение климата. Пособие для педагогов старших классов. Кокорин
А.О., Смирнова Е.В. (2010, 52с.)

Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.

* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.

Классификация любых явлений - важный элемент системы знаний о них. Каждый исследователь говорит о тех или иных вихревых явлениях. Их много. Какие вихревые потоки называют и анализируют в настоящее время?

По критерию масштабности это:

Эфирные вихри на уровне микромира

На осязаемом человеком уровне

На космическом уровне.

По степени взаимосвязи с материальными частицами.

В данный момент времени не связанные с ними.

В той или иной степени обладающие свойствами материальных частиц, так как их увлекают за собой.

Обладают свойствами материальных частиц, двигающие их.

По критерию соотношения эфира и других структур окружающего мира

Эфирные вихри, которые пронизывают насквозь твердые предметы, Землю, космические объекты и остаются невидимыми для наших органов чувств.

Эфирные вихри, которые увлекают за собой воздушные, водяные массы и даже твердые породы. Как спироны.

«...вся геосфера уже миллиарды лет находится в ежовых рукавицах этого хирального спирально вихревого поля (СВП), которое в действительности является силовым агентом солнечной атмосферы со всеми осложнениями в связи с проявлениями солнечной активности. Скорость распространения спирально вихревого поля (СВП) зависит от плотности, структуры и преодоленной массы вещества (от 3-1010 см с-1 в ядре Солнца до (2 ^10)-107 см-с-1 в земных условиях). В атмосфере Солнца скорость СВП с первичным, являются земные недра, поскольку, например, биосфера расположена непосредственно над этим источником. Температура в земном ядре недостаточно высока (~ 6140К) для генерации первичных вихревых квантов (спиронов), однако на Землю, постоянно облучаемую потоками ССВИ (104эрг-см-2с-1), непрерывно поступает поток солнечной вихревой энергии (~ 1,3-1015Вт). Наблюдения свидетельствуют, что геоид является для ССВИ резонатором с невысокой добротностью, в нем задерживается ~ 0,3-1015 Вт”

По критерию использования гравитационной энергии

Эфирные вихри относительно независимые от гравитационных

Эфирные вихри, преобразующие грависпиновую энергию в электромагнитную. И наоборот.

Эфирные вихри-домены, которые качают энергию из гравитационных волн.

По критерию влияния на человека в целом

Эфирные вихри, которые придают психофизиологические силы людям.

Эфирные вихри, нейтральные к психофизиологической активности человека.

Эфирные вихри, снижающие психофизиологическую активность людей. Таким полем может быть и фоновое вихревое поле. «Защиты от воздействия фонового вихревого поля, кроме толщ кристаллических пород, по- видимому, нет» А.Г. Никольский

По временному критерию

Быстро протекающие эфирные вихри.

Длительно существующие эфирные вихри

По степени постоянства и устойчивости присутствия

- «В первую очередь»... «фоновое поле, которое однородно по пространству, с волновыми характеристиками типа квазистационарного шума со случайным наложением синусоидальных колебаний различных частот (0,1-20 Гц), амплитуд и продолжительности”. Никольский Г. А. Скрытая солнечная эмиссия и радиационный баланс Земли.

Присутствующие в зависимости от космических и иных факторов, растянутых во времени

Эфирные вихри в форме однотипного, одноплоскостного завихрения

Эфирные вихри в форме тора (завихрение в одной плоскости пересекается с завихрением в другой плоскости)

Эфирные вихри в форме вакуумного домена

По степени однородности плотности вихрей

Относительно однородные

С рукавами эфира различной плотности

По степени проявления

Измеренные и документально засвидетельствованные

Косвенно измеренные

Предполагаемые, гипотические

По происхождению

Из расщепленных, распавшихся частиц

Из объектов, из частиц, материальных объектов, имевших прямолинейное движение

Из волновой энергии

По источнику энергии

Из электромагнитной энергии

Из грависпиновой энергии

Пульсирующее (из грависпиновой в электромагнитную, и наоборот)

По фрактальности к вращению различных геометрических фигур

Самая не простая, но перспективная классификация эфирных вихрей предложена в книге Дэвида Уилкока «Наука единства». Он считает, что все вихри в той или иной степени приближаются к различным геометрическим формам. И эти формы возникают не случайно, а по законам объемного распространения вибрации. Отсюда можно говорить о вихрях, фрактальных вращению различных геометрических фигур. Геометрические фигуры можно условно объединять между собой.

В итоге такие объединения и вращения с различным углом наклона к плоскости рождают следующие фигуры. http://www.ligis.ru/librari/670.htm

В основе таких фигур, а также в основе вихрей, которые возникают при их вращении, лежат Гармонические пропорции Платоновых Тел. К таким формам Д. Уилкок отнес:

Данный подход - изящное объединение основных форм кристаллов и вихрей. Как будет показано в дальнейшем, - «в этом что-то есть». http://www. 16pi2.com/joomla/

По космическому происхождению

Эфирные вихри, идущие из под Земли

Основные закономерности формирования атмосферных вихрей

Приведено собственное, отличное от общепринятого объяснение формирования атмосферных вихрей, в соответствии с которым они образуются океанским волнами Россби. Подъём воды в волнах формирует температуру поверхности океанов в виде отрицательных аномалий, в центре которых вода холоднее, чем на периферии. Эти аномалии воды создают отрицательные аномалии температуры воздуха, которые превращаются в атмосферные вихри. Рассмотрены закономерности их формирования.

В атмосфере нередко формируются образования, в которых воздух, и содержащаяся в нём влага и твёрдые вещества вращаются циклонически в Северном полушарии и антициклонически - в Южном, т.е. против часовой стрелки в первом случае и по её движению - во втором. Это атмосферные вихри, к которым относятся циклоны тропические и средних широт, ураганы, торнадо, тайфуны, тромбо, орканы, вили-вилли, бегвиз, смерчи и т. п.

Природа этих образований во многом общая. Тропические циклоны обычно в диаметре меньше, чем в средних широтах и составляют 100-300 км, но скорости движения воздуха в них большие, достигающие 50-100м/с. Вихри с большими скоростями движения воздуха в районе тропической зоны западной части Атлантического океана около Северной и Южной Америки получили название ураганов, торнадо, аналогичные около Европы – тромбо, около юго-западной части Тихого океана – тайфунов, около Филиппин -бегвиза, около берегов Австралии – вили-вилли, в Индийском океане – орканов.

Тропические циклоны образуются в экваториальной части океанов на широтах 5-20° и распространяются в западном направлении вплоть до западных границ океанов, а затем в северном полушарии движутся на север, в южном – на юг. При движении на север или юг они часто усиливаются и называются тайфунами, торнадо и т.д. Выходя на материк, они довольно быстро разрушаются, но успевают нанести значительный ущерб природе и людям.

Рис. 1. Торнадо. Образования формы, изображённой на рисунке часто называют “воронкой торнадо”. Образование от верхней части торнадо в виде облака до поверхности океана называют трубой или хоботом торнадо.

Подобные вращательные движения воздуха меньших размеров над морем или океаном получили название смерчей.

Принятая гипотеза формирования циклонических образований. Считается, что возникновение циклонов и пополнение их энергией происходит в результате подъёма больших масс тёплого воздуха и скрытой теплоты конденсации. Считается, что в районах образования тропических циклонов вода теплее атмосферы. В этом случае воздух нагревается от океана и поднимается вверх. В результате влага конденсируется и выпадает в виде дождей, давление в центре циклона падает, что и приводит к возникновению вращательных движений воздуха, влаги, твердых веществ, заключенных в циклоне [Грей, 1985, Иванов, 1985, Наливкин, 1969, Gray, 1975]. Считается, что в энергетическом балансе тропических циклонов важную роль играет скрытая теплота испарения. При этом температура океана в области зарождения циклона должна быть не меньше 26° C.

Эта общепринятая гипотеза формирования циклонов возникла без анализа натурной информации, путём логических умозаключений и представлений её авторов о физике развития подобных процессов. Естественно предположить: если воздух в образовании поднимается, что происходит в циклонах, то он должен быть легче, чем воздух на его периферии.

Рис. 2. Вид сверху на облако торнадо. Частично оно расположено над п-ом Флорида. http://www.oceanology.ru/wp-content/uploads/2009/08/bondarenko-pic3.jpg

Так и считается: лёгкий тёплый воздух поднимается, влага конденсируется, давление падает, возникают вращательные движения циклона.

Некоторые исследователи видят слабые стороны этой, хотя и общепринятой, гипотезы. Так, они считают, что локальные перепады температуры и давления в тропиках не настолько велики, чтобы только эти факторы могли сыграть решающую роль в возникновении циклона, т.е. столь значительно ускорить воздушные потоки [Юсупалиев, и др., 2001]. До сих пор остаётся неясным, какие физические процессы протекают на начальных стадиях развития тропического циклона, каким образом усиливается исходное возмущение, как возникает система крупномасштабной вертикальной циркуляции, подводящая энергию в динамическую систему циклона [Моисеев и др., 1983]. Приверженцы этой гипотезы никак не объясняют закономерностей потоков тепла из океана в атмосферу, а просто предполагают их наличие.

Мы же видим очевидный следующий недостаток этой гипотезы. Так, чтобы воздух нагревался от океана, недостаточно, чтобы океан был теплее воздуха. Необходим поток тепла с глубины к поверхности океана, а следовательно, и подъём воды. Вместе с тем, в тропической зоне океана вода на глубине всегда холоднее, чем у поверхности, и такого тёплого потока не существуeт. В принятой гипотезе, как отмечалось, циклон формируется при температуре воды более 26°C. Однако в реальности мы наблюдаем иное. Так в экваториальной зоне Тихого океана, где активно образуются тропические циклоны, средняя температура воды ~ 25°C. При этом циклоны чаще образуются во время Ла-Ниньа, когда температура поверхности океана понижается до 20°C и редко во время Эль-Ниньо, когда температура поверхности океана повышается до 30°C. Поэтому можно считать, что принятая гипотеза формирования циклонов не может реализоваться, во всяком случае, в тропических условиях.

Мы провели анализ этих явлений и предлагаем иную гипотезу формирования и развития циклонических образований, на наш взгляд, правильнее объясняющую их природу. Активную роль в формировании и пополнении энергией вихревых образований играют океанические волны Россби.

Волны Россби Мирового океана. Они составляют часть взаимосвязанного поля свободных, прогрессивных, распространяющихся в пространстве волн Мирового океана, обладают свойством в открытой части океана распространяться в западном направлении. Волны Россби присутствуют во всём Мировом океане, но в экваториальной зоне они большие. Движение частиц воды в волнах и волновой перенос (Стоксов, Лагранжев) это, фактически, волновые течения. Их скорости (эквивалент энергии) изменяются во времени и пространстве. По итогам исследований [Бондаренко, 2008] скорость течения равна амплитуде колебания скорости течения волн, фактически – максимальной скорости в волне. Поэтому наибольшие скорости волновых течений наблюдаются в областях сильных крупномасштабных течений: западных пограничных, экваториальных и циркумполярном течении (рис.3а, б).

Рис. 3а, б. Векторы средних по ансамблю дрифтерных наблюдений течений Северного (а) и Южного (б) полушарий Атлантического океана. Течения: 1 – Гольфстрим, 2 – Гвианское, 3 – Бразильское, 4 – Лабрадорское, 5- Фольклендское, 6 – Канарское, 7 –Бенгельское.

В соответствии с исследованиями [Бондаренко, 2008] линии токов течений волн Россби в узкой приэкваториальной зоне (2° – 3° от Экватора на север и юг) и её окружении схематически можно представить в виде линий токов диполя, (рис. 5а, б). Напомним, что линии токов указывают на мгновенное направление векторов течений, или, что одно и то же, направление силы, создающей течения, скорость которых пропорциональна плотности линий токов.

Рис. 4. Пути всех тропических циклонов за 1985-2005 гг. Цвет указывает их силу по шкале Саффира-Симпсона .

Видно, что у поверхности океана в экваториальной зоне плотность линий токов гораздо больше, чем за её пределами, следовательно, больше и скорости течений. Вертикальные скорости течений в волнах невелики, они составляют приблизительно тысячную часть горизонтальной скорости течения. Если учесть, что горизонтальная скорость на Экваторе достигает 1 м/с, то вертикальная равна приблизительно 1 мм/с. При этом, если длина волны равна 1 тыс. км, то область подъёма и опускания волны составит 500 км.

Рис. 5 а,б. Линии токов волн Россби в узкой приэкваториальной зоне (2° – 3° от Экватора на север и юг) в виде эллипсов со стрелками (вектор волновых течений) и её окружение. Сверху – вид по вертикальному сечению вдоль Экватора (А), снизу – вид сверху на течение. Голубым и синим цветом выделена область подъёма на поверхность холодных глубинных вод, желтым – область опускания на глубину теплых поверхностных вод [Бондаренко, Жмур, 2007].

Последовательность волн как во времени, так и в пространстве, представляет собой непрерывный ряд сформированных в модуляции (группы, цуги, биения) малых - больших - малых и т.д. волн. Параметры волн Россби экваториальной зоны Тихого океана определены по измерениям течений, образец которых представлен на рис. 6 а и температурным полям, образец которых представлен на рис. 7а, б, в. Период волн легко определяется графически по рис. 6 а, он приблизительно равен 17-19 суткам.

При неизменной фазе в модуляциях укладывается примерно 18 волн, что по времени соответствует одному году. На рис. 6а такие модуляции чётко выражены, их три: в 1995, 1996 и 1998 гг. В экваториальной зоне Тихого океана укладывается десять волн, т.е. почти половина модуляции. Порой модуляции имеют стройный квазигармонический характер. Это состояние можно рассматривать как типичное для экваториальной зоны Тихого океана. Когда-то они выражены нечетко, а иногда волны разрушаются и превращаются в образования с чередованием больших и малых волн или волны в целом становятся малыми. Такое наблюдалось, например, с начала 1997 г. и до средины 1998 г. во время сильного Эль-Ниньо, температура воды достигала 30°C. После этого наступило сильное Ла-Ниньа: температура воды опускалась до 20°С, временами до 18°C.

Рис. 6 а,б. Меридиональная составляющая скорости течения, V (а) и температура воды (б) в пункте на Экваторе (140° з.д.) на горизонте 10 м за период 1995-1998 гг. В течениях заметно выделяются колебания скорости течений с периодом порядка 17 – 19 суток, образованные волнами Россби. В измерениях прослеживаются и колебания температуры с аналогичным периодом.

Волны Россби создают колебания температуры поверхности воды (механизм описан выше). Большим волнам, наблюдаемых во время Ла-Ниньа соответствуют большие колебания температуры воды, а малым, наблюдаемых во время Эль-Ниньо – малые. Во время Ла-Ниньа волны формируют заметные температурные аномалии. На рис. 7в выделяются зоны подъёма холодной воды (синий и голубой цвет) и в промежутках между ними зоны опускания тёплой воды (светло синий и белый цвет). Во время Эль-Ниньо эти аномалии небольшие и не заметны (рис. 7б).

Рис. 7 а,б,в. Средняя температура воды (°C) экваториальной области Тихого океана на глубине 15 м. за период 01.01.1993 - 31.12.2009 (а) и аномалии температуры во время Эль-Ниньо декабрь 1997 г. (б) и Ла-Ниньа декабрь 1998 г. (в) .

Формирование атмосферных вихрей (гипотеза автора). Тропические циклоны и торнадо, цунами и т.д. движутся по экваториальным и зонам западных пограничных течений, в которых волны Россби имеют наибольшие вертикальные скорости движения воды (рис.3, 4). Как отмечалось, в этих волнах подъём глубинной воды на поверхность океана в тропических и субтропических зонах приводит к созданию на поверхности океана значительных отрицательных аномалий воды овальной формы, с температурой в центре ниже температуры вод, их окружающих, “температурных пятен” (рис. 7в). В экваториальной зоне Тихого океана аномалии температуры имеют такие параметры: ~ 2 – 3 °C, диаметр ~ 500 км.

Сам факт движения тропических циклонов и торнадо по зонам экваториальных и западных пограничных течений, а также анализ развития таких процессов, как апвеллинг – даунвеллинг, Эль-Ниньо – Ла-Ниньf, пассатов и навёл нас на мысль о том, что атмосферные вихри как-то должны быть связаны физически с активностью волн Россби, а точнее должны ими порождаться, чему впоследствии мы нашли объяснение.

Аномалии холодной воды охлаждают атмосферный воздух, создавая отрицательные аномалии овальной формы, близкой к круговой, холодного воздуха в центре и более тёплого на периферии. В результате и давление внутри аномалии оказывается ниже, чем на её периферии. Как следствие этого возникают усилия, обусловленные градиентом давления, которые движут массы воздуха и содержащейся в нём влаги и твёрдых веществ в центр аномалии – F д. На массы воздуха действует сила Кориолиса - F k , которая отклоняет их вправо в Северном полушарии и влево в Южном. Таким образом, массы будут двигаться в цент аномалии по спирали. Чтобы циклоническое движение возникло, сила Кориолиса должна быть отлична от нуля. Так как F k =2mw u Sinf , где m – масса тела, w – угловая частота вращения Земли, f - широта места, u - модуль скорости движения тела (воздуха, влаги, твёрдых веществ). На экваторе F k = 0, поэтому циклонические образования там не возникают. В связи с движением масс по окружности образуется центробежная сила - F ц, стремящаяся оттолкнуть массы от центра аномалии. В целом на массы будет действовать сила стремящаяся сместить их по радиусу - F r = F д - F ц. и сила Кориолиса. Скорость вращения масс воздуха, влаги и твёрдых веществ в образовании и подачи их в центр циклона будет зависеть от градиента силы F r . Чаще всего в аномалии F д > F ц. Сила F ц достигает существенной величины при больших угловых скоростях вращения масс. Такое распределение усилий приводит к тому, что воздух с содержащимися в нём влагой и твердыми частицами устремляется в центр аномалии и там выталкивается вверх. Именно выталкивается, но не поднимается, как это считается в принятых гипотезах образования циклонов. При этом поток тепла направлен из атмосферы, а не из океана, как в принятых гипотезах. Подъём воздуха вызывает конденсацию влаги и, соответственно, падение давления в центре аномалии, образование облачности над ней, выпадение осадков. Это приводит к уменьшению температуры воздуха аномалии и ещё большему падению давления в её центре. Возникает своего рода связь процессов, взаимно усиливающих друг друга: падение давления в центре аномалии увеличивает подачу в нее воздуха и, соответственно, его подъём, что в свою очередь приводит к ещё большему падению давления и, соответственно, увеличению поступления масс воздуха, влаги и твёрдых частиц в аномалию. В свою очередь это приводит к сильному увеличению скоростей движения воздуха (ветра) в аномалии, образуя циклон.

Итак, мы имеем дело со связью процессов, взаимно усиливающих друг друга. Если процесс протекает без усиления, в вынужденном режиме, то, как правило, скорость ветра небольшая - 5-10 м/с, но в отдельных случаях может достигать и 25 м/с. Так, скорость ветров – пассатов составляет 5 – 10 м/с при различиях температуры поверхностных вод океана 3-4°C на 300 – 500 км. В прибрежных апвеллингах Каспийского моря и в открытой части Черного моря ветры могут достигать 25 м/с при различиях температуры воды ~ 15°C на 50 – 100 км. При “работе” связи процессов, взаимно усиливающих друг друга в тропических циклонах, торнадо, смерчах скорость ветра в них может достигать существенных величин - свыше 100-200 м/с.

Подпитка циклона энергией. Мы уже отмечали, что волны Россби вдоль Экватора распространяются на запад. Они формируют на поверхности океана отрицательные по температуре аномалии воды в диаметре ~ 500км, которые поддерживаются отрицательным потоком тепла и массы воды, поступающей с глубины океана. Расстояние между центрами аномалий равно длине волны, ~ 1000 км. Когда циклон находится над аномалией, то он подпитывается энергией. Но когда циклон оказывается между аномалиями, он практически не подпитывается энергией, поскольку в этом случае отсутствуют вертикальные отрицательные потоки тепла. Эту зону он проскакивает по инерции, возможно, с небольшой потерей энергии. Далее в очередной аномалии он получает дополнительную порцию энергии, и так продолжается на всём пути движения циклона, переходящего нередко в торнадо. Разумеется, могут возникать условия, когда циклон не встретит аномалий или они будут малыми, и он может со временем разрушиться.

Формирование торнадо. После того, как тропический циклон достигнет западных границ океана, он движется на север. За счёт увеличения Кориолисовой силы увеличиваются угловая и линейная скорости движения воздуха в циклоне, давление в нём падает. Перепады давления внутри и вне циклонического образования достигают величин более 300 мб, в то время как в циклонах средних широт эта величина составляет ~ 30 мб. Скорости ветра превышают 100 м/с. Область подъёма воздуха и содержащихся в нём твёрдых частиц и влаги сужается. Она получила название хобота или трубы вихревого образования. Массы воздуха, влаги и твёрдых веществ поступают с периферии циклонического образования в его центр, в трубу. Такие образования с трубой получили название торнадо, тромбов, тайфунов, смерчей (см. рис. 1, 2).

При больших угловых скоростях вращения воздуха в центре торнадо возникают условия: F д ~ F ц.. Сила F д стаскивает массы воздуха, влаги и твёрдых частиц с периферии торнадо на стенки трубы, сила F ц - с внутренней области трубы на ее стенки. В этих условиях влага и твердые вещества в трубе отсутствуют и воздух прозрачен. Такое состояние торнадо, цунами и др. получило название “глаз бури”. На стенках трубы результирующая сила, действующая на частицы, практически равна нулю, а внутри трубы она мала. Также малы угловая и линейная скорости вращения воздуха в центре торнадо. Это и объясняет отсутствие ветра внутри трубы. Но такое состояние торнадо, с “глазом бури” наблюдается не во всех случаях, а только тогда, когда угловая скорость вращения веществ достигает значительной величины, т.е. в сильных торнадо.

Торнадо, как и тропический циклон, на всём пути следования над океаном подпитывается энергией температурных аномалий воды, создаваемых волнами Россби. На суше такой механизм подкачки энергии отсутствует и поэтому торнадо относительно быстро разрушается.

Ясно, что для прогноза состояния торнадо по пути его следования над океаном необходимо знать термодинамическое состояние поверхностных и глубинных вод. Такую информацию дают съёмки из космоса.

Тропические циклоны и торнадо обычно образуются летом и осенью, в это время в Тихом океане формируется Ла-Ниньа. Почему? В экваториальной зоне океанов именно в это время волны Россби достигают наибольшей амплитуды и создают аномалии температуры значительной величины, энергией которых и питается циклон [Бондаренко, 2006]. Нам не известно, как ведут себя амплитуды волн Россби в субтропической части океанов, поэтому нельзя утверждать, что аналогичное происходит и там. Но хорошо известно, что глубокие отрицательные аномалии в этой зоне появляются летом, когда поверхностные воды нагреты сильнее, нежели зимой. В этих условиях возникают температурные аномалии воды и воздуха с большими перепадами температуры, чем и объясняется образование сильных торнадо в основном летом и осенью.

Циклоны средних широт. Это образования без трубы. В средних широтах циклон, как правило, не переходит в торнадо, поскольку выполняются условия Fr ~ Fk, т.е. движение масс геострофическое.

Рис. 8. Поле температуры поверхностных вод Чёрного моря на время 19 ч. 29 сентября 2005г.

В этих условиях вектор скорости движения масс воздуха, влаги и твёрдых частиц направлен по окружности циклона и все эти массы только слабо поступают в его центр. Поэтому циклон не сжимается и не превращается в торнадо. Нам удалось проследить образование циклона над Чёрным морем. Волны Россби нередко создают отрицательные темпера-турные аномалии поверхностных вод в центральных районах западной и восточной его частях. Они и образуют над морем циклоны, иногда с большой скоростью ветра. Нередко температура в аномалиях достигает ~ 10 – 15 °C, в то время, как над остальным морем температура воды ~ 230C. На рис.8 приведено распределение температуры воды Чёрного моря. На фоне относительно тёплого моря с температурой поверхностных вод до ~ 23°C в западной его части выделяется аномалия воды до ~ 10°C. Различия весьма существенны, что и сформировало циклон (рис. 9). Этот пример свидетельствует о возможности реализации предложенной нами гипотезы формирования циклонических образований.

Рис. 9. Схема поля атмосферного давления над Чёрным морем и около его, соответствующее времени: 19ч. 29 сентября 2005г. Давление в мб. В западной части моря находится циклон. Средняя скорость ветра в районе циклона равна 7 м/с и направлена циклонически вдоль изобар.

Нередко к Чёрному морю со стороны Средиземного приходит циклон, который значительно усиливается над Чёрным морем. Так, скорее всего, в ноябре 1854г. образовалась знаменитая Балаклавская буря, потопившая Английскиё флот. Аналогичные изображённым на рис.8 температурные аномалии воды образуются и в других замкнутых или полузамкнутых морях. Так, торнадо движущиеся в сторону США, часто значительно усиливаются при прохождении над Карибским морем или Мексиканским заливом. Для обоснования наших выводов приведём дословно выдержку из сайта Интернета “Атмосферные процессы в Карибском море”: “Ресурс представляет динамическое изображение тропического урагана Dean (торнадо), одного из наиболее мощных в 2007 году. Наибольшую силу ураган набирает над водной поверхностью, а при прохождении над сушей происходит его “размывание” и ослабление”.

Смерчи. Это вихревые образования небольших размеров. Как и торнадо, они имеют трубу, образуются над океаном или морем, на поверхности, которых возникают температурные аномалии небольших по площади размеров. Автору статьи приходилось многократно наблюдать смерчи в восточной части Чёрного моря, где большая активность волн Россби на фоне очень тёплого моря приводит к образованию многочисленных и глубоких температурных аномалий поверхностных вод. Развитию смерчей в этой части моря также способствует очень влажный воздух.

Выводы. Атмосферные вихри (циклоны, торнадо, тайфуны и пр.) формируются температурными аномалиями поверхностных вод с отрицательной температурой, в центре аномалии температура воды ниже, на периферии - выше. Эти аномалии формируются волнами Россби Мирового океана, в которых происходит подъём холодной воды с глубины океана к его поверхности. При этом температура воздуха в рассматриваемых эпизодах обычно бывает выше температуры воды. Впрочем, выполнение этого условия не обязательно, атмосферные вихри могут быть образованы, когда температура воздуха над океаном или морем ниже температуры воды. Главное условие образования вихря: наличие отрицательной аномалии воды и разности температур вода – воздух. В этих условиях и создаётся отрицательная аномалия воздуха. Чем больше разность температур атмосфера – вода океана, тем активнее развивается вихрь. Если температура воды аномалии равна температуре воздуха, то вихрь не образуется, а существующий в этих условиях не развивается. Далее всё происходит так, как было описано.

Литература:
Бондаренко А.Л. Эль-Ниньо – Ла-Ниньа: механизм формирования// Природа. №5. 2006. С. 39 – 47.
Бондаренко А.Л., Жмур В.В. Настоящее и будущее Гольфстрима// Природа. 2007. № 7. С. 29 – 37.
Бондаренко А.Л., Борисов Е.В., Жмур В.В. О длинноволновой природе морских и океанских течений// Метеорология и гидрология. 2008. №1. С. 72 – 79.
Бондаренко А.Л. Новые представления о закономерностях формирования циклонов, торнадо, тайфунов смерчах. 17.02.2009г. http://www.oceanographers.ru/index.php?option=com_content&task=view&id=1534&Itemid=52
Грей В.М. Генезис и интенсификация тропических циклонов// Сб. Интенсивные атмосферные вихри. 1985. М.: Мир.
Иванов В.Н. Зарождение и развитие тропических циклонов// C.: Тропическая метеорология. Труды III Международного симпозиума. 1985. Л. Гидрометеоиздат.
Каменкович В.М., Кошляков М.М., Монин А.С. Синоптические вихри в океане. Л.: Гидрометеоиздат. 1982. 264с.
Моисеев С.С., Сагдеев Р.З., Тур А.В., Хоменко Г.А., Шукуров А.В. Физический механизм усиления вихревых возмущений в атмосфере// Доклады Академии наук СССР. 1983. Т.273. №3.
Наливкин Д.В. Ураганы, бури, смерчи. 1969. Л.: Наука.
Юсупалиев У., Анисимов Е.П., Маслов А.К., Шутеев С.А. К вопросу формирования геометрических характеристик смерча. Часть II// Прикладная физика. 2001. №1.
Gray W. M. Tropical cyclone genesis// Atmos. Sci. Paper, Colo. St. Univer. 1975. №234.

Альберт Леонидович Бондаренко , океанолог, доктор географических наук, ведущий научный сотрудник Института водных проблем РАН. Область научных интересов: динамика вод Мирового океана, взаимодействие океана и атмосферы. Достижения: доказательство существенного влияния океанических волн Россби на формирование термодинамики океана и атмосферы, погоды и климата Земли.
[email protected]

Атмосфера ("атмос" - пар) - воздушная оболочка Земли. Атмосфера по характеру изменения температуры с высотой, делится на несколько сфер

Лучистая энергия Солнца является источником движения воздуха. Между теплыми и холодными массами возникает разность температуры и атмосферного воздуха давления. Это порождает ветер.

Для обозначения движения ветра применяют различные понятия: смерч, буря, ураган, шторм, тайфун, циклон и пр.

Чтобы их систематизировать, во всем мире пользуются шкалой Бофорта , которая оценивает силу ветра в баллах от 0 до 12 (см. табл.).

Атмосферные фронты и атмосферные вихри порождают грозные природные явления, классификация которых приведена на рис. 1.9.

Рис. 1.9. Природные опасности метеорологического характера.

В табл. 1.15 приведена характеристика атмосферных вихрей.

Циклон (ураган) - (греч. кружащийся) - это сильное атмосферное возмущение, круговое вихревое движение воздуха с понижением давления в центре.

В зависимости от места зарождения циклоны подразделяются на тропические ивнетропические . Центральная часть циклона, обладающая наиболее низким давлением, слабой облачностью и слабыми ветрами, называется "глазом бури" ("глазом урагана").

Скорость движения самого циклона 40 км/ч (редко до 100 км/ч). Тропические циклоны (тайфуны) движутся быстрее. А скорость ветровых вихрей до 170 км/ч.

В зависимости от скорости различают: - ураган (115-140 км/ч); - сильный ураган (140-170 км/ч); - жесткий ураган (более 170 км/ч).

Ураганы наиболее распространены на Дальнем Востоке, в Калининградской и Северо-западных областях страны.

Предвестники урагана (циклона): - понижение давления в низких широтах и повышение в высоких; - наличие возмущений любого рода; - переменчивые ветры; - морская зыбь; - неправильные приливы и отливы.

Таблица 1.15

Характеристика атмосферных вихрей

Атмосферные вихри

название

Характеристика

Циклон (тропический и внетропический) - вихри, в центре которых низкое давление

Тайфун (Китай, Япония) Бэгвиз (Филлипины) Вилли-Вилли (Австралия) Ураган (Сев. Америка)

Диаметр вихря 500-1000 км Высота 1-12 км Диаметр области затишья ("глаз бури") 10-30 км Скорость ветра до 120 м/с Время действия - 9-12 суток

Смерч - восходящий вихрь, состоящий из быстро вращающего воздуха, смешанного с частицами влаги, песка, пыли и других взвесей, воздушная воронка, спускающаяся из низкого облака на водную поверхность или сушу

Торнадо (США, Мексика) Тромб (Зап. Европа)

Высота - несколько сот метров. Диаметр - несколько сот метров. Скорость перемещения до 150-200 км/ч Скорость вращения вихрей в воронке до 330 м/с

Шквал - кратковременные вихри, возникающие перед холодными атмосферными фронтами, нередко сопровождаемые ливнем или градом и возникающие во все сезоны года и в любое время суток.

Скорость ветра 50-60 м/с Время действия до 1 часа

Ураган - ветер большой разрушительной силы и значительной продолжительности, возникающие в основном с июля по октябрь в зонах сближения циклона и антициклона. Иногда сопровождается ливнями.

Тайфун (Тихий океан)

Скорость ветра более 29 м/с Продолжительность 9-12 дней Ширина - до 1000 км

Буря - ветер, скорость которого меньше ураганного.

Продолжительность - от нескольких часов до нескольких суток Скорость ветра 15-20 м/с Ширина - до нескольких сот километров

Бора - очень сильный порывистый холодный ветер приморских районов (Италия, Югославия, Россия), приводящий в зимнее время к обледенению портовых сооружений и кораблей

Сарма (на Байкале) Бакинский норд

Продолжительность - несколько суток Скорость ветра 50-60 м/с (иногда до 80 м/с)

Фён - жаркий сухой ветер Кавказа, Алтая, Ср. Азии (дует с гор в долину)

Скорость 20-25 м/с, высокая температура и низкая относительная влажность воздуха

Поражающие факторы урагана приведены в табл. 1.16.

Таблица 1.16

Поражающие факторы урагана

Смерч (торнадо) - чрезвычайно быстро вращающаяся воронка, свисающая из кучево-дождевого облака и наблюдающаяся как "воронкообразное облако " или "труба". Классификация смерчей дана в табл. 3.1.26.

Таблица 1.17

Классификация смерчей

Виды смерчей

По типу смерчевых облаков

Роторные; - кольцевые низкие; - башенные

По форме строения стенки воронки

Плотные; - расплывчатые

По соотношению длины и ширины

Змееобразные (воронкообразные); - хоботообразные (колонноподобные)

По скорости разрушений

Быстрые (секунды); - средние (минуты); - медленные (десятки минут).

По скорости вращения вихря в воронке

Экстремальные (330 м/с и более); - сильные (150-300 м/с); - слабые(150 м/с и менее).

На территории России смерчи распространены: на севере - у Соловецких островов, на Белом море, на юге - на Черном и Азовском морях. - Малые смерчи короткого действия проходят путь менее километра. - Малые смерчи значительного действия проходят путь в несколько километров. - Крупные смерчи проходят путь в десятки километров.

Поражающие факторы смерчей даны в табл. 1.18.

Таблица 1.18

Поражающие факторы смерчей

Буря - длительный, очень сильный ветер со скоростью более 20 м/с, наблюдающийся при прохождении циклона и сопровождающийся сильным волнением на море и разрушениями на суше. Длительность действия - от нескольких часов до нескольких суток.

В табл. 1.19 приведена классификация бурь.

Таблица 1.19

Классификация бурь

Классификационная группировка

Вид бури

В зависимости от времени года и состава вовлеченных в воздух частиц

Пыльные; - беспыльные; - снежные (пурга, буран, метель); - шквальные

По цвету и составу пыли

Черные (чернозем); - бурые, желтые (суглинки, супеси); - красные (суглинки с окислами железа); - белые (соли)

По происхождению

Местные; - транзитные; - смешанные

По времени действия

Кратковременные (минуты) с небольшим ухудшением видимости; - кратковременные (минуты) с сильным ухудшением видимости; - длительные (часы) с сильным ухудшением видимости

По температуре и влажности

Горячие; - холодные; - сухие; - влажные

Поражающие факторы бурь приведены в табл. 1.20.

Таблица 1.20.

Поражающие факторы бурь

Вид бури

Первичные факторы

Вторичные факторы

Высокая скорость ветра; - сильное волнение моря

Разрушение строений, плавсредств; - разрушение, размыв побережья

Пыльная буря (суховей)

Высокая скорость ветра; - высокая температура воздуха при крайне низкой относительной влажности; - потеря видимости, пыль.

Разрушение строений; - иссушение почв, гибель с/х растений; - вынос плодородного слоя почвы (дефляция, эрозия); - потеря ориентации.

Снежная буря (буран, пурга, метель)

Высокая скорость ветра; - низкая температура; - потеря видимости, снег.

Разрушение объектов; - переохлаждение; - обморожение; - потеря ориентации.

Высокая скорость ветра (в течение 10 минут скорость ветра возрастает с 3 до 31 м/с)

Разрушение строений; - бурелом.

Действия населения

Гроза - атмосферное явление, сопровождающееся молниями и оглушительными раскатами грома. На Земном шаре одновременно происходит до 1800 гроз.

Молния - гигантский электрический искровой разряд в атмосфере в виде яркой вспышки света.

Таблица 1.21

Виды молний

Таблица 1.21

Поражающие факторы молнии

Действия населения при грозе.

Град - частички плотного льда, выпадающего в виде осадков из мощных кучево-дождевых облаков.

Туман - помутнение воздуха над поверхностью Земли, вызываемое конденсацией водяного пара

Гололед - смерзшиеся капли переохлажденного дождя или тумана, осаждающиеся на холодной поверхности Земли.

Снежные заносы - обильное выпадение снега при скорости ветра свыше 15 м/с и продолжительности снегопада более 12 часов.

Характеристики ураганов, бурь, смерчей

Ураганы, бури, смерчи - это ветровые метеорологические явления , относятся к природным стихийным бедствиям , способны нанести большой материальный ущерб и привести к гибели людей.


Ветер - движение воздуха относительно земной поверхности, возникающее в результате неравномерного распределения тепла и атмосферного давления. Основные показатели ветра - направление (из зоны высокого давления в зоною низкого давления) и скорость (измеряется в метрах в секунду (м/с; км/ч; милях/час).

Для обозначения движения ветра используют много слов: ураган, буря, шторм, смерч... Чтобы их систематизировать, пользуются шкалой Бофорта (разработана английским адмиралом Ф. Бофортом в 1806 г.), которая позволяет весьма точно оценить силу ветра в баллах (от 0 до 12) по его действию на наземные предметы или на волнение в море. Удобна эта шкала еще и тем, что она позволяет по описанным в ней признакам довольно точно определить скорость ветра без приборов.

Шкала Бофорта (табл. 1)

Баллы Бофор-та Скорость ветра, м/с (км/ч) Действие ветра на суше
На суше На море
Штиль 0,0 – 0,2 (0,00-0,72) Штиль. Дым поднимается вертикально Зеркально гладкое море
Тихий ветерок 0,3 –1,5 (1,08-5,40) Направление ветра заметно по относу дыма, Рябь, пены на гребнях нет
Легкий бриз 1,6 – 3,3 5,76-11,88) Движение ветра ощущается лицом, шелестят листья, движется флюгер Короткие волны, гребни не опрокидываются и кажутся стекловидными
Слабый бриз 3,4 – 5,4 (12,24-19,44) Листья и тонкие ветви деревьев колышутся, ветер развевает верхние флаги Короткие хорошо выраженные волны. Гребни, опрокидываясь, образуют пену, изредка образуются маленькие белые барашки.
Умеренный бриз 5,5 –7,9 (19,8-28,44) Ветер поднимает пыль и бумажки, приводит в движение тонкие ветви деревьев Волны удлиненные, белые барашки видны во многих местах.
Свежий бриз 8,0 –10,7 (28,80-38,52) Качаются тонкие стволы деревьев, на воде появляются волны с гребнями Хорошо развитые в длину, но не очень крупные волны, повсюду видны белые барашки.
Сильный бриз 10,8 – 13,8 (38,88-49,68) Качаются толстые сучья деревьев, гудят провода Начинают образовываться крупные волны. Белые пенистые гребни занимают значительные площади.
Крепкий ветер 13,9 – 17,1 (50,04-61,56) Качаются стволы деревьев, идти против ветра трудно Волны громоздятся, гребни срываются, пена ложится полосами по ветру
Очень крепкий ветер (буря) 17,2 – 20,7 (61,92-74,52)
Шторм (сильная буря) 20,8 –24,4 (74,88-87,84)
Сильный шторм (полная буря) 24,5 –28,4 (88,2-102,2)
28,5 – 32,6 (102,6-117,3)
Ураган 32,7 и более (117,7 и более) Тяжелые предметы переносятся ветром на значительные расстояния Воздух наполнен пеной и брызгами. Море все покрыто полосами пены. Очень плохая видимость.

Характеристика атмосферных вихрей

Атмосферные вихри Местное название Характеристика
Циклон (тропический и внетропический) - вихри, в центре которых низкое давление Тайфун (Китай, Япония) Бэгвиз (Филлипины) Вилли-Вилли (Австралия) Ураган (Сев. Америка) Диаметр вихря 500-1000 км Высота 1-12 км Диаметр области затишья ("глаз бури") 10-30 км Скорость ветра до 120 м/с Время действия - 9-12 суток
Смерч - восходящий вихрь, состоящий из быстро вращающего воздуха, смешанного с частицами влаги, песка, пыли и других взвесей, воздушная воронка, спускающаяся из низкого облака на водную поверхность или сушу Торнадо (США, Мексика) Тромб (Зап. Европа) Высота - несколько сот метров. Диаметр - несколько сот метров. Скорость перемещения до 150-200 км/ч Скорость вращения вихрей в воронке до 330 м/с
Шквал - кратковременные вихри, возникающие перед холодными атмосферными фронтами, нередко сопровождаемые ливнем или градом и возникающие во все сезоны года и в любое время суток. Буря Скорость ветра 50-60 м/с Время действия до 1 часа
Ураган - ветер большой разрушительной силы и значительной продолжительности, возникающие в основном с июля по октябрь в зонах сближения циклона и антициклона. Иногда сопровождается ливнями. Тайфун (Тихий океан) Скорость ветра более 29 м/с Продолжительность 9-12 дней Ширина - до 1000 км
Буря - ветер, скорость которого меньше ураганного. Шторм Продолжительность - от нескольких часов до нескольких суток Скорость ветра 15-20 м/с Ширина - до нескольких сот километров

Ураган

Ураган – это быстрое движение ветра, со скорость 32,7 м/с (117 км/час), хотя может превышать и 200 км/час (12 баллов по шкале Бофорта) (табл. 1), со значительной продолжительностью в несколько суток (9-12 суток), непрерывно движущейся над океанами, морями и материками и обладающий большой разрушительной силы. За ширину урагана принимают ширину зоны катастрофических разрушений. Часто к этой зоне прибавляют территорию ветров штормовой силы со сравнительно небольшими разрушениями. Тогда ширина урагана измеряется сотнями километров, достигая иногда 1000 км. Ураганы возникают в любое время года, но наиболее часто с июля по октябрь. В остальные 8 месяцев они редки, пути их коротки.

Ураган одно из самых мощных проявлений природы, по своим последствиям сравним с землетрясением. Ураганы сопровождаются выпадением большого количества осадков и понижением температуры воздуха. Ширина урагана составляет от 20 до 200 километров. Чаще всего ураганы проносятся над США, Бангладеш, Кубой, Японией, Антильскими островами, Сахалином, Дальним Востоком.

В половине случаев скорость ветра при урагане превышает 35 м/сек, доходя до 40-60 м/сек, а иногда и до 100 м/сек. В зависимости от скорости ветра ураганы классифицируются на три типа:

- ураган (32 м/с и более),

- сильный ураган (39,2 м/с и более)

- жестокий ураган (48,6 м/с и более).

Причиной подобных ураганных ветров является возникновение, как правило, на линии столкновения фронтов теплых и холодных воздушных масс, мощных циклонов с резким перепадом давления от периферии к центру и с созданием вихревого воздушного потока, движущегося в нижних слоях (3-5 км) по спирали к середине и вверх, в северном полушарии – против часовой стрелки. Каждому урагану синоптики присваивают имя или четырехзначный номер.

Циклоны, в зависимости от места их возникновения и структуры подразделять на:

1) Тропические циклоны встречаются над теплыми тропическими океанами, в стадии формирования обычно движется на запад, а после окончания формирования изгибаются к полюсам. Тропический циклон, достигший необычной силы, называется:

- тропическимураганом, если он рождается в Атлантическом океане и примыкающих к нему морям. Северная и Южная Америка. Ураган (исп. huracán, англ. hurricane) по имени майянского бога ветра Хуракана;

- тайфуном – если он зародился над Тихим океаном. Дальний Восток, Юго-Восточная Азия;

- циклоном – в регионе Индийского океана.

Рис. Структура тропического циклона

Глаз - центральная часть циклона, в которой воздух опускается вниз.

Стеной глаза - называют кольцо плотных грозовых кучевых облаков, окружающих глаз.

Внешняя часть тропического циклона организована в дождевые полосы - полосы плотных грозовых кучевых туч, которые медленно движутся к центру циклона и сливаются со стеной глаза.

Одним из наиболее распространенных определений размера циклона, которое применяется в различных базах данных, является расстояние от центра циркуляции до наиболее внешней замкнутой изобары, это расстояние имеет название радиуса внешней замкнутой изобары.

2) Циклоны умеренных широт могут формироваться как над сушей так и над водой. Обычно они движутся с запада на восток. Характерной особенностью таких циклонов является их большая «сухость». Количество осадков при их прохождении значительно меньше, чем в зоне тропических циклонов.

3) На Европейский материк воздействуют как тропические ураганы, зарождающиеся в центральной Атлантике, так и циклоны умеренных широт.

Рис. Ураган Изабель 2003 года, фотография с МКС - можно четко увидеть характерные для тропических циклонов глаз, стену глаза и окружающие дождевые полосы.

Буря (шторм)

Буря (шторм) – разновидность урагана, уступающая ему по силе. Ураганы и бури различаются только скоростью ветра. Буря - сильный, длительный ветер, но его скорость меньше, чем при урагане 62 - 117 км/час, (8 – 11 баллов по шкале Бофорта). Буря может длиться от 2-3 ч до нескольких суток, охватывая расстояние (ширину) от десятков до нескольких сотен километров. Буря, разыгравшаяся на море, называется штормом.

В зависимости от окраски частиц, вовлеченных в движение, различают: черные, красные, желто-красные и белые бури.

В зависимости от скорости ветра бури классифицируются:

Баллы Бофор-та Словесное определение силы ветра Скорость ветра, м/с (км/ч) Действие ветра на суше
На суше На море
Очень крепкий ветер (буря) 17,2 – 20,7 (61,92-74,52) Ветер ломает сучья деревьев, идти против ветра очень трудно Умеренно высокие, длинные волны. По краям гребней начинают взлетать брызги. Полосы пены ложатся рядами по ветру.
Шторм (сильная буря) 20,8 –24,4 (74,88-87,84) Небольшие повреждения; ветер срывает дымовые колпаки и черепицу Высокие волны. Пена широкими плотными полосами ложится по ветру. Гребни волн опрокидываются и рассыпаются в брызги.
Сильный шторм (полная буря) 24,5 –28,4 (88,2-102,2) Значительные разрушения строений, деревья вырываются с корнем. На суше бывает редко Очень высокие волны с длинными загибающими вниз гребнями. Пена вздувается ветром большими хлопьями в виде густых полос. Поверхность моря белая от пены. Грохот волн подобен ударам. Видимость плохая.
Жестокий шторм (жесткая буря) 28,5 – 32,6 (102,6-117,3) Большие разрушения на значительном пространстве. На суше наблюдается очень редко Исключительно высокие волны. Суда временами скрываются из вида. Море все покрыто длинными хлопьями пены. Края волн повсюду сдуваются в пену. Видимость плохая.

Бури подразделяются:

1) Вихревые – представляют собой сложные вихревые образования, обусловленные циклонической деятельностью и распространяющиеся на большие площади. Они бывают:

- Снежные бури (зимние) образуются зимой. Такие бури называют пургой, бураном, метелью. Сопровождаются сильным морозом и вьюгой, они могут перемещать огромные массы снега на большие расстояния, что приводит к обильным снегопадам, метелям, снежным заносам. Снежные бури парализуют движение транспорта, нарушают энергоснабжение, приводят к трагическим последствиям. Ветер способствует охлаждению организма, обморожению.

- Шквальные бури возникают внезапно, а по времени крайне не продолжительные (несколько минут). Например, в течение 10 минут скорость ветра может возрасти с 3 до 31 м/сек.

2) Потоковые бури – это местные явления небольшого распространения, слабее, чем вихревые бури. Проходят чаще всего между цепями гор, соединяющих долины. Подразделяются на:

- Стоковые – поток воздуха движется по склону сверху вниз.

- Струевые – поток воздуха движется горизонтально или вверх по склону.

Рис. Буря (шторм.) Работа на мачтах парусного судна в шторм.

Смерч (торнадо)

Смерчи (в англоязычной терминологии торна́до от исп. tornar «вертеть, крутить») - это атмосферный вихрь в виде темного рукава с вертикальной изогнутой осью и воронкообразным расширением в верхней и нижней частях. Воздух вращается со скоростью 50-300 км/ час против часовой стрелки и поднимается вверх по спирали. Внутри потока скорость может достигать 200 км/час. Внутри столба пониженное давление (разрежение), обусловливающее всасывание, поднимая вверх всего встречающегося на пути (земля, песок, вода, иногда очень тяжелые предметы). Высота рукава может достигать 800 - 1500 метров, диаметр - от нескольких десятков над водой до сотен метров над сушей. Длина пути смерча составляет от нескольких сотен метров до десятков километров (40 – 60 км.). Смерч распространяется, следуя рельефу местности, скорость перемещения смерча 50 - 60 км/час.

Смерч возникает в грозовом облаке (в верхней части имеет воронкообразное расширение, сливающееся с облаками) насыщенном заряженными ионами и затем распространяется в виде тёмного рукава или хобота по направлению к поверхности суши или моря. Когда смерч опускается до поверхности земли или воды, нижняя часть его тоже становится расширенной, похожей на опрокинутую воронку. Смерчи возникают как над водной поверхность, так и над сушей, значительно чаще, чем ураганы, обычно в тёплом секторе циклона, чаще перед холодным фронтом. Образование его связано с особо сильной неустойчивостью закономерного распределения по высоте температур атмосферного воздуха (стратификации атмосферы). Он часто сопровождается грозой, дождем, градом, резким усилением ветра.

Смерчи наблюдаются во всех районах земного шара. Чаще всего они возникают в Австралии, Северо-Восточной Африке наиболее распространены в Америке (США), в теплом секторе циклона перед холодным фронтом. Смерч движется в том же направлении, что и циклон. В год их случается более 900, причем большинство их зарождается и приносит наибольший ущерб в «Долине торнадо».

«Долине торнадо» простирается от Западного Техаса до Дакоты на 100 миль с севера на юг и на 60 миль с востока на запад. Тёплый влажный воздух, идущий с севера от Мексиканского залива встречается с сухим, холодным ветром, движущимся с юга из Канады. Начинают образовываться огромные скопления грозовых туч. Воздух резко поднимается вверх внутри облаков, там остывает и спускается вниз. Эти потоки сталкиваются и вращаются друг относительно друга. Возникает грозовой циклон, в котором зарождается смерч.

Классификация смерчей

Бичеподобные - это наиболее распространённый тип смерчей. Воронка выглядит гладкой, тонкой, может быть весьма извилистой. Длина воронки значительно превосходит её радиус. Слабые смерчи и опускающиеся на воду смерчевые воронки, как правило, являются бичеподобными смерчами.

Расплывчатые - выглядят как лохматые, вращающиеся, достигающие земли облака. Иногда диаметр такого смерча даже превосходит его высоту. Все воронки большого диаметра (более 0,5 км) являются расплывчатыми. Обычно это очень мощные вихри, часто составные. Наносят огромный ущерб ввиду больших размеров и очень высокой скорости ветра.

Составные - составной торнадо в Далласе 1957 г. Могут состоять из двух и более отдельных тромбов вокруг главного центрального смерча. Подобные торнадо могут быть практически любой мощности, однако, чаще всего это очень мощные смерчи. Они наносят значительный ущерб на обширных территориях. Чаще формируются на воде. Эти воронки немного связаны друг с другом, но бывают и исключения.

Огненные - это обычные смерчи, порождаемые облаком, образованным в результате сильного пожара или извержения вулкана. Именно такие смерчи впервые были искусственно созданы человеком (опыты Дж. Дессена (Dessens, 1962) в Сахаре, которые продолжались в 1960-1962 гг.). «Впитывают» в себя языки пламени, которые вытягиваются к материнскому облаку, образуя огненный смерч. Может разносить пожар на десятки километров. Бывают бичеподобными. Не могут быть расплывчатыми (огонь не находится под давлением, как у бичеподобных смерчей).

Водяные - это смерчи, которые образовались над поверхностью океанов, морей, в редком случае озёр. Они «впитывают» в себя волны и воду, образовывая, в некоторых случаях, водовороты, которые вытягиваются к материнскому облаку, образуя водный смерч. Бывают бичеподобными. Также как и огненные, не могут быть расплывчатыми (вода не находится под давлением, как у бичеподобных смерчей).

Земляные - эти смерчи очень редкие, образовываются во время разрушительных катаклизмов или оползней, иногда землетрясений выше 7 баллов по шкале Рихтера, очень высокие перепады давления, сильно разрежен воздух. Бичеподобный смерч расположен «морковкой» (толстой частью) к земле, внутри плотной воронки, тонкая струйка земли внутри, «вторая оболочка» из земляной жижи (если оползень). В случае с землетрясениями поднимает камни, что очень опасно.

Снежные - это снежные торнадо во время сильной метели.

Рис. Смерч и кавитационный шнур за радиально-осевой турбиной и распределения скорости и давления в поперечных сечениях этих вихревых образований.

← Вернуться

×
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:
Я уже подписан на сообщество «sinkovskoe.ru»