Вертикальная власть. «Властная вертикаль государственного управления современной России: воздействие и взаимодействие субъектов правоотношений

Подписаться
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:

Количественно испарение характеризуется массой воды, которая испаряется в единицу времени с единицы поверхности. Эта величина называется скоростью испарения. В системе СИ она выражается в кг/(м 2. с), в СГС – в г/(см 2. с).

Скорость испарения увеличивается с повышением температуры испаряющей поверхности. В процессе испарения молекулы воды, которые переходят в пар, тратят часть своей энергии на преодоление сил сцепления и на работу расширения, связанную с увеличением объема жидкости, которая переходит в газообразное состояние. В результате средняя энергия молекул, которые остаются в жидкости, уменьшается, и жидкость охлаждается. Для продолжения процесса испарения необходимо дополнительное тепло, которое называется теплотой испарения. Теплота испарения уменьшается с увеличением температуры испаряющей поверхности.

Если испарение проходит с поверхности воды, то эта зависимость выражается формулой:

Q = Q 0 - 0,65 . t, (5.9)

где Q - теплота испарения, Дж/г;

t – температура поверхности, которая испаряет, 0 С;

Q 0 = 2500 Дж/кг.

Если испарение проходит из поверхности льда или снега, то:

Q = Q 0 - 0,36 . t, (5.10)

Для практических целей скорость испарения выражается высотой (в мм) слоя воды, которая испаряется за единицу времени. Слой воды, высотой 1мм, который испарится с площади 1 м 2 , отвечает ее массе в 1 кг.

Согласно закону Дальтона, скорость испарения W в кг/(м 2. с) прямо пропорциональная дефициту влажности, вычисленному по температуре испаряющей поверхности, и обратно пропорциональная атмосферному давлению:

где Е 1 - упругость насыщения, взятая по температуре испаряющей поверхности, гПа;

е - упругость пара в окружающем воздухе, гПа;

Р – атмосферное давление, гПа;

А – коэффициент пропорциональности, который зависит от скорости ветра.

Из закона Дальтона видно, что чем больше разность (Е 1- е), тем больше скорость испарения. Если поверхность, которая испаряет, теплее воздуха, то Е 1 большее, чем упругость насыщения Е при температуре воздуха. В таком случае испарение продолжается даже тогда, когда воздух насыщен водяным паром, то есть если е=Е (но Е

Наоборот, если испаряющая поверхность холоднее воздуха, то при довольно большой относительной влажности может оказаться, что Е 1

Зависимость скорости испарения от атмосферного давления обусловлена тем, что в неподвижном воздухе молекулярная диффузия усиливается с уменьшением внешнего давления: чем оно меньшее, тем легче молекулам оторваться от испаряющей поверхности. Однако атмосферное давление у поверхности земли колеблется в сравнительно небольших пределах. Поэтому, оно не может существенным образом изменять скорость испарения. Но его приходится учитывать, например, при сравнении скоростей испарения на разных высотах в горной местности.

Скорость испарения зависит от скорости ветра . С увеличением скорости ветра увеличивается турбулентная диффузия, от которой в значительной мере зависит скорость испарения. Чем интенсивнее турбулентное перемешивание, тем быстрее протекает перенос водяного пара в окружающую среду. Если воздух переносится с суши на водоем, то скорость испарения с водоема увеличивается, так как в воздухе, который натекает на сравнительно более сухую поверхность, дефицит влажности больше, чем он над водоемом. При переносе воздуха с водной поверхности на сушу скорость испарения постепенно уменьшается в результате уменьшения дефицита влажности в воздухе, который находится над водой. На скорость испарения с поверхностей морей и океанов влияет их соленость, так как упругость насыщения над раствором меньше, чем над пресной водой.

На испарение из поверхности грунта значительно влияют физические свойства, состояние деятельной поверхности, рельеф и др. факторы. Гладкая поверхность испаряет меньше, чем шероховатая, так как над ней слабее развито турбулентное перемешивание, чем над шероховатой поверхностью. Светлые почвы при прочих равных условиях испаряют меньше, чем темные, так как они меньше нагреваются. Рыхлые почвы с широкими капиллярами испаряют меньше, чем плотные почвы с узкими капиллярами. Объясняется это тем, что по узким капиллярам вода поднимается ближе к поверхности почвы, чем по широкой. Скорость испарения зависит от степени увлажнения почвы: чем суше почва, тем медленнее происходит испарение. На скорость испарения влияет рельеф местности. На возвышенностях, над которыми имеет место интенсивное турбулентное перемешивание, испарение происходит быстрее, чем в низинах, балках и долинах, где воздух менее подвижен.

На скорость испарения влияет растительный покров. Он значительно уменьшает испарение непосредственно с поверхности почвы. Однако сами растения испаряют много влаги, которые берут из почвы. Испарение влаги растениями является физико-биологическим процессом и называется транспирацией.

Полная отдача водяного пара с определенной поверхности с одинаковым растительным покровом называется эвапотранспирацией. Она включает испарение из поверхности земли и от растений.

Испаряемость – это испарение, максимально возможное в данной местности с определенной деятельной поверхности при достаточном количестве влаги при существующих здесь метеорологических условиях.

СКОРОСТЬ ИСПАРЕНИЯ. Количество воды (толщина слоя воды), испаряющейся за единицу времени с единицы поверхности. С. И. с открытой водной поверхности пропорциональна величине дефицита влажности при температуре испаряющей поверхности Е3- е (где Е - упругость насыщения при температуре испаряющей поверхности), обратно пропорциональна атмосферному давлению и зависит также от скорости ветра. Кроме того, она зависит от размеров и формы испаряющей поверхности. См. закон Дальтона.[ ...]

Скорость испарения воды растениями определяется в основном теми же факторами, что и скорость испарения с поверхности почвы, но благодаря своим регулирующим системам растения могут экономить воду, уменьшая транспирацию. Однако общий расход воды на транспирацию очень велик. На образование 1 кг сухого вещества растения тратят от 300 до 800 кг воды.[ ...]

Скорость испарения в факеле сильно зависит от степени распыливания топлива, которая влияет на величину поверхности испарения и количество испаряющегося топлива. С уменьшением размеров капли сокращается время ее прогрева и повышается скорость испарения.[ ...]

Скорость сушки тем больше, чем меньше етенох клеток проходит частица воды па пути изнутри куска древесины к его поверхности. Длинные оси клеток параллельны оси ствола или ветви, из которых взят кусок древесины. Поэтому на пути, параллельном оси куска, встречается всего меньше стенок клеток, преграждающих путь, н скорость испарения влаги с поперечного разреза гораздо больше, чем с продольного радиального или тапгентального раскола. Больше всего препятствует сушке кора.[ ...]

Обычно подразумевается испарение воды: поступление водяного пара в атмосферу вследствие отрыва наиболее быстродвижу-щихся молекул с поверхности воды, снега, льда, влажной почвы, капелек и кристаллов в атмосфере. Отрываются те молекулы, скорость которых выше средней скорости движения молекул при данной температуре и достаточна для преодоления сил молекулярного притяжения (сцепления). С возрастанием температуры число отрывающихся молекул, стало быть и И., растет. Одновременно молекулы водяного пара, находящегося над испаряющей поверхностью, частично возвращаются в жидкую или твердую фазу. Фактически наблюдаемое И. есть разность двух потоков молекул - отрывающихся от испаряющей поверхности и возвращающихся к ней. Чистая потеря воды путем испарения зависит от близости упругости пара над испаряющей поверхностью к насыщению. При насыщении И. прекращается, т. е. оба потока молекул уравновешиваются. При И. затрачивается при температуре 0° для воды 597 кал тепла и для льда 677 кал на 1 г. Если тепло не подводится извне, то испаряющее тело охлаждается и процесс замедляется. Ср. испаряемость, насыщение, скорость испарения, закон Дальтона.[ ...]

Скорость испарения с водной поверхности возрастает с увеличением ее температуры, дефицита упругости пара над ней и скорости ветра. Влияние ветра вызвано тем, что он относит в сторону пар, поступающий в приводный слой атмосферы, и усиливает турбулентное перемешивание, уносящее пар вверх и заменяющее увлажнившийся воздух более сухим. Скорость испарения несколько увеличивается и с уменьшением атмосферного давления. Наконец на скорость испарения с водной поверхности влияет также прямая солнечная радиация, прогревающая слой воды на глубину, зависящую от прозрачности воды.[ ...]

Скорость испарения с поверхности почвы в первую очередь зависит от ее температуры, а также от влажности воздуха, скорости ветра, содержания воды в почве, ее физических свойств, состояния поверхности и наличия растительности. С увеличением влажности почвы при прочих равных условиях испарение возрастает. Темные почвы сильнее нагреваются солнцем и поэтому испаряют больше воды, чем светлые. Растительность, затеняя почву от солнечных лучей и ослабляя перемешивание воздуха, значительно уменьшает скорость испарения с поверхности почвы.[ ...]

Несколько более летуч, чем октаметил.[ ...]

Скорость (слой) испарения обычно прямо пропорциональна величине Е [Панин, 1987], поэтому среднегодовая скорость испарения оказывается сильновозрастающей функцией амплитуды температурных колебаний поверхности моря.[ ...]

Скорость испарения определяется количеством жидкости, испаряющейся в единицу времени, и зависит от ряда факторов, главные из которых упругость паров, фракционный состав и температурные изменения. Большое значение имеют также площадь испарения, толщина слоя жидкости, коэффициент диффузии паров в воздухе.[ ...]

Скорость испарения УВ зависит от ряда факторов - от упругости паров, фракционного состава температур. Различают потери от больших дыханий, от обратного выдоха и от вентиляции. Для ДНС эти потери составляют около 80 т/год. Учитывая возможные погрешности расчетного метода, весьма актуальными представляются данные “ТатНИПИнефти”, полученные непосредственными замерами на РВС-2000 с температурой нефти 29-25 °С . Дыхательная арматура резервуара была оснащена двумя дыхательными и двумя предохранительными клапанами НКМД-350 и КПР 1-350. Количество выделяемого из нефти газа составляло от 0,01 до 0,28 м3/м3. Состав газа характеризовался следующими данными (объем, %): Н28 - 0,30; С02 - 13,27; СН4 - 40,31; С2Н6 - 10,03; С3Н8 - 20,49; г-СН2 - 4,47; и-С4Н10 - 7,78; г-С5Н12 - 1,53; и-С5Н12 - 1,22; £С6+ высшие - 0,6.[ ...]

Скорость испарения во всех трех направлениях неодинакова: наименьшая - в радиальном направлении и наибольшая - по длине волокон.[ ...]

Скорость испарения жидкого хлора в стальной таре при температуре помещения 18° С примерно составляет: из одного баллона 0,5-0,7 кг/ч, с 1 м2 поверхности бочки 2,5-3,0 кг/ч; увеличение газоподачи из баллона до 10 кг/ч достигается путем обогрева водой с температурой выше 30-40° С; еще больший съем хлора - 40 кг/ч - получают в специальных испарителях .[ ...]

Кинетическое испарение является лимитирующим при оценке суммарной скорости испарения, когда его скорость обусловлена только скоростью «отрыва» молекул от поверхности (например, при испарении в вакуум или при сильном обдуве мелких капель). Иначе, лимитирующим является диффузионное испарение (характерно для поршневых ДВС), скорость которого определяется особенностью процессов тепломассопереноса между поверхностью испарения и окружающей средой.[ ...]

Переход от периода испарения свободной влаги из полос)и клеток к периоду испарения связанной влаги, т. е. к периоду внутренней диффузии, не всегда можно заметить, особенно если куски высушиваемой древесины имеют разные размеры. В этом случае скорость испарения свободной влаги из крупных кусков, находящихся в центре вагонетки, начинает уменьшаться значительно ранее, еще до достижения первой критической точки. Уменьшение скорости сушки, при удалении свободной влаги из полости клеток, наблюдается при понижении содержания в древесине влаги от 30 до 23%. Таким образом, этот период можно назвать промежуточным или переходным. В начале его, когда значительная часть поверхности древесины еще остается влажной, основным условием, определяющим скорость сушки, является диффузия пара через газовую пленку; в конце этого периода, когда почти вся поверхность древесины становится сухой, скорость сушки определяется внутренней диффузей.[ ...]

Напротив, потери на испарение, игравшие решающую роль в умеренных и жарких поясах, отходят на второй план в полярных морях, где упругость насыщенного пара весьма мала, состояние воздуха близко к насыщению, а потому влажный дефицит не может достичь сколько-нибудь значительной величины. Ввиду малого значения этой составляющей мы не внесем заметных погрешностей в вычисление теплового баланса, если допустим, что скорость испарения с поверхности льда при прочих равных условиях приблизительно такова, как с поверхности воды.[ ...]

В связи с этим измерения скорости испарения на корабле стали производиться только после того, как были найдены невесовые способы определения количества испарившейся воды в приборах на палубе.[ ...]

Из-за наличия зависимости скорости испарения от толщины прогреваемого слоя воды возможно генерирование тепловой неустойчивости. Действительно, пусть площадь зеркала испарения очень слабо зависит от глубины водоема. Тогда малое падение уровня, увеличив амплитуду температурных колебаний, вызовет рост испарения, который будет способствовать еще большему падению уровня и увеличению температурных колебаний и т.д. Таким образом, тепловые процессы в море создают механизм положительной обратной связи, конкурирующий с механизмом отрицательной обратной связи (изменением площади зеркала испарения). Вследствие их взаимодействия возникает новый физический механизм поведения уровня моря. Отметим, что на рост амплитуды колебаний температуры воды при уменьшении размеров моря указывали такие известные исследователи теплофизики Арала и Каспия, как B.C. Самойленко, Е.Г. Архипова, М.С. Потайчук [Каспийское море, 1986].[ ...]

Обычно во время наблюдений скорость ветра непрерывно меняется и точки кривой Ф - яр (/) не могут быть приведены к одной какой-нибудь скорости ветра, так как зависимость между нею и скоростью испарения только лишь подлежит определению. Чтобы обойти такое серьезное, на первый взгляд, затруднение, достаточно при построении кривых охлаждения брать в каче стве независимой переменной не время, а путь Ь, пролетаемый за время опыта частицами воздуха, обтекающего испаритель. Отсчитывать его можно непосредственно по анемометру.[ ...]

[ ...]

Среди показателей, определяющих скорость испарения, основным является давление насыщенных паров, которое зависит от температуры и соотношения паровоздушной и жидкостной фаз нефтепродуктов. С увеличением доли легких фракций повышается давление насыщенных паров нефтепродуктов и растут потери от испарения. В связи с возросшими требованиями к чистоте воздушного бассейна точность определения потерь от испарения приобретает важное значение.[ ...]

Если пролитый продукт имеет достаточно высокую скорость испарения, можно удержать его на изолированном участке и дать ему безвредно испариться. Если пролитый продукт является огнеопасным, его нельзя выпаривать или диспергировать, разбавляя водой, его можно удержать нанесением на поверхность пленкообразующей пены. Пена уменьшает испарение продукта до минимума, поэтому сами жидкости должны быть удалены механическим способом.[ ...]

Для оценки возможности пакетной передачи заряда при испарении воды было исследовано оценка влияние давления на процесс разделения электрического заряда (давление в данном случае выступает в качестве фактора усиления скорости испарения жидкости).[ ...]

В зависимости от вида растворителя, концентрации раствора и скорости испарения величина и форма кристаллов 4,4 -ДДТ могут несколько изменяться.[ ...]

Этот вывод Стефана совсем неосновательно переносится иногда на случай испарения, происходящего под действием ветра, чем и объясняется ошибочное мнение, укоренившееся у некоторых метеорологов,- будто размеры испарителя влияют на результаты наблюдения скорости испарения с единицы поверхности.[ ...]

Так как коэффициент диффузии В весьма мал, то весьма малой оказывается и скорость испарения Е, управляемого диффузией. Она практически равна нулю по сравнению со скоростью испарения при самом слабом ветре.[ ...]

В двигателях с непосредственным впрыском бензина время, отводимое на процесс испарения, значительно меньше. Оно определяется моментом от начала впрыска до воспламенения и составляет 0,02-0,03 с. В такте впуска факел распыленного бензина омывается потоком поступающего воздуха. Значительная скорость вихревого движения воздуха, повышенная температура остаточных газов и низкое давление в камере сгорания являются благоприятными факторами, обеспечивающими высокую скорость испарения бензина, перемешивания его паров с воздухом. Экспериментально установлено, что в такте впуска испаряется около 80% бензина.[ ...]

Наиболее высокие концентрации 50 и 5 80, по-видимому, обусловлены прежде всего повышенной скоростью испарения снега, которая может происходить над подземными коммуникациями, выделяющими тепло, вблизи проезжей части улиц или на открытых площадках, где солнечная инсоляция проявляется сильнее. Так, самые высокие концентрации 50 и 5180 установлены в сквере у Павелецкого вокзала вблизи перехода между станциями метрополитена.[ ...]

В качестве источника тяжелого газа в основной серии экспериментов рассматривалось стационарное испарение паров жидкого азота с поверхности их разлива. Скорость испарения принималась равной 0,05 м/с, поверхность испарения 31,5 мг, температура паров азота в источнике принималась равновесной 77 К.[ ...]

Испаряемость нефтепродуктов - их способность переходить из жидкой фазы (масляной фракции) в паровую; скорость испарения зависит от состава, площади испарения, типа емкости, в которой они находятся, скорости движения воздуха, давления насыщенных паров нефти или нефтепродукта. Давление насыщенных паров наиболее распространенных нефтепродуктов составляет у автобензинов - до 700, у авиабензинов - до 360, керосина тракторного - до 10 мм рт. ст.[ ...]

В этом процессе основное внимание уделялось управлению ростом кристаллов льда. При тщательном контроле скорости испарения бутана удалось создать условия, при которых в переохлажденном рассоле предотвращалось образование большого числа центров кристаллизации.[ ...]

Используя приведенные выше соотношения и зависимость (тв) , можно получить приближенное значение массовой скорости испарения тд с внешней поверхности газоконденсата в зависимости от скорости движения и температуры воздушной среды, величины лучистых потоков д£ , д и начальной температуры газоконденсата Т0.[ ...]

Передвижение воды и питательных веществ вверх по ксилеме у высших растений частично связано с транспирацией, т. е. испарением влаги листьями через многочисленные устьица. По мере потери воды клетками недостаток диффузионного давления притягивает воду из элементов ксилемы, которые образуют крупные многочисленные сплошные трубки (сосуды) от корней до листьев. Таким образом, натяжение передается через весь столб к клеткам корня и приводит к усилению поглощения воды. Скорость транспирации зависит от степени раскрытия устьиц и от таких окружающих факторов, как температура и влажность воздуха, которые влияют на физическую скорость испарения воды. Замыкание и размыкание устьиц является механическим процессом, регулируемым тургором замыкающих клеток (см. рис. 27).[ ...]

Заугольников С. Д., Кочанов М. М., Лойт А. О., Ставчинский И. И. Новые расчетные методы определения давления насыщенных паров и скорости испарения вредных веществ в гигиенических исследованиях. - Гиг. труда, 1976, № 2, с. 27.[ ...]

Как следует из приведенных данных, потери при наливе открытой струей в два раза выше потерь при нижнем наливе и наливе под уровень продукта. Скорость испарения нефтепродуктов при наливе зависит от ряда факторов, включающих давление насыщенных паров жидкого продукта, количества и концентрации паров в цистерне до налива, метода налива.[ ...]

Подчеркнем, что нелинейные зависимости теплофизических свойств суши от ее влажности - наиболее существенные факторы теплопередачи в почве. Поэтому скорость испарения, пропорциональная разности Е-Ех (Е - упругость насыщения на некоторой высоте над поверхностью суши), оказывается зависящей от влагозапасов суши причем с ростом ¥ уменьшаются А и, соответственно, Е. Таким образом, возникает механизм положительной обратной связи: уменьшение испарения ведет к увеличению влагозапасов, что уменьшает амплитуду температурных колебаний и испарение и т.д.[ ...]

Суточный ход относительной влажности зависит от упругости пара и упругости насыщения. С повышением температуры испаряющей поверхности увеличивается скорость испарения и, следовательно, увеличивается е. Но Е растет значительно быстрее, чем е, поэтому с повышением температуры поверхности, а с ней и температуры воздуха относительная влажность уменьшается [см. формулу (5.1)]. Дневное ее понижение особенно резко выражено над континентами в летнее время, когда в результате турбулентной диффузии пара вверх е у поверхности уменьшается, а вследствие роста температуры воздуха Е увеличивается. Поэтому амплитуда суточных колебаний относительной влажности на материках значительно больше, чем над водными поверхностями.[ ...]

Несмотря на то, что ХОП имеют низкое давление насыщенных паров, они испаряются с поверхности почвы и воды в воздух. При концентрации ДДГ в почве 10 мкг/г и температуре 30 °С средняя скорость испарения составляет 6,3 106 - 9 10 5 мг/(см2 ч).

Хотя летучесть диоксинов сравнительно незначительна, они могут переноситься воздушными массами в виде аэрозольных частиц в “сверхвысоких” концентрациях 87] Более интенсивно испаряются с поверхности воды ПХБ. Значения скорости испарения при 100 °С колеблются в пределах 0,05-0,9 мгУ(см2 ч).[ ...]

Общий поток энергии, характеризующий экосистему, состоит из солнечного излучения и длинноволнового теплового излучения, получаемого от близлежащих тел. Оба вида излучения определяют климатические условия среды (температуру, скорость испарения воды, движения воздуха и т. д.), но в фотосинтезе, обеспечивающем энергией живые компоненты экосистемы, используется лишь малая часть энергии солнечного излучения. За счет этой энергии создается основная, или первичная, продукция экосистемы. Следовательно, первичная продуктивность экосистемы определяется как скорость, с которой лучистая энергия используется продуцентами в процессе фотосинтеза, накапливаясь в форме химических связей органических веществ. Первичную продуктивность Р выражают в единицах массы, энергии или эквивалентных единицах в единицу времени.[ ...]

Первый период сушки начинается тогда, когда образовавшийся из влаги пар проникает через всю толщу бумажного полотна и уходит наружу. Этот период (участок ВС) характеризуется удалением свободной влаги из бумажного полотна. Он идет с постоянной скоростью испарения со всей поверхности бумажного полотна при практически постоянной температуре, равной температуре испарения воды при данных барометрических условиях (/м не более 100°С), независимо от температуры поверхности сушильных цилиндров. Продолжительность первого периода сушки длится 50-65 % от общей продолжительности сушки бумаги.[ ...]

Важнейшей характеристикой климата Земли является среднегодовая температура приземного слоя атмосферы, складывающаяся как следствие энергетического баланса Земли. Температура земной поверхности при заданном, потоке солнечного излучения определяется скоростью испарения воды с поверхности Земли, концентрациями атмосферных газов, в основном парами воды и диоксида углерода, создающих парниковый эффект, и величиной альбедо-коэффициентом отражения солнечного излучения атмосферой и земной поверхностью.[ ...]

Внутригодовой ход температуры поверхности моря можно представить в виде суммы среднегодовой температуры поверхности и отклонения от этой величины, которое характеризуется амплитудой. Ввиду нелинейной зависимости влагосодержания от температуры среднегодовая величина слоя испарения оказывается не только функцией среднегодовой температуры поверхности, но и амплитуды температурных колебаний. Расчеты показали, что скорость испарения - сильно возрастающая нелинейная функция этой амплитуды.[ ...]

Смеси сероуглерода с четыреххлористым углеродом значительно более безопасны в пожарном отношении, чем чистый сероуглерод. Применяют их для борьбы с вредителями запасов изредка и притом в небольших количествах, в порядке производственных опытов. Причиной этого является неодинаковая скорость испарения компонентов смеси в воздухе, вследствие чего в отдельных местах могут создаваться огнеопасные концентрации паров сероуглерода. Поэтому даже при газации смесями необходимо принимать те же меры предосторожности от пожара или взрыва, как и при пользовании чистым сероуглеродом. Кроме того, при применении смеси стоимость обработки намного возрастает, и приходится работать со значительно большими количествами фумиганта, что усложняет и удорожает газовое обеззараживание.[ ...]

Суспензии указанных концентраций действуют токсически на яйца клещей и вызывают гибель некоторой части взрослых личинок и половозрелых клещей, а также гибель всех молодых личинок.[ ...]

Величина зазора между поршнем и цилиндром, поршнем и поршневыми кольцами зависит от температуры деталей. Температура, в свою очередь, зависит от частоты вращения, нагрузки, температуры масла и охлаждающей жидкости и других факторов. Частота вращения коленчатого вала, величина зазоров в его подшипниках и давление масла в главной магистрали влияют на количество масла, разбрызгиваемого на стенки цилиндра при вращении вала. Средняя температура масляной пленки влияет на вязкость и скорость испарения масла, находящегося в пленке, и ее толщину. Это лишь главные параметры режима работы двигателя, оказывающие влияние на угар масла.[ ...]

Основными минералами являются кварц, более или менее измененные полевые шпаты и слюды, и песчаники - от кварцитовых до лититовых аренитов, вследствие их низкой до умеренной химической зрелости. Наиболее общие цементы - кремнистый или известковый. В твердом стоке русел может встречаться глинистая галька, которая поступает в результате оползней намывных валов. Глауконит отсутствует. Торф и уголь присутствуют в виде пластов (на пойме) и мелких обломков (в руслах). Карбонатные и железистые конкреции могут формироваться на участках с высокой скоростью испарения (на пойме). Глины в основном каолинитовые, но могут присутствовать и другие их типы, в зависимости от климатических условий и расстояния от источника сноса. В процессе диагенеза, флюиды, циркулирующие в разрезе, могут вступать в реакцию с обломочными нестабильными минералами, результатом чего является глинистая цементация. Кальцитовый цемент также может осаждаться.

Солнечная энергия приводит в действие невероятно сильную тепловую машину, которая, преодолевая гравитацию, без труда поднимает в воздух огромных размеров куб (каждая сторона составляет около восьмидесяти километров). Таким образом, с поверхности нашей планеты за год испаряется водяной слой метр толщиной.

Во время испарения жидкое вещество постепенно переходит в паро- или газообразное состояние после того, как мельчайшие частицы (молекулы или атомы), двигаясь на скорости, достаточной для того, чтобы преодолеть силы сцепления между частицами, отрываются от поверхности.

Несмотря на то, что процесс испарения известен больше как переход жидкого вещества в пар, существует сухое испарение, когда при минусовой температуре лёд переходит из твёрдого состояния в парообразное, минуя жидкую фазу. Например, если выстиранное сырое бельё развесить сушиться на морозе, оно, замерзнув, становится очень жёстким, но через какое-то время, размягчившись, становится сухим.

Как улетучивается жидкость

Молекулы жидкости расположены друг к другу практически впритык, и, несмотря на то, что связаны между собой силами притяжения, к определённым точкам не привязаны, а потому свободно перемещаются по всей площади вещества (они постоянно сталкиваются друг с другом и изменяют свою скорость).

Частицы, что уходят на поверхность, набирают во время движения темп, достаточный для того, чтобы покинуть вещество. Оказавшись наверху, своё движение они не останавливают и, преодолев притяжение нижних частиц, вылетают из воды, преобразовываясь в пар. При этом часть молекул из-за хаотического движения возвращается в жидкость, остальные уходят дальше, в атмосферу.

Испарение на этом не заканчивается, и на поверхность вырываются следующие молекулы (так происходит до тех пор, пока жидкость полностью не улетучивается).

Если речь идёт, например, о круговороте воды в природе, можно наблюдать за процессом конденсации, когда пар, сконцентрировавшись, при определённых условиях возвращается назад. Таким образом, испарение и конденсация в природе тесно связаны между собой, поскольку благодаря им осуществляется постоянный водообмен между землёй, сушей и атмосферой, благодаря чему окружающая среда снабжается огромным количеством полезных веществ.

Стоит заметить, что интенсивность испарения у каждого вещества различна, а потому основными физическими характеристиками, которые влияют на скорость испарения, являются:

  1. Плотность. Чем вещество плотнее, тем ближе молекулы находятся по отношению друг к другу, тем труднее верхним частицам преодолеть силу притяжения других атомов, следовательно, испарение жидкости происходит медленнее. Например, метиловый спирт улетучивается намного быстрее воды (метиловый спирт – 0,79 г/см3, вода – 0,99 г/см3).
  2. Температура. На скорость испарения также влияет теплота испарения. Несмотря на то, что процесс испарения происходит даже при минусовой температуре, чем больше температура вещества, тем выше теплота испарения, значит, тем быстрее двигаются частицы, которые, увеличивая интенсивность испарения, массово покидают жидкость (поэтому кипящая вода испаряется быстрее холодной).Из-за потери быстрых молекул внутренняя энергия жидкости уменьшается, а потому температура вещества во время испарения понижается. Если жидкость в это время будет находиться возле источника тепла или непосредственно нагреваться, её температура снижаться не будет, так же, как и не снизится интенсивность испарения.
  3. Площадь поверхности. Чем большую площадь поверхности занимает жидкость, тем больше молекул с неё улетучивается, тем выше скорость испарения. Например, если влить воду в кувшин с узким горлышком, жидкость будет исчезать очень медленно, поскольку испаряемые частицы начнут оседать на сужающихся стенках и спускаться. В то же время, если налить воду в миску, молекулы будут беспрепятственно уходить с поверхности жидкости, поскольку им будет не на чем конденсироваться, дабы вернуться в воду.
  4. Ветер. Процесс испарения окажется намного быстрее, если над ёмкостью, в которой находится вода, движется воздух. Чем быстрее он это делает, тем скорость испарения больше. Нельзя не учитывать взаимодействие ветра с испарением и конденсацией.Молекулы воды, поднимаясь с океанической поверхности, частично возвращаются назад, но большая часть высоко в небе конденсируется и образует облака, которые ветер перегоняет на сушу, где капли выпадают в виде дождя и, проникнув в грунт, через какое-то время возвращаются в океан, снабжая растущую в почве растительность влагой и растворёнными минеральными веществами.

Роль в жизни растений

Значение испарения в жизни растительности трудно переоценить, особенно учитывая, что живое растение на восемьдесят процентов состоит из воды. Поэтому если растению не хватает влаги, оно может погибнуть, так как вместе с водой в него не будут поступать также нужные для жизнедеятельности питательные вещества и микроэлементы.

Вода, передвигаясь по растительному организму, переносит и образует внутри него органические вещества, для образования которых растение нуждается в солнечном свете.

А вот тут немаловажная роль отводится испарению, так как солнечные лучи имеют способность чрезвычайно сильно нагревать предметы, а потому способны вызвать гибель растения от перегрева (особенно в жаркие летние дни). Чтобы этого избежать, происходит испарение воды листьями, через которые в это время выделяется много жидкости (например, из кукурузы за сутки испаряется от одного до четырёх стаканов воды).


Это значит, что чем больше в организм растения поступит воды, тем испарение воды листьями будет интенсивнее, растение будет больше охлаждаться и нормально расти. Испарение воды растениями можно ощутить, если во время прогулки в знойный день прикоснуться к зелёным листьям: они обязательно окажутся прохладными.

Связь с человеком

Не менее велика роль испарения в жизнедеятельности человеческого организма: он борется с нагреванием посредством потоотделения. Испарение происходит обычно через кожу, а также через дыхательные пути. Это можно легко заметить во время болезни, когда температура тела поднимается или в период занятий спортом, когда повышается интенсивность испарения.

Если нагрузка невелика, из организма уходит от одного до двух литров жидкости в час, при более интенсивном занятии спортом, особенно когда температура внешней среды превышает 25 градусов, интенсивность испарения увеличивается и с потом может выйти от трёх до шести литров жидкости.

Через кожу и дыхательные пути вода не только покидает организм, но и поступает в него вместе с испарениями окружающей среды (не зря своим пациентам врачи часто прописывают отдых на море). К сожалению, вместе с полезными элементами в него нередко попадают и вредные частицы, среди них – химические вещества, вредные испарения, которые наносят здоровью непоправимый ущерб.

Одни из них токсичны, другие, вызывают аллергию, третьи – канцерогенны, четвёртые вызывают онкологические и другие не менее опасные заболевания, при этом многие обладают сразу несколькими вредными свойствами. Вредные испарения оказываются в организме в основном через органы дыхания и кожу, после чего, оказавшись внутри, моментально всасываются в кровь и разносятся по всему телу, оказывая токсическое воздействие и вызывая серьёзные заболевания.

В данном случае много зависит от местности, где обитает человек (возле фабрики или завода), помещения, в котором живёт или работает, а также времени пребывания в опасных для здоровья условиях.

Вредные испарения могут попадать в организм из предметов быта, например, линолеума, мебели, окон и пр. Дабы сохранить жизнь и здоровье, таких ситуаций желательно избегать и наилучшим выходом будет покинуть опасную территорию, вплоть до обмена квартиры или работы, а при обустройстве жилища обращайте внимание на сертификаты качества покупаемых материалов.

Нам всем с детства хорошо известен один серьёзный жизненный факт. Для того чтобы остудить горячий чай, необходимо налить его в холодное блюдце и продолжительно дуть над его поверхностью. Когда тебе шесть-семь лет, особо не задумываешься над законами физики, просто принимаешь их как данное или, выражаясь физически, принимаешь их за аксиому. Однако, постигая со временем науки, мы обнаруживаем интересные сходства аксиом и последовательных доказательств, плавно переводя наши детские предположения во взрослые теоремы. То же самое и с горячим чаем. Никто из нас и подумать не мог, что такой способ его охлаждения напрямую связан с испарением жидкости.

Физика процесса

Для того чтобы ответить на вопрос, от чего зависит скорость испарения жидкости, надо разобраться в самой физике процесса. Испарение - это процесс фазового перехода вещества из жидкого агрегатного состояния в газообразное. Испаряться может любое в том числе очень вязкое. С виду и не скажешь, что некая желеобразная жижа может терять часть своей массы за счет испарения, но при определённых условиях именно это и происходит. Твердое тело также может испаряться, только такой процесс называется сублимацией.

Как происходит

Начав разбираться, от чего зависит скорость испарения жидкости, следует отталкиваться от того, что это эндотермический процесс, то есть процесс, проходящий с поглощением теплоты. Теплота (теплота испарения) передаёт энергию молекулам вещества, увеличивая их скорость и повышая вероятность их отрыва, ослабляя при этом силы молекулярного сцепления. Отрываясь от основной массы вещества, самые быстрые молекулы вырываются за его границы, и вещество теряет свою массу. При этом вылетевшие молекулы жидкости мгновенно вскипают, осуществляя при отрыве процесс фазового перехода, и их выход идёт уже в газообразном состоянии.

Применение

Понимая, от каких причин зависит скорость испарения жидкости, можно грамотно регулировать технологические процессы, происходящие на их основе. Например, работу кондиционера, в теплообменнике-испарителе которого кипит хладагент, забирая теплоту из охлаждаемого помещения, или вскипание воды в трубах промышленного котла, теплота которой передается на нужды отопления и ГВС. Осознание того, от каких условий зависит скорость испарения жидкости, предоставляет возможность конструировать и производить современное и технологичное оборудование компактных размеров и с повышенным коэффициентом теплопередачи.

Температура

Жидкое агрегатное состояние крайне неустойчиво. При наших земных н. у. (понятие "нормальных условий", т.е. пригодных для жизни людей) оно периодически стремится перейти в твердую или газообразную фазу. Как это происходит? От чего зависит скорость испарения жидкости?

Первичный критерий - это, естественно, температура. Чем сильнее мы нагреваем жидкость, тем больше энергии мы подводим к молекулам вещества, тем больше молекулярных связей мы разрываем, тем быстрее идёт процесс фазового перехода. Апофеоз достигается при устойчивом пузырьковом кипении. Вода кипит при 100 ºС при атмосферном давлении. Поверхность кастрюли или, например, чайника, где она кипит, только на первый взгляд идеально гладкая. При многократном увеличении картинки мы увидим бесконечные острые пики, как в горах. Теплота точечно подводится к каждому из этих пиков, и из-за малой поверхности теплообмена вода моментально вскипает, образуя пузырёк воздуха, который поднимается к поверхности, где и схлопывается. Именно поэтому такое кипение называют пузырьковым. Скорость при этом максимальная.

Давление

Второй важный параметр, от чего зависит скорость испарения жидкости, - это давление. При снижении давления ниже атмосферного вода начинает закипать при меньших температурах. На этом принципе основана работа знаменитых скороварок - специальных кастрюль, откуда откачивался воздух, и вода кипела уже при 70-80 ºС. Повышение давления, наоборот, увеличивает температуру закипания. Это полезное свойство используется при подаче перегретой воды от ТЭЦ в ЦТП и ИТП, где для сохранения потенциала переносимой теплоты воду подогревают до температур 150-180 градусов, когда надо исключить возможность её вскипания в трубах.

Другие факторы

Интенсивный обдув поверхности жидкости с температурой выше, чем температура подаваемой воздушной струи, - это ещё один фактор, от чего зависит скорость испарения жидкости. Примеры этого можно взять из повседневной жизни. Обдув ветром глади озера или тот пример, с которого мы начали повествование: обдув горячего чая, налитого в блюдце. Он остывает за счет того, что, отрываясь от основной массы вещества, молекулы забирают часть энергии с собой, охлаждая его. Здесь можно увидеть еще и влияние площади поверхности. Блюдце шире, чем кружка, поэтому с её квадратуры потенциально может уйти большее количество массы воды.

На скорость испарения также влияет тип самой жидкости: какие-то жидкости испаряются быстрее, другие, наоборот, медленнее. Важное влияние на процесс испарения оказывает и состояние окружающего воздуха. При высоком абсолютном влагосодержании (сильно влажном воздухе, например, рядом с морем) процесс испарения пойдёт медленнее.

← Вернуться

×
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:
Я уже подписан на сообщество «sinkovskoe.ru»