Детандер-генераторные агрегаты. Принцип действия турбодетандера

Подписаться
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:

ДГА – устройство, в котором энергия транспортируемого прир газа преобразуется сначала в механическую энергию в детандере, а затем в электрическую в генераторе.

Давление газа в магистрали: 5,5 ÷ 7,5 МПа

Давление газа после ДГА на станцию: 0,15 МПа

Детандер-генераторный агрегат представляет собой устройство, в ко­тором энергия потока транспортируемого природного газа преобразуется сначала в механическую энергию в детандере, а затем в электрическую энергию в генераторе. Существует также принципиальная возможность одновременного с выработкой электроэнергии полезного использования теплоты различных температурных уровней (высокотемпературной для теплоснабжения и/или низкотемпературной для создания холодильных ус­тановок и систем кондиционирования).

детандер включается параллельно дросселирую­щему устройству, заменяя его. Снижение давления газа при использовании ДГА происходит не за счет дросселирования, а за счет его расширения в детандере.

В связи с тем что детандер-генераторная технология предлагается как альтернатива дросселированию, все изменения технико-экономических показателей, вносимые применением ДГА, необходимо рассматривать в сравнении с дросселированием.

13. Схемы включения и различные способы подогрева газа в дга на кэс.

ДГА – устройство, в котором энергия потока транспортируемого газа преобразуется сначала в механическую энергию в детандере, а затем в эл. энергию в генераторе.

ДГА включается || дросселирующему устройству (1); 2 – теплообменник; 3 – детандер; 4 – генератор:

При расширении газа в детандере с подогревом возможны несколько вариантов организации процесса, но при любом из них в механическую энергию в детандере преобразуется внутренняя энергия газа, уровень ко­торой определяется подведенной к газу до процесса его расширения в де­тандере энергией высокого потенциала.

газ подогревается перед детандером за счет энергии высокого потенциала таким образом (линия 0 ~ 3), что энтальпия газа после детандера оказывается равной энтальпии газа после дроссели­рования. При этом вся подведенная к газу энергия, пропорциональная раз­ности энтальпий

h з - ho (см. рис. 3), преобразуется в детандере в механиче­скую энергию.

Г
аз перед детандером может быть подогрет и таким образом (линия0-4), что его энтальпия на выходе из детандера (точка 5) будет выше, чем при дросселировании. В этом случае лишь часть подведенной к газу энер­гии, пропорциональная h4-h5 будет израсходована на выработку механи­ческой энергии в детандере. Другая часть подведенной к газу энергии, за­висящая от протяженности и усдовий теплообмена в трубопроводе, по ко­торому газ после детандера транспортируется в топку, и пропорциональная разности энтальпий h5 h0 , не будет полностью потеряна (за счет теплооб­мена с окружающей средой), а также будет полезно использована - затра­чена на увеличение физической теплоты топлива, поступающего в топку. При постоянной тепловой нагрузке топки увеличение физической теплоты топлива приведет к снижению необходимой энергии, получаемой при cжигании топлива, на величину, пропорциональную h 5- h0

Процесс расширения без подогрева газа перед детандером изобража­ется линией 0-2. После такого расширения энтальпия и температура газа после детандера будут значительно ниже, чем при дросселирова­нии. В этом случае в механическую энергию преобразуется часть внутренней энергии, уже имею­щейся у газа в трубопроводе при транспортировании. Однако после расширения энтальпия газа за счет подведенной извне энергии обяза­тельно должна будет восстано­виться до того уровня, который она имела бы после дросселирования.

Это происходит либо в трубопроводе, по которому газ транспортируется к газоиспользующему оборудованию, либо в топке за счет энергии, выделившейся при сжигании топлива (процесс 2 -1).

газ может быть частично подогрет перед детандером (процесс0 - 6 на рис. 3), частично-после него (процесс 7 -1). Существуют также схемы с подогре­вом газа перед детандером с последующим промежуточным подогревом после прохождения газом части ступеней детандера.

Изобретение относится к машиностроению, а именно к детандер-генераторным агрегатам (ДГА), и предназначено для утилизации тепловой энергии, содержащейся в транспортируемом по магистралям природном газе. Агрегат детандер-генераторный включает цилиндрический корпус с осевым входным патрубком и перпендикулярным выходным патрубком, размещенный внутри корпуса в подшипниках вал с рабочим колесом и элементами ротора генератора, а также статор. Входной патрубок расположен вдоль оси корпуса агрегата. В качестве рабочего колеса используют рабочее колесо активного типа с осевой подачей. Статор закреплен в собственном корпусе, установленном внутри корпуса агрегата так, что между указанными корпусами образован канал для прохода рабочей среды от входного патрубка к выходному. Со стороны входного патрубка последовательно за рабочим колесом к корпусу статора болтами притянута крышка одного из подшипников вала. С противоположной стороны корпуса агрегата к последнему последовательно притянуты фланцы корпуса статора и вспомогательного блока. На вспомогательном блоке закреплена кабельная коробка генератора. Внутри вспомогательного блока размещены крышка второго подшипника и электромагнитный тормоз. Изобретение позволяет упростить конструкцию и увеличить ресурс работы агрегата. 1 з.п. ф-лы, 1 ил.

Изобретение относится к машиностроению, а именно к детандер-генераторным агрегатам (ДГА), и предназначено для утилизации тепловой энергии, содержащейся в транспортируемом по магистралям природном газе. ДГА может быть установлен в любом месте, где происходит понижение давления газа: газораспределительные станции и газораздаточные пункты, котельные, ТЭЦ.

Известен детандер-генераторный агрегат, включающий цилиндрический корпус с входным патрубком и выходным патрубком, расположенным перпендикулярно оси корпуса, размещенный внутри корпуса в подшипниках вал, на котором установлено консольно рабочее колесо детандера и элементы ротора генератора, а также статор (см. патент RU 59783, кл. F25B 11/00, опубл. 27.12.2006). Недостатками известного агрегата являются громоздкость и быстрая изнашиваемость.

Задачей изобретения является устранение указанных недостатков. Технический результат заключается в упрощении конструкции и увеличении ресурса работы агрегата. Поставленная задача решается, а технический результат достигается тем, что в агрегате детандер-генераторном, включающем цилиндрический корпус с входным патрубком и выходным патрубком, расположенным перпендикулярно оси корпуса, размещенный внутри корпуса в подшипниках вал, на котором установлено консольно рабочее колесо детандера и элементы ротора генератора, а также статор, входной патрубок расположен вдоль оси корпуса агрегата, в качестве рабочего колеса используют рабочее колесо активного типа с осевой подачей, а статор закреплен в собственном корпусе, установленном внутри корпуса агрегата так, что между указанными корпусами образован канал для прохода рабочей среды от входного патрубка к выходному, причем со стороны входного патрубка последовательно за рабочим колесом к корпусу статора болтами притянута крышка одного из подшипников вала, а с противоположной стороны корпуса агрегата к последнему последовательно притянуты фланцы корпуса статора и вспомогательного блока, на котором, в свою очередь, закреплена кабельная коробка генератора, при этом внутри вспомогательного блока размещена крышка второго подшипника и электромагнитный тормоз. При этом фланцы вспомогательного блока и кабельной коробки предпочтительно снабжены направляющими буртами, причем первый уплотненно входит во внутреннюю расточку корпуса статора, а второй - во внутреннюю расточку вспомогательного блока.

На чертеже изображено поперечное сечение предлагаемого агрегата.

Детандер-генераторный агрегат оснащен цилиндрическим корпусом 1, не имеющим опорных поверхностей, и может монтироваться на трубопроводах в местах, удобных заказчику, что позволяет значительно уменьшить занимаемые им площади. Корпус 1 имеет осевой входной патрубок 2 и выходной патрубок 3, расположенный перпендикулярно оси корпуса 1. Внутри корпуса 1 в высокоскоростных герметичных подшипниках качения размещен вал 4. На валу 4 консольно установлены рабочее колесо 8 активного типа с осевой подачей и элементы ротора генератора (позицией не обозначены). Статор 6 закреплен в собственном корпусе 7, также установленном внутри корпуса 1 агрегата. Между корпусами 1 и 7 образован канал для прохода рабочей среды от входного патрубка 2 к выходному 3. Со стороны входного патрубка 2 последовательно за рабочим колесом к корпусу статора 7 болтами притянута крышка первого подшипника 5 вала 4. С противоположной стороны к корпусу 1 последовательно притянуты фланцы корпуса статора 7 и вспомогательного блока 9. На блоке 9 закреплена кабельная коробка генератора 10, а внутри блока 9 размещены крышка второго подшипника 11 и электромагнитный тормоз 12. При этом фланцы вспомогательного блока 9 и кабельной коробки 10 снабжены направляющими буртами, причем первый уплотненно входит во внутреннюю расточку корпуса статора, а второй - во внутреннюю расточку вспомогательного блока.

Агрегат работает следующим образом.

Проходящий газ вращает колесо 8, при этом понижаются его давление и температура, то есть тепловая энергия газа преобразуется в механическую энергию вращения колеса 8. Вращающий момент посредством вала 4 передается элементам ротора генератора, в результате чего в обмотках статора 6 индуцируется ток высокой частоты. Охладившийся газ проходит по каналу между корпусами 1 и 7 к выходному патрубку. При этом статор генератора 6 охлаждается, а газ подогревается.

Вышеуказанное выполнение детандер-генератора позволяет упростить конструкцию, обеспечивая при этом увеличение срока службы за счет снижения нагрузок и автоматического охлаждения греющихся элементов. Использование рабочего колеса активного типа с осевой подачей, установленного вслед за осевым входным парубком 2, снижает осевую нагрузку на подшипники и исключает необходимость применения линий разгрузки от осевой силы (при этом нет дополнительных потерь газа, лабиринтных уплотнений и т.п.). Выполнение отдельного вспомогательного блока 9 позволяет заменить электромагнитный тормоз 12, не разбирая при этом всю конструкцию агрегата.

1. Агрегат детандер-генераторный, включающий цилиндрический корпус с входным патрубком и выходным патрубком, расположенным перпендикулярно оси корпуса, размещенный внутри корпуса в подшипниках вал, на котором установлено консольно рабочее колесо детандера и элементы ротора генератора, а также статор, отличающийся тем, что входной патрубок расположен вдоль оси корпуса агрегата, в качестве рабочего колеса используют рабочее колесо активного типа с осевой подачей, а статор закреплен в собственном корпусе, установленном внутри корпуса агрегата так, что между указанными корпусами образован канал для прохода рабочей среды от входного патрубка к выходному, причем со стороны входного патрубка последовательно за рабочим колесом к корпусу статора болтами притянута крышка одного из подшипников вала, а с противоположной стороны корпуса агрегата к последнему последовательно притянуты фланцы корпуса статора и вспомогательного блока, на котором, в свою очередь, закреплена кабельная коробка генератора, при этом внутри вспомогательного блока размещена крышка второго подшипника и электромагнитный тормоз.

2. Агрегат по п.1, отличающийся тем, что фланцы вспомогательного блока и кабельной коробки снабжены направляющими буртами, причем первый уплотненно входит во внутреннюю расточку корпуса статора, а второй - во внутреннюю расточку вспомогательного блока.

Похожие патенты:

Изобретение относится к электротехнике и может быть использовано в асинхронных генераторах, работающих параллельно с сетью или синхронным генератором. .

Изобретение относится к области техники для получения холода, тепла и электричества, а поэтому может быть использовано на заводских компрессорных станциях производства сжатого воздуха и в помещениях холодильного хранения сельскохозяйственных продуктов.

Изобретение относится к области газовой промышленности и энергетики, в частности к установкам перекачки природного газа и энергетическим установкам, утилизирующим энергию избыточного давления природного газа. Обратимая электротурбодетандерная установка содержит электрическую машину, турбодетандер, установленный перед ним электрический нагреватель, подключенный к аккумуляторной батарее, установленной с возможностью подзарядки от электрической машины, дополнительную систему подогрева природного газа. Она снабжена центробежным нагнетателем и газовой турбиной, кинематически связанной с турбодетандером, с центробежным нагнетателем и с электрической машиной, снабженной полупроводниковым преобразователем. Дополнительная система подогрева выполнена в виде рекуператора тепла, установленного в газовой турбине, и соединенного через водяной насос с водяным нагревателем, установленным перед электрическим нагревателем, а аккумуляторная батарея соединена с электрической машиной через полупроводниковый преобразователь. Электрическая машина выполнена в виде синхронного электродвигателя с возможностью его работы в режиме генератора электроэнергии или в режиме регулируемого электродвигателя. Техническим результатом является расширение возможностей устройства и повышение надежности работы. 1 з.п. ф-лы, 5 ил.

Изобретение относится к области криогенной техники. Способ включает сжатие атмосферного воздуха до давления ниже критического, предварительное охлаждение сжатого воздуха, комплексную очистку, разделение сжатого очищенного воздуха на прямые детандерный и технологический потоки, охлаждение сжатых прямых потоков холодом обратных потоков, адиабатическое расширение прямого детандерного потока воздуха, ожижение, дросселирование прямого технологического потока воздуха. При этом отслеживают температуру и давление прямого детандерного потока воздуха до и после его адиабатического расширения, которое заканчивают в области влажного пара при степени влажности не более 20% и при давлении, близком к атмосферному, отделяют жидкую фазу от влажно-парового детандерного потока воздуха и ее испаряют, охлаждая при этом до состояния недогретой жидкости сжиженный прямой технологический поток воздуха, который направляют на дросселирование и разделение на продукционные жидкие азот и кислород. Полученные продукционные жидкие азот и кислород направляют на изотермическое хранение, сжимают и газифицируют жидкий кислород, охлаждая за счет теплоты его испарения один из ранее сформированных прямых потоков сжатого очищенного воздуха. Использование изобретения обеспечивает повышение экономичности и удельной холодильной мощности компрессорно-детандерной криогенной установки. 2 ил.

Изобретение относится к энергетическому машиностроению. Турбоагрегат содержит корпус с установленным внутри него на подшипниках валом. На валу закреплено, по крайней мере, одно расширительное рабочее колесо. Подшипники выполнены несмазываемыми из полимерных композиционных материалов. В расширительном рабочем колесе и в валу выполнены каналы. Выполненные каналы сообщают проточную часть расширительного рабочего колеса с зазорами, образованными валом и подшипниками. Изобретение направлено на упрощение конструкции и снижение массогабаритных характеристик турбоагрегата. 1 ил.

Изобретение относится к газоредуцирующему оборудованию. Пневматический детандер-генераторный агрегат включает приводной пневмодвигатель. Пневмодвигатель состоит из корпуса с входным и выходным патрубками, кожуха с впускным и выпускным патрубками и размещенного внутри кожуха генератора со статором и ротором. Пневмодвигатель выполнен с двумя находящимися во внешнем зацеплении шестернями с цапфами. Одна из цапф выполнена в виде ведущего вала. Ротор и шлицевая муфта закреплены на противоположных концах ведомого вала. Ведущий и ведомый валы связаны между собой посредством шлицевой муфты. В днище кожуха выполнена проточка для опорного подшипника. Фланцевая катушка установлена между днищем кожуха и крышкой корпуса. Шлицевая муфта размещена с возможностью взаимодействия своим нижним торцом с опорным подшипником. Входной патрубок выполнен в виде V-образного тройника с центральным и двумя боковыми отводами, которые присоединены к корпусу. Во внутренней полости корпуса между боковыми отводами выполнен фигурный выступ. Плоскость симметрии выступа расположена перпендикулярно к плоскости, проходящей через оси вращения шестерен, и на равном расстоянии от указанных осей. Впускной патрубок кожуха присоединен к выходному патрубку корпуса. Оси боковых отводов V-образного тройника расположены симметрично относительно плоскости симметрии фигурного выступа. Изобретение направлено на повышение эффективности детандер-генераторного агрегата. 1 з.п. ф-лы, 5 ил.

Изобретение относится к детандер-генераторным агрегатам. Детандер-генераторный агрегат содержит первую ступень детандера для привода электрогенератора, вторую ступень детандера для привода компрессора, теплообменник, дроссель, испаритель, газопроводы высокого и низкого давления, первую, вторую и байпасную регулировочно-запорные электроприводные задвижки, насос с частотно-регулируемым приводом для подачи низкопотенциального теплоносителя в испаритель, блок управления, датчики температуры и давления. Компрессор соединен с выходом испарителя. Вход испарителя через дроссель соединен с выходом теплообменника. Вход теплообменника соединен с выходом компрессора. Выход первой ступени детандера через первую задвижку соединен с газопроводом низкого давления. Выход второй ступени детандера соединен с входом первой ступени детандера. Вход второй ступени детандера через вторую задвижку соединен с газопроводом высокого давления. Блок управления имеет пакет прикладных программ и выполнен с возможностью воздействия на степень открытия байпасной, первой и второй задвижек, а также с возможностью управления частотой вращения электродвигателя привода насоса. Изобретение направлено на поддержание оптимальной температуры и необходимого давления топливного газа перед горелками в зависимости от производительности котла и температуры низкопотенциального теплоносителя. 1 ил.

Изобретение относится к машиностроению, а именно к детандер-генераторным агрегатам, и предназначено для утилизации тепловой энергии, содержащейся в транспортируемом по магистралям природном газе

В 1947 г. академик М.Д. Миллионщиков высказал идею использования высокого давления газа в магистральных газопроводах для выработки электрической энергии. Европейские страны (Германия, Италия и др.) и США уже в течение нескольких десятилетий используют этот источник почти бесплатной энергии, в то время как в России данную технологию начали осваивать только в последние 10-15 лет. Технология основана на том, что параллельно газоредуцирующим пунктам магистральных газопроводов устанавливают специальные газорасширительные агрегаты - турбодетандеры. Последние понижают давление газа до требуемого потребителю и, выполняя функции газораспределительных пунктов (ГРП) и станций (ГРС), вырабатывают электроэнергию, рис. 7.5 .

Первый в России детандер-генераторный комплекс мощностью 10 МВт, состоящий из двух детандер-генераторных агрегатов (ДГА), введен в эксплуатацию в 1994 г. на ТЭЦ-21 Мосэнерго. Подобные агрегаты работают сегодня на Среднеуральской ГРС в России, Лукомльской ГРС в Белоруси, Днепропетровской ГРС-7 в Украине. Вводятся в эксплуатацию два ДГА по 5 МВт (ДГА-5000) Рязанской ГРС (поставщик - ОАО «Криокор») и ЭТДА-1500 в ОАО «Сода» (г. Стсрлитамак, Башкирия).

Успешный опыт использования ДГА в России, Украине и Белоруссии, а также более чем 20-летний опыт их применения в Западной Европе и Америке вызвал оживление интереса рынка к этой технологии. Это относится не только к мощным ДГА на магистральных газопроводах, но и к небольшим агрегатам, устанавливаемым на ГРС и ГРП распределительных сетей, где редуцирование газа осуществляется при невысоких давлениях (например, с 1,8 или 1,2 до 0,3 МПа). В этом случае целесообразно вырабатывать не только электрическую энергию, но и холод. Согласно расчетам, при понижении давления газа с 1,8 до 0,3 МПа температура его снижается на 70-80 °С (в зависимости от состава газа и эффективности детандера). При температуре газа на входе в машину +20 °С температура газового потока на выходе составит +50-60 °С, а количество холода - 60-80 кДж/нм 3 . Это делает возможным строительство при ГРС промышленных холодильников, емкость которых будет определяться величиной стабильного расхода газа через детандер. Наиболее приемлемыми можно считать ДГА с единичной мощностью 1,5-6,0 МВт.

Рис. 7.5.

Предварительная проработка проекта энерготехнологической де- тандерной установки на базе ГРС со стабильным суточным расходом газа 60 тыс. м 3 (рис. 7.6) показала, что ее хладопроизводительность достаточна для обеспечения типового промышленного холодильника емкостью 270 т. При этом удельная выработка электроэнергии в установке составляет 0,025 кВт-ч/нм 3 , а электрическая мощность генератора - 62,5 кВт, что вполне достаточно для покрытия собственных нужд холодильника (автоматика, насосы, освещение и т. п.) .

Потенциал производства электроэнергии с помощью мощных ДГА в России составляет около 5000 МВт. Окупаемость проектов - от 3 до 5 лет. Рынок энерготехнологических установок, использующих избыточный перепад давления газа на относительно небольших ГРС и крупных ГРП для выработки электроэнергии и холодоснабжения промышленных и сельскохозяйственных холодильников, также велик.


Рис. 7.6.

  • 1 -редукционный клапан ГРС; 2 - винтовой детандер :
  • 5 - электрогенератор: 4 - теплообменник; 5 - холодильная камера;
  • 6 - циркуляционный насос; 7 - контур хладагента; 8 - сепаратор

Залогом успеха российской малой энергетики является зарождение интереса к ней в последнее время не только малого и среднего бизнеса, но и государственных структур. Для успешного развития МЭ в России необходим соответствующий закон. В нем должны быть определены четкие критерии, базовые требования к объектам МЭ. Без него на реализацию проектов создания объектов МЭ влияет множество субъективных факторов. При развитии МЭ необходимо удерживаться от опасности перехода из одной крайности - глобальной централизации - в другую - тотальную децентрализацию. Пока МЭ в России развивается по остаточному принципу.

Изобретение относится к энергетике и может быть использовано на тепловых электрических станциях. Детандер-генераторная установка электростанции содержит магистральный газопровод, газорегуляторный пункт, турбодетандер, электрогенератор, подводящий и выхлопной газопроводы турбодетандера. Подводящий газопровод турбодетандера подключен к нагреваемому тракту промежуточного воздухоохладителя первой ступени, установленного между компрессорами низкого и среднего давления трехступенчатого турбокомпрессора ГТУ. Выхлопной газопровод турбодетандера подключен к нагреваемому тракту промежуточного воздухоохладителя второй ступени, установленного между компрессорами среднего и высокого давления трехступенчатого турбокомпрессора ГТУ. Изобретение направлено на повышение экономичности детандер-генераторной установки и КПД энергетических котлов электростанции за счет подогрева газа перед подачей его в турбодетандер и в топки энергетических котлов теплотой воздуха, нагретого в результате процесса сжатия в компрессорах низкого и среднего давления трехступенчатого турбокомпрессора ГТУ. 1 з.п. ф-лы, 1 ил.

Рисунки к патенту РФ 2384720

Изобретение относится к энергетике и может быть использовано на тепловых электрических станциях.

Известен аналог детандер-генераторная установка электростанции (см. Романов В.В., Ситников В.В. Новая детандер-генераторная установка НПКГ «Зоря»-«Машпроект» // Газотурбинные технологии. Рыбинск. Март 2005. С.40), содержащая магистральный газопровод, газорегуляторный пункт, турбодетандер, электрогенератор, подводящий и выхлопной газопроводы турбодетандера. Данный аналог принят за прототип.

К причине, препятствующей достижению указанного ниже технического результата при использовании известной детандер-генераторной установки электростанции, принятой за прототип, относится то, что известная детандер-генераторная установка электростанции обладает пониженной экономичностью, так как для предварительного подогрева газа перед турбодетандером, с целью повышения электрической мощности и обеспечения положительной температуры газа на выходе из турбодетандера, используется высокопотенциальная тепловая энергия пара, выработка которого в энергетических котлах связана с повышенным расходом топлива. Кроме того, в топку энергетических котлов подается охлажденный в турбодетандере газ, что снижает КПД котлов.

Сущность изобретения заключается в следующем. Для повышения экономичности детандер-генераторной установки электростанции целесообразно подключить подводящий газопровод турбодетандера к нагреваемому тракту промежуточного воздухоохладителя первой ступени, установленного между компрессорами низкого и среднего давления трехступенчатого турбокомпрессора газотурбинной установки (ГТУ), а выхлопной газопровод турбодетандера подключить к нагреваемому тракту промежуточного воздухоохладителя второй ступени, установленного между компрессорами среднего и высокого давления трехступенчатого турбокомпрессора ГТУ. В этом случае для подогрева газа перед турбодетандером с целью повышения электрической мощности турбодетандера и обеспечения положительной температуры газа на выходе из турбодетандера будет использоваться теплота нагретого в результате процесса сжатия в компрессоре низкого давления воздуха, что позволит снизить расход топлива на выработку дополнительного количества пара в энергетических котлах, для предварительного подогрева газа перед турбодетандером. Подогрев газа после турбодетандера теплотой нагретого в результате процесса сжатия в компрессоре низкого давления воздуха позволяет увеличить количество теплоты, вносимое с топливом в топки энергетических котлов, т.е. увеличить КПД котлов.

Технический результат - повышение экономичности детандер-генераторной установки и КПД энергетических котлов электростанции за счет подогрева газа перед подачей его в турбодетандер и в топки энергетических котлов теплотой воздуха, нагретого в результате процесса сжатия в компрессорах низкого и среднего давления трехступенчатого турбокомпрессора ГТУ.

Указанный технический результат при осуществлении изобретения достигается тем, что известная детандер-генераторная установка электростанции содержит магистральный газопровод, газорегуляторный пункт, турбодетандер, электрогенератор, подводящий и выхлопной газопроводы турбодетандера. Особенность детандер-генераторной установки электростанции заключается в том, что подводящий газопровод турбодетандера подключен к нагреваемому тракту промежуточного воздухоохладителя первой ступени, установленного между компрессорами низкого и среднего давления трехступенчатого турбокомпрессора ГТУ. Кроме того, особенность детандер-генераторной установки заключается в том, что выхлопной газопровод турбодетандера подключен к нагреваемому тракту промежуточного воздухоохладителя второй ступени, установленного между компрессорами среднего и высокого давления трехступенчатого турбокомпрессора ГТУ.

На чертеже представлена схема детандер-генераторной установки электростанции.

Детандер-генераторная установка электростанции содержит магистральный газопровод 1, газорегуляторный пункт 2, турбодетандер 3, электрогенератор 4, подводящий газопровод 5 к турбодетандеру 3, выхлопной газопровод 6, ГТУ, включающую газовую турбину 7, турбокомпрессор, состоящий из компрессоров низкого, среднего и высокого давления соответственно 8, 9, 10, камеру сгорания 11, электрический генератор 12, промежуточный воздухоохладитель первой ступени 13, установленный между компрессорами низкого и среднего давления трехступенчатого турбокомпрессора ГТУ, промежуточный воздухоохладитель второй ступени 14, установленный между компрессорами среднего и высокого давления трехступенчатого турбокомпрессора ГТУ.

Детандер-генераторная установка электростанции работает следующим образом.

Атмосферный воздух поступает в компрессор низкого давления 8, сжимается в нем и направляется в греющий тракт промежуточного воздухоохладителя первой ступени 13, в нагреваемый тракт которого подается газ от магистрального газопровода 1 через подводящий газопровод 5. Причем газ перед подачей в промежуточный воздухоохладитель первой ступени 13 не дросселируется в газорегуляторном пункте 2. В процессе теплообмена между газом и воздухом в промежуточном воздухоохладителе первой ступени 13 газ нагревается, а воздух охлаждается. Охлажденный в промежуточном воздухоохладителе первой ступени 13 воздух поступает в компрессор среднего давления 9, а нагретый газ направляется в турбодетандер 3. В турбодетандере 3 в процессе расширения газа совершается полезная работа газового цикла, затрачиваемая на привод электрогенератора 4. Отработавший в турбодетандере 3 газ через выхлопной газопровод 6 поступает в нагреваемый тракт воздухоохладителя второй ступени 14, в греющий тракт которого подводится сжатый в компрессоре среднего давления 9 воздух. В результате процесса теплообмена между двумя теплоносителями в промежуточном воздухоохладителе второй ступени 14 газ подогревается, а воздух охлаждается. Подогретый в промежуточном воздухоохладителе второй ступени 14 газ направляется к энергетическим котлам (не показаны), а охлажденный воздух поступает в компрессор высокого давления 10. Сжатый в компрессоре высокого давления воздух поступает в камеру сгорания 11 ГТУ, туда же подается топливо. Осуществляется процесс горения. Образовавшиеся в результате сгорания топлива газы направляются в газовую турбину 7. В газовой турбине 7 совершается полезная работа газотурбинного цикла, которая затрачивается на привод турбокомпрессора, состоящего из компрессоров низкого, среднего и высокого давления соответственно 8, 9, 10 и электрогенератора 12. Отработавшие в газовой турбине 7 газы направляются в котел-утилизатор (не показан).

Подключение подводящего газопровода турбодетандера к нагреваемому тракту промежуточного воздухоохладителя первой ступени, установленного между компрессорами низкого и среднего давления трехступенчатого турбокомпрессора ГТУ, и выхлопного газопровода турбодетандера к нагреваемому тракту промежуточного воздухоохладителя второй ступени, установленного между компрессорами среднего и высокого давления трехступенчатого турбокомпрессора ГТУ, позволяет повысить экономичность детандер-генераторной установки и КПД энергетических котлов электростанции, за счет подогрева газа перед подачей его в турбодетандер и в топки энергетических котлов теплотой воздуха, нагретого в результате процесса сжатия в компрессорах низкого и среднего давления трехступенчатого турбокомпрессора ГТУ.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Детандер - генераторная установка электростанции, содержащая магистральный газопровод, газорегуляторный пункт, турбодетандер, электрогенератор, подводящий и выхлопной газопроводы турбодетандера, отличающаяся тем, что подводящий газопровод турбодетандера подключен к нагреваемому тракту промежуточного воздухоохладителя первой ступени, установленного между компрессорами низкого и среднего давления трехступенчатого турбокомпрессора ГТУ.

2. Детандер - генераторная установка электростанции по п.1, отличающаяся тем, что выхлопной газопровод турбодетандера подключен к нагреваемому тракту промежуточного воздухоохладителя второй ступени, установленного между компрессорами среднего и высокого давления трехступенчатого турбокомпрессора ГТУ.

← Вернуться

×
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:
Я уже подписан на сообщество «sinkovskoe.ru»