Модель ситуации типа «хищник-жертва. Равновесие хищник—жертва Основное понятие модели хищник и жертва

Подписаться
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

«Ижевский государственный технический университет»

Факультет «Прикладная математика»

Кафедра «Математическое моделирование процессов и технологий»

Курсовая работа

по дисциплине «Дифференциальные уравнения»

Тема: «Качественное исследование модели хищник-жертва»

Ижевск 2010


ВВЕДЕНИЕ

1. ПАРАМЕТРЫ И ОСНОВНОЕ УРАВНЕНИЕ МОДЕЛИ «ХИЩНИК-ЖЕРТВА»

2.2 Обобщенные модели Вольтера типа «хищник-жертва».

3. ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ МОДЕЛИ «ХИЩНИК-ЖЕРТВА»

ЗАКЛЮЧЕНИЕ

СПИСОК ЛИТЕРАТУРЫ


ВВЕДЕНИЕ

В настоящее время задачи экологии имеют первостепенное значение. Важным этапом решения этих задач является разработка математических моделей экологических систем.

Одной из основных задач экологии па современном этапе является изучение структуры и функционирования природных систем, поиск общих закономерностей. Большое влияние на экологию оказала математика, способствующая становлению математической экологии, особенно такие её разделы, как теория дифференциальных уравнений, теория устойчивости и теория оптимального управления.

Одной из первых работ в области математической экологии была работа А.Д. Лотки (1880 - 1949), который первый описал взаимодействие различных популяций, связанных отношениями хищник - жертва. Большой вклад в исследование модели хищник -жертва внесли В. Вольтерра (1860 - 1940), В.А. Костицин (1883-1963) В настоящее время уравнения описывающие взаимодействие популяций, называются уравнениями Лотки - Вольтерра.

Уравнения Лотки - Вольтерра описывают динамику средних величин - численности популяции. В настоящее время на их основе построены более общие модели взаимодействия популяций, описываемые интегро-дифференциальными уравнениями, исследуются управляемые модели хищник - жертва.

Одной из важных проблем математической экологии является проблема устойчивости экосистем, управления этими системами. Управление может осуществляться с целью перевода системы из одного устойчивого состояния в другое, с целью её использования или восстановления.


1. ПАРАМЕТРЫ И ОСНОВНОЕ УРАВНЕНИЕ МОДЕЛИ ХИЩНИК-ЖЕРТВА

Попытки математического моделирования динамики как отдельных биологических популяций, так и сообществ, включающих взаимодействующие популяции различных видов, предпринимались давно. Одна из первых моделей роста изолированной популяции (2.1) была предложена еще в 1798 г. Томасом Мальтусом:

Данная модель задается следующими параметрами:

N - численность популяции;

Разность между коэффициентами рождаемости и смертности.

Интегрируя это уравнение получаем:

, (1.2)

где N(0) – численность популяции в момент t = 0. Очевидно, что модель Мальтуса при > 0 дает бесконечный рост численности, что никогда не наблюдается в природных популяциях, где ресурсы, обеспечивающие этот рост, всегда ограничены. Изменения численности популяций растительного и животного мира нельзя описывать простым законом Мальтуса, на динамику роста влияют многие взаимосвязанные причины – в частности, размножение каждого вида саморегулируется и видоизменяется так, чтобы этот вид сохранялся в процессе эволюции.

Математическим описанием этих закономерностей занимается математическая экология – наука об отношениях растительных и животных организмов и образуемых ими сообществ между собой и с окружающей средой.

Наиболее серьезное исследование моделей биологических сообществ, включающих в себя несколько популяций различных видов, было проведено итальянским математиком Вито Вольтерра:

,

где - численность популяции;

Коэффициенты естественного прироста (или смертности) популяции; - коэффициенты межвидового взаимодействия. В зависимости от выбора коэффициентов модель описывает либо борьбу видов за общий ресурс, либо взаимодействие типа хищник - жертва, когда один вид является пищей для другого. Если в работах других авторов основное внимание уделялось построению различных моделей, то В. Вольтерра провел глубокое исследование построенных моделей биологических сообществ. Именно с книги В. Вольтерра, по мнению многих ученых, началась современная математическая экология.


2. КАЧЕСТВЕННОЕ ИССЛЕДОВАНИЕ ЭЛЕМЕНТАРНОЙ МОДЕЛИ «ХИЩНИК-ЖЕРТВА»

2.1 Модель трофического взаимодействия по типу «хищник-жертва»

Рассмотрим модель трофического взаимодействия по типу «хищник-жертва», построенную В. Вольтерром. Пусть имеется система, состоящая из двух видов, из которых один поедает другой.

Рассмотрим случай, когда один из видов является хищником, а другой - жертвой, и будем считать, что хищник питается только жертвой. Примем следующую простую гипотезу:

Коэффициент прироста жертвы;

Коэффициент прироста хищника;

Численность популяции жертвы;

Численность популяции хищника;

Коэффициент естественного прироста жертвы;

Скорость потребления жертвы хищником;

Коэффициент смертности хищника в отсутствие жертвы;

Коэффициент «переработки» хищником биомассы жертвы в собственную биомассу.

Тогда динамика численности популяций в системе хищник - жертва будет описываться системой дифференциальных уравнений (2.1):

(2.1)

где все коэффициенты положительные и постоянные.

Модель имеет равновесное решение (2.2):

По модели (2.1) доля хищников в общей массе животных выражается формулой (2.3):

(2.3)

Анализ устойчивости состояния равновесия по отношению к малым возмущениям показал, что особая точка (2.2) является «нейтрально» устойчивой (типа «центр»), т. е. любые отклонения от равновесия не затухают, но переводят систему в колебательный режим с амплитудой, зависящей от величины возмущения. Траектории системы на фазовой плоскости имеют вид замкнутых кривых, расположенных на различных расстояниях от точки равновесия (рис. 1).

Рис. 1 – Фазовый «портрет» классической вольтерровой системы «хищник-жертва»


Разделив первое уравнение системы (2.1) на второе, получим дифференциальное уравнение (2.4) для кривой на фазовой плоскости .

(2.4)

Интегрируя данное уравнение получим:

(2.5)

где - постоянная интегрирования, где

Несложно показать, что движение точки по фазовой плоскости будет происходить только в одну сторону. Для этого удобно сделать замену функций и , перенеся начало координат на плоскости в стационарную точку (2.2) и введя затем полярные координаты:

(2.6)

В таком случае, подставив значения системы (2.6) в систему (2.1), будем иметь:

(2.7)


Умножив первое уравнение на , а второе - на и сложив их, получим:

После аналогичных алгебраических преобразований получим уравнение для :

Величина , как видно из (4.9), всегда больше нуля. Таким образом, не меняет знака, и вращение все время идет в одну сторону.

Интегрируя (2.9) найдем период:

Когда мало, то уравнения (2.8) и (2.9) переходят в уравнения эллипса. Период обращения в этом случае равен:

(2.11)

Исходя из периодичности решений уравнений (2.1), можно получить некоторые следствия. Представим для этого (2.1) в виде:


(2.12)

и проинтегрируем по периоду:

(2.13)

Так как подстановки от и в силу периодичности обращаются в нуль, средние по периоду оказываются равными стационарным состояниям (2.14):

(2.14)

Простейшие уравнения модели «хищник-жертва» (2.1) обладают рядом существенных недостатков. Так, в них предполагается неограниченность пищевых ресурсов для жертвы и неограниченный рост хищника, что противоречит экспериментальным данным. Кроме того, как видно из рис. 1, ни одна из фазовых кривых не выделена с точки зрения устойчивости. При наличии даже небольших возмущающих воздействий траектория системы будет все дальше уходить от положения равновесия, амплитуда колебаний расти, и система достаточно быстро разрушится.

Несмотря на недостатки модели (2.1), представления о принципиально колебательном характере динамики системы «хищник- жертва» получили широкое распространение в экологии. Взаимодействиями «хищник-жертва» объясняли такие явления, как колебания численности хищных и мирных животных в промысловых зонах, колебания в популяциях рыб, насекомых и т. д. На самом деле колебания численности могут быть обусловлены и другими причинами.

Предположим, что в системе хищник - жертва происходит искусственное уничтожение особей обоих видов, и рассмотрим вопрос о том, каким образом уничтожение особей влияет на средние значения их численности, если осуществляется пропорционально этой численности с коэффициентами пропорциональности и соответственно для жертвы и хищника. С учетом сделанных предположений систему уравнений (2.1) перепишем в виде:

(2.15)

Предположим, что , т. е. коэффициент истребления жертвы меньше коэффициента ее естественного прироста. В этом случае также будут наблюдаться периодические колебания численности. Вычислим средние значения численностей:

(2.16)


Таким образом, если , то средняя численность популяций жертвы возрастает, а хищника - убывает.

Рассмотрим случай, когда коэффициент истребления жертвы больше коэффициента ее естественного прироста, т. Е . В этом случае при любых , и, следовательно, решение первого уравнения (2.15) ограничено сверху экспоненциально убывающей функцией , т. е. при .

Начиная с некоторого момента времени t, при котором , решение второго уравнения (2.15) также начинает убывать и при стремится к нулю. Таким образом, в случае оба вида исчезают.

2.1 Обобщенные модели Вольтера типа «хищник-жертва»

Первые модели В. Вольтерра, естественно, не могли отражать все стороны взаимодействия в системе хищник - жертва, поскольку они были в значительной мере упрощены относительно реальных условий. Например, если численность хищника равна нулю, то из уравнений (1.4) следует, что численность жертвы неограниченно возрастает, что не соответствует действительности. Однако ценность этих моделей состоит именно в том, что они были основой, на которой быстрыми темпами начала развиваться математическая экология.

Появилось большое число исследований различных модификаций системы хищник - жертва, где были построены более общие модели, учитывающие в той или иной степени реальную ситуацию в природе.

В 1936 г. А.Н. Колмогоров предложил использовать для описания динамики системы хищник - жертва следующую систему уравнении:


, (2.17)

где убывает с возрастанием численности хищников, а возрастает с увеличением численности жертвы.

Эта система дифференциальных уравнений в силу ее достаточной общности позволяет хорошо учитывать реальное поведение популяций и вместе с тем проводить качественный анализ ее решений.

Позднее в своей работе, Колмогоров исследовал подробно менее общую модель:

(2.18)

Различные частные случаи системы дифференциальных уравнений (2.18) исследовались многими авторами. В таблице приведены различные частные случаи функций , , .

Таблица 1 - Различные модели сообщества «хищник-жертва»

Авторы
Вольтерра-Лотка
Гаузе
Пислоу
Холинг
Ивлев
Рояма
Шимазу
Мэй

математическое моделирование хищник жертва


3. ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ МОДЕЛИ ХИЩНИК-ЖЕРТВА

Рассмотрим математическую модель совместного существования двух биологических видов (популяций) типа "хищник - жертва", называемую моделью Вольтерра - Лотки.

Пусть два биологических вида совместно обитают в изолированной среде. Среда стационарна и обеспечивает в неограниченном количестве всем необходимым для жизни один из видов, который будем называть жертвой. Другой вид - хищник также находится в стационарных условиях, но питается лишь особями первого вида. Это могут быть караси и щуки, зайцы и волки, мыши и лисы, микробы и антитела и т. д. Будем для определенности называть их карасями и щуками.

Заданы следующие начальные показатели:

Со временем число карасей и щук меняется, но так как рыбы в пруду много, то не будем различать 1020 карасей или 1021 и поэтому будем считать и непрерывными функциями времени t. Будем называть пару чисел (,) состоянием модели.

Очевидно, что характер изменения состояния (,) определяется значениями параметров. Изменяя параметры и решая систему уравнений модели, можно исследовать закономерности изменения состояния экологической системы во времени.

В экосистеме скорость изменения численности каждого вида также будем считать пропорциональной его численности, но только с коэффициентом, который зависит от численности особей другого вида. Так, для карасей этот коэффициент уменьшается с увеличением числа щук, а для щук увеличивается с увеличением числа карасей. Будем считать эту зависимость также линейной. Тогда получим систему из двух дифференциальных уравнений:

Эта система уравнений и называется моделью Вольтерра-Лотки. Числовые коэффициенты , , - называются параметрами модели. Очевидно, что характер изменения состояния (,) определяется значениями параметров. Изменяя эти параметры и решая систему уравнений модели, можно исследовать закономерности изменения состояния экологической системы.

Проинтегрируем оба уравнения систему по t, которое будет изменяться от - начального момента времени, до , где T – период, за который происходят изменения в экосистеме. Пусть в нашем случае период равен 1 году. Тогда система принимает следующий вид:

;


;

Принимая = и = приведем подобные слагаемые, получим систему, состоящую из двух уравнений:

Подставив в полученную систему исходные данные получим популяцию щук и карасей в озере спустя год:

Модель «хищник - жертва» и макроэкономическая модель Гудвина

Рассмотрим биологическую модель «хищник - жертва», в которой один вид является кормом для другого. Эта модель, давно ставшая классической, была построена в первой половине XX в. итальянским математиком В. Вольтерра для объяснения колебаний уловов рыбы в Адриатическом море . В модели предполагается, что число хищников растет до тех пор, пока у них будет достаточно пищи, а увеличение поголовья хищников приводит к уменьшению популяции рыб-жертв. Когда последних становится мало, численность хищников уменьшается. Вследствие этого с некоторого момента начинается рост численности рыб-жертв, который через некоторое время вызывает рост популяции хищников. Цикл замыкается.

Пусть N x (t) и N 2 (t) - численности рыб-жертв и рыб-хищников в момент времени t соответственно. Предположим, что темп прироста численности жертв в условиях отсутствия хищников постоянен, т. е.

где а - положительная постоянная.

Появление хищника должно снизить темп прироста жертв. Будем считать, что это снижение линейно зависит от численности хищника: чем больше хищников, тем меньше темп прироста жертв. Тогда

где т > 0.

Поэтому для динамики численности рыб-жертв получаем:

Составим теперь уравнение, определяющее динамику популяции хищников. Предположим, что их численность в случае отсутствия жертв сокращается (из-за отсутствия корма) с постоянным темпом Ь, т. е.

Наличие жертв вызывает увеличение темпа прироста хищников. Предположим, что этот прирост линеен, т. е.

где п> 0.

Тогда для скорости роста рыб-хищников получаем уравнение:

В системе «хищник - жертва» (6.17)-(6.18) снижение скорости роста численности рыб-жертв, вызванное поеданием их хищниками, равно mN x N 2 , т. е. пропорционально числу их встреч с хищником. Увеличение скорости роста численности рыб-хищников, вызванное наличием жертв, равно nN x N 2 , т. е. тоже пропорционально числу встреч жертв и хищников.

Введем безразмерные переменные U = mN 2 /a и V = nN x /b. Динамика переменной U соответствует динамике хищников, а динамика переменной V - динамике жертв. В силу уравнений (6.17) и (6.18) изменение новых переменных определяется системой уравнений:

Предположим, что при t = 0 число особей обоих видов известно, следовательно, известны начальные значения новых переменных?/(0) = U 0 , К(0) = К 0 . Из системы уравнений (6.19) можно найти дифференциальное уравнение для ее фазовых траекторий:

Разделяя переменные этого уравнения, получим:


Рис. 6.10. Построение фазовой траектории ADCBA системы дифференциальных уравнений (6.19)

Отсюда с учетом начальных данных следует:

где константа интегрирования С = b(V Q - InV 0)/a - lnU 0 + U 0 .

На рис. 6.10 показано, как строится линия (6.20) при заданном значении С. Для этого в первой, во второй и в третьей четвертях соответственно строим графики функций х = V - InV, у = (Ь/а)х , у = = InU- U+C.

В силу равенства dx/dV = (V- 1)/У функция х = V- In К, определенная при V > 0, возрастает, если V> 1, и убывает, если V 1. В силу того, что cPx/dV 1 = 1/F 2 > 0, график функции л: = x(V) направлен выпуклостью вниз. Уравнение V= 0 задает вертикальную асимптоту. Наклонных асимптот эта функция не имеет. Поэтому график функции х = х(У) имеет вид кривой, изображенной в первой четверти рис. 6.10.

Аналогичным образом исследуется функция у = InU - U+ С, график которой на рис. 6.10 изображен в третьей четверти.

Если теперь мы разместим на рис. 6.10 во второй четверти график функции у = (Ь/а)х , то в четвертой четверти получим линию, которая связывает переменные U и V. Действительно, взяв точку V t на оси OV, вычисляем с помощью функции х = V - V соответствующее знание х х. После этого, используя функцию у = (Ь/а)х , по полученному значению х { находим у х (вторая четверть на рис. 6.10). Далее с помощью графика функции у = InU - U + С определяем соответствующие значения переменной U (на рис. 6.10 таких значений два - координаты точек М и N). Совокупность всех таких точек (V; U) образует искомую кривую. Из построения следует, что графиком зависимости (6.19) является замкнутая линия, содержащая внутри себя точку Е( 1, 1).

Напомним, что эту кривую мы получили, задав некоторые начальные значения U 0 и V 0 и вычислив по ним константу С. Взяв другие начальные значения, мы получим другую замкнутую линию, не пересекающую первую и также содержащую внутри себя точку Е( 1, 1). Это означает, что семейством траекторий системы (6.19) на фазовой плоскости (V, U) является множество замкнутых непересекающихся линий, концентрирующихся вокруг точки Е( 1, 1), а решения исходной модели U = Щ) и V = V{t) являются функциями, периодическими во времени. При этом максимум функции U = U(t) не попадает на максимум функции V = V(t ) и наоборот, т. е. колебания численности популяций около своих равновесных решений происходят в разных фазах.

На рис. 6.11 приведены четыре траектории системы дифференциальных уравнений (6.19) на фазовой плоскости OUV, отличающиеся начальными условиями. Одна из траекторий равновесная - это точка Е( 1, 1), которой соответствует решение U(t) = 1, V{t) = 1. Точки (U(t), V(t)) на других трех фазовых траекториях по мере увеличения времени смещаются по часовой стрелке.

Чтобы пояснить действие механизма изменения численности двух популяций, рассмотрим траекторию ABCDA на рис. 6.11. Как видим, на участке АВ и хищников, и жертв мало. Поэтому здесь популяция хищников сокращается из-за недостатка корма, а популяция жертв растет. На участке ВС численность жертв достигает высоких значений, что приводит к росту численности хищников. На участке СА хищников много, и это влечет сокращение численности жертв. При этом после прохождения точки D численность жертв уменьшается на столько, что численность популяции начинает уменьшаться. Цикл замыкается.

Модель «хищник - жертва» - пример структурно неустойчивой модели. Здесь малое изменение правой части одного из уравнений может привести к принципиальному изменению ее фазового портрета.

Рис. 6.11.

Рис. 6.12.

Действительно, если в уравнении динамики жертв учесть внутривидовую конкуренцию, то мы получим систему дифференциальных уравнений:

Здесь при т = 0 популяция жертв развивается согласно логическому закону.

При т Ф 0 ненулевое равновесное решение системы (6.21) при некоторых положительных значениях параметра внутривидовой конкуренции И является устойчивым фокусом, и соответствующие траектории «наматываются» на точку равновесия (рис. 6.12). Если же h = 0, то в этом случае особая точка Е( 1, 1) системы (6.19) является центром, и траектории представляют собой замкнутые линии (см. рис. 6.11).

Замечание. Обычно под моделью «хищник - жертва» понимают модель (6.19), фазовые траектории которой замкнуты. Однако модель (6.21) также является моделью «хищник - жертва», поскольку описывает взаимовлияние хищников и жертв.

Одним из первых приложений модели типа «хищник - жертва» в экономике для исследования циклично изменяющихся процессов является макроэкономическая модель Гудвина, в которой используется непрерывный подход к анализу взаимовлияния уровня занятости и ставки заработной платы.

В работе В.-Б. Занга изложен вариант модели Гудвина, в котором производительность труда и предложение труда растут с постоянными темпами прироста, а коэффициент выбытия фондов равен нулю. Эта модель формально приводит к уравнениям модели «хищник - жертва».

Ниже рассматривается модификация этой модели для случая отличного от нуля коэффициента выбытия фондов.

В модели используются следующие обозначения: L - численность трудящихся; w - средняя ставка заработной платы трудящихся; К - основные производственные фонды (капитал); Y - национальный доход; / - инвестиции; С - потребление; р - коэффициент выбытия фондов; N - предложение труда на рынке рабочей силы; т = Y/K - фондоотдача; а = Y/L - производительность труда; у = L/N - коэффициент занятости; х = C/Y - норма потребления в национальном доходе; К - приращение капитала в зависимости от инвестиций.

Выпишем уравнения модели Гудвина:


где а 0 , b, g, п, N 0 , г - положительные числа (параметры).

Уравнения (6.22) - (6.24) выражают следующее. Уравнение (6.22) - обычное уравнение динамики фондов. Уравнение (6.23) отражает рост ставки заработной платы при высоком уровне занятости (ставка заработной платы растет, если предложение труда невелико) и уменьшение ставки заработной платы при высоком уровне безработицы.

Тем самым уравнение (6.23) выражает закон Филлипса в линейной форме . Уравнения (6.24) означают экспоненциальный рост производительности труда и предложения труда. Предположим также, что С = wL, т. е. вся заработная плата тратится на потребление. Теперь можно преобразовать уравнения модели с учетом равенств:

Преобразуем уравнения (6.22)-(6.27). Имеем:
где

где

Поэтому динамика переменных в модели Гудвина описывается системой дифференциальных уравнений:

которая формально совпадает с уравнениями классической модели «хищник - жертва». Это значит, что в модели Гудвина тоже возникают колебания фазовых переменных. Механизм колебательной динамики заключается здесь в следующем: при малой заработной плате w потребление низкое, инвестиции большие, и это приводит к росту производства и занятости у. Большая занятость у вызывает рост средней заработной платы w, что приводит к росту потребления и снижению инвестиций, падению производства и снижению занятости у.

Ниже гипотеза о зависимости ставки процента от уровня занятости рассмотренной модели используется при моделировании динамики однопродуктовой фирмы. Оказывается, что в этом случае при некоторых дополнительных допущениях модель фирмы обладает свойством цикличности рассмотренной выше модели «хищник - жертва».

  • См.: Вольтерра В. Указ, соч.; Ризнииенко Г. Ю., Рубин А. Б. Указ. соч.
  • См.: Занг В.-Б. Синергетическая экономика. М., 2000.
  • См.: Пу Т. Нелинейная экономическая динамика. Ижевск, 2000; Тихонов А. Н.Математическая модель // Математическая энциклопедия. Т. 3. М., 1982. С. 574, 575.

Хищничество - форма трофических взаимоотношений между организмами разных видов, при которых один из них (хищник ) атакует другого (жертву ) и питается его плотью, то есть обычно присутствует акт умерщвления жертвы.

Система «хищник - жертва» - сложная экосистема, для которой реализованы долговременные отношения между видами хищника и жертвы, типичный пример коэволюции.

Коэволюция - совместная эволюция биологических видов, взаимодействующих в экосистеме.

Отношения между хищниками и их жертвами развиваются циклически, являясь иллюстрацией нейтрального равновесия.

1. Единственным лимитирующим фактором, ограничивающим размножение жертв, является давление на них со стороны хищников. Ограниченность ресурсов среды для жертвы не учитывается.

2. Размножение хищников ограничивается количеством добытой им пищи (количеством жертв).

По своей сути модель Лотки–Вольтерры есть математическое описание дарвинского принципа борьбы за существование.

Система Вольтерра-Лотка, которую часто называют системой хищники-жертвы, описывает взаимодействие двух популяций - хищников (например, лисиц) и жертв (например, зайцев), которые живут по несколько разным "законам". Жертвы поддерживают свою популяцию за счет поедания природного ресурса, например, травы, что приводит к экспоненциальному росту численности популяции, если нет хищников. Хищники поддерживают свою популяцию за счет только "поедания" жертв. Поэтому, если популяция жертв исчезает, то вслед за этим популяция хищников экспоненциально убывает. Поедание хищниками жертв наносит ущерб популяции жертв, но в то же время дает дополнительный ресурс к размножению хищников.

Вопрос

ПРИНЦИП МИНИМАЛЬНОГО РАЗМЕРА ПОПУЛЯЦИЙ

закономерно существующее в природе явление, характеризуемое как своеобразный естественный принцип,означающий, что каждому виду животных свойствен специфический для него минимальный размерпопуляции, нарушение которого ставит под угрозу существование популяции, а иногда и вида в целом.

правило популяционного максимума, оно заключается в том, что популяция не может увеличиваться бесконечно, в силу истощения пищевых ресурсов и условий размножения (теория андреварты – бирча) и ограничения воздействия комплекса абиотических и биотических факторов среды (теория фредерикса).

Вопрос

Итак, как было ясно уже Фибоначчи, прирост популяции пропорционален ее численности, и поэтому, если рост популяции не ограничивают никакие внешние факторы, он непрерывно ускоряется. Опишем этот рост математически.

Прирост популяции пропорционален численности особей в ней, то есть ΔN~N , где N - численность популяции, а ΔN - ее изменение за определенный период времени. Если этот период бесконечно мал, можно написать, что dN/dt=r ×N , где dN/dt - изменение численности популяции (прирост), а r - репродуктивный потенциал , переменная, характеризующая способность популяции увеличивать свою численность. Приведенное уравнение называется экспоненциальной моделью роста численности популяции (рис. 4.4.1).

Рис.4.4.1. Экспоненциальный рост .

Как легко понять, с ростом времени численность популяции растет все быстрее, и достаточно скоро устремляется к бесконечности. Естественно, никакое местообитание не выдержит существования популяции с бесконечной численностью. Тем не менее, существует целый ряд процессов популяционного роста, который в определенном временном промежутке может быть описан с помощью экспоненциальной модели. Речь идет о случаях нелимитированного роста, когда какая-то популяция заселяет среду с избытком свободного ресурса: коровы и лошади заселяют пампу, мучные хрущаки - элеватор с зерном, дрожжи - бутыль виноградного сока и т.д.

Естественно, экспоненциальный рост популяции не может быть вечным. Рано или поздно ресурс исчерпается, и рост популяции затормозится. Каким будет это торможение? Практическая экология знает самые разные варианты: и резкий взлет численности с последующим вымиранием популяции, исчерпавшей свои ресурсы, и постепенное торможение прироста по мере приближения к определенному уровню. Проще всего описать медленное торможение. Простейшая описывающая такую динамику модель называется логистической и предложена (для описания роста численности популяции человека) французским математиком Ферхюльстом еще в 1845 году. В 1925 году аналогичная закономерность была заново открыта американским экологом Р. Перлем, который предположил, что она носит всеобщий характер.

В логистической модели вводится переменнаяK - емкость среды , равновесная численность популяции, при которой она потребляет все имеющиеся ресурсы. Прирост в логистической модели описывается уравнением dN/dt=r ×N ×(K-N)/K (рис. 4.4.2).

Рис. 4.4.2. Логистический рост

Пока N невелико, на прирост популяции основное влияние оказывает сомножитель r ×N и рост популяции ускоряется. Когда становится достаточно высоким, на численность популяции начинает оказывать основное влияние сомножитель (K-N)/K и рост популяции начинает замедляться. Когда N=K , (K-N)/K=0 и рост численности популяции прекращается.

При всей своей простоте логистическое уравнение удовлетворительно описывает много наблюдаемых в природе случаев и до сих пор с успехом используется в математической экологии.

№16.Экологическая стратегия выживания - эволюционно сложившийсякомплекс свойств популяции, направленный на повышение вероятности выживания и оставление потомства.

Так А.Г. Раменский (1938) различал три основные типа стратегий выживания среди растений: виоленты, патиенты и эксплеренты.

Виоленты (силовики) - подавляют всех конкурентов, например, деревья, образующие коренные леса.

Патиенты - виды, способные выжить в неблагоприятных условиях («тенелюбивые», «солелюбивые» и т.п.).

Эксплеренты (наполняющие) - виды, способные быстро появляться там, где нарушены коренные сообщества, - на вырубках и гарях (осины), на отмелях и т.д.

Экологические стратегии популяций отличаются большим разнообразием. Но при этом все их многообразие заключено между двумя типами эволюционного отбора, которые обозначаются константами логистического уравнения: r-стратегия и К-стратегия.

Признак r-стратегии K-стратегии
Смертность Не зависит от плотности Зависит от плотности
Конкуренция Слабая Острая
Продолжительность жизни Короткая Долгая
Скорость развития Быстрое Медленное
Сроки размножения Ранние Поздние
Репродуктивное усиление Слабое Большое
Тип кривой выживания Вогнутая Выпуклая
Размер тела Мелкий Крупный
Характер потомства Много, мелкие Мало, крупные
Размер популяций Сильные колебания Постоянный
Предпочитаемая среда Изменчивая Постоянная
Стадии сукцессии Ранние Поздние

Похожая информация.


Еще в 20-х гг. А. Лотка, а несколько позднее независимо от него В.Вольтера предложили математические модели, описывающие сопряженные колебания численности хищника и жертвы.

Модель состоит из двух компонентов:

С – численность хищников; N – численность жертв;

Предположим, что в отсутствии хищников популяция жертвы будет расти экспоненциально: dN/dt = rN. Но жертвы уничтожаются хищниками со скоростью, которая определяется частотой встреч хищника с жертвой, а частота встреч возрастает по мере увеличения численности хищника (С) и жертвы (N). Точное число встреченных и успешно съеденных жертв будет зависеть от эффективности, с которой хищник находит и ловит жертву, т.е. от а’ – «эффективности поиска» или «частоты нападений». Т.о., частота «успешных» встреч хищника с жертвой и, следовательно, скорость поедания жертв будет равна а’СN и в целом: dN/dt = rN – a’CN (1*).

В отсутствии пищи отдельные особи хищника теряют в весе, голодают и гибнут. Предположим, что в рассматриваемой модели численность популяции хищника в отсутствии пищи вследствие голодания будет уменьшаться экспоненциально: dC/dt = - qC, где q – смертность. Гибель компенсируется рождением новых особей со скоростью, которая, как полагают в этой модели, зависит от двух обстоятельств:

1) скорости потребления пищи, a’CN;

2)эффективности (f), с которой эта пища переходит в потомство хищника.

Т.о., рождаемость хищника равна fa’CN и в целом: dC/dt = fa’CN – qC (2*). Уравнения 1* и 2* составляют модель Лотки-Вольтера. Свойства этой модели можно исследовать, построить изоклины линии, соответствующие постоянной численности популяции, с помощью таких изоклин определяют поведение взаимодействующих популяций хищник-жертва.

В случае с популяцией жертвы: dN/dt = 0, rN = a’CN, или C = r/a’. Т.к. r и a’ = const, изоклиной для жертвы будет линия, для которой величина С является постоянной:

При низкой плотности хищника (С), численность жертвы (N) возрастает, наоборот – снижается.

Точно также для хищников (уравнение 2*) при dC/dt = 0, fa’CN = qC, или N = q/fa’, т.е. изоклиной для хищника будет линия, вдоль которой N постоянна: При высокой плотности жертвы, численность популяции хищника растет, а при низкой – снижается.

Их численность претерпевает неограниченные сопряженные колебания. Когда велико число жертв, численность хищников растет, что приводит к увеличению пресса хищников на популяцию жертвы и тем самым к уменьшению ее численности. Это снижение в свою очередь ведет к ограничению хищников в пище и падению их численности, которая вызывает ослабление пресса хищников и увеличение численности жертвы, что снова приводит к росту популяции хищников и т.д.


Популяции неограниченно долго совершают один и тот же цикл колебаний до тех пор, пока какое-либо внешнее воздействие не изменит их численность, после чего популяции совершают новые циклы неограниченных колебаний. На самом деле среда постоянно меняется, и численность популяций будет постоянно смещаться на новый уровень. Чтобы циклы колебаний, которые совершает популяция, были регулярными, они должны быть стабильными: если внешнее воздействие изменяет уровень численности популяций, то они должны стремиться к первоначальному циклу. Такие циклы называются устойчивыми, предельными циклами.

Модель Лотки-Вольтера позволяет показать основную тенденцию в отношениях хищник-жертва, которая выражается в возникновении колебаний численности в популяции жертвы, сопровождающихся колебаниями численности в популяции хищника. Основным механизмом таких колебаний является запаздывание во времени, свойственное последовательности состояния от высокой численности жертв к высокой численности хищников, затем к низкой численности жертв и низкой численности хищников, к высокой численности жертв и т.д.

5) ПОПУЛЯЦИОННЫЕ СТРАТЕГИИ ХИЩНИКА И ЖЕРТВЫ

Взаимоотношения «хищник - жертва» представляют звенья процесса передачи вещества и энергии от фитофагов к зоофагам или от хищников низшего порядка к хищникам высшего порядка. По характеру этих отношений различают три варианта хищников :

а) собиратели . Хищник собирает мелких достаточно многочисленных подвижных жертв. Такой вариант хищничества характерен для многих видов птиц (ржанок, зябликов, коньков и др.), которые затрачивают энергию только на поиск жертв;

б) истинные хищники . Хищник преследует и убивает жертву;

в) пастбищники . Эти хищники используют жертву многократно, например, оводы или слепни.

Стратегия добывания пищи у хищников направлена на обеспечение энергетической эффективности питания: затраты энергии на добывание пищи должны быть меньше энергии, получаемой при ее усвоении.

Истинные хищники делятся на

«жнецов», которые питаются обильными ресурсами (н, планктонные рыбы и даже усатый кит), и «охотников», которые добывают менее обильный корм. В свою очередь

«охотники» делятся на «засадников», подстерегающих добычу (например, щука, ястреб, кошка, жук- богомол), «искателей» (насекомоядные птицы) и «преследователей». Для последней группы поиск пищи не требует больших затрат энергии, но ее нужно много, чтобы овладеть жертвой (львы в саваннах). Впрочем, некоторые хищники могут сочетать элементы стратегии разных вариантов охоты.

Как и при отношениях «фитофаг - растение», ситуация, при которой все жертвы будут съедены хищниками, что в конечном итоге приведет и к их гибели, в природе не наблюдается. Экологическое равновесие между хищниками и жертвами поддерживается специальными механизмами , снижающими риск полного истребления жертв. Так, жертвы могут :

Убегать от хищника. В этом случае в результате адаптаций повышается подвижность и жертв, и хищников, что особенно характерно для степных животных, которым негде прятаться от преследователей;

Приобретать защитную окраску («притворяться» листьями или сучками) или, напротив, яркий цвет, Н.: красный, предупреждающий хищника о горьком вкусе. Общеизвестно изменение окраски зайца в разные времена года, что позволяет ему маскироваться летом в траве, а зимой на фоне белого снега. Адаптивное изменение окраски может происходить в разных стадиях онтогенеза: детеныши тюленей белые (цвет снега), а взрослые особи черные (цвет скалистого побережья);

Распространяться группами, что делает их поиск и промысел для хищника более энергоемким;

Прятаться в укрытия;

Переходить к мерам активной обороны (травоядные, имеющие рога, колючие рыбы), иногда совместной (овцебыки могут занимать «круговую оборону» от волков и т.д.).

В свою очередь хищники развивают не только способность к быстрому преследованию жертв, но и обоняние, позволяющее по запаху определить место нахождения жертвы. Многие виды хищников разрывают норы своих жертв (лисы, волки).

В то же время сами они делают все возможное для того, чтобы не обнаружить своего присутствия. Этим объясняется чистоплотность мелких кошачьих, которые для устранения запаха много времени тратят на туалет и закапывают экскременты. Хищники одевают «маскировочные халаты» (полосатость щук и окуней, делающих их менее заметными в зарослях макрофитов, полосатость тигров и т.д.).

Полной защиты от хищников всех особей в популяциях животных-жертв также не происходит, так как это привело бы не только к гибели голодающих хищников, но в конечном итоге - к катастрофе популяций жертв. В то же время при отсутствии или снижении плотности популяции хищников ухудшается генофонд популяции жертв (сохраняются больные и старые животные) и ввиду резкого увеличения их численности подрывается кормовая база.

По этой причине эффект зависимости численности популяций жертв и хищников - пульсация численности популяции жертвы, за которой с некоторым запаздыванием пульсирует численность популяции хищника («эффект Лотки - Вольтерры») - наблюдается редко.

Между биомассами хищников и жертв устанавливается достаточно устойчивое соотношение. Так, Р. Риклефс приводит данные о том, что соотношение биомасс хищника и жертвы колеблется в пределах 1:150 - 1:300. В разных экосистемах умеренной зоны США на одного волка приходится 300 мелких белохвостых оленей (вес 60 кг), 100 крупных оленей вапити (вес 300 кг) или 30 лосей (вес 350). Такая же закономерность выявлена в саваннах.

При интенсивной эксплуатации популяций фитофагов человек нередко исключает из экосистем хищников (в Великобритании, к примеру, есть косули и олени, но нет волков; в искусственных водоемах, где разводят карпа и другую прудовую рыбу, нет щук). В этом случае роль хищника выполняет сам человек, изымая часть особей популяции фитофага.

Особый вариант хищничества наблюдается у растений и грибов. В царстве растений встречается порядка 500 видов, способных ловить насекомых и частично их переваривать с помощью протеолитических ферментов. Хищные грибы образуют ловчие аппараты в виде маленьких овальных или шаровидных головок, расположенных на коротких веточках мицелия. Однако самый распространенный вид ловушки - клейкие трехмерные сети, состоящие из большого числа колец, образующихся в результате ветвления гиф. Хищные грибы могут ловить достаточно крупных животных, например, круглых червей. После того, как червь запутается в гифах, они прорастают внутрь тела животного и быстро его заполняют.

1.Постоянный и благоприятный уровень температуры и влажности.

2.Обилие пищи.

3.Защита от неблагоприятных факторов.

4.Агрессивный химический состав среды обитания (пищеварительные соки).

1.Наличие двух сред обитания: среда первого порядка - организм хозяина, среда второго порядка - внешняя среда.

Взаимодействие особей в системе «хищник - жертва»

Студента 5 курса 51 А группы

отделения Биоэкологии

Назарова А. А.

Научный руководитель:

Подшивалов А. А.

Оренбург 2011

ВВЕДЕНИЕ

ВВЕДЕНИЕ

В своих ежедневных рассуждениях и наблюдениях мы, сами того не зная, а часто даже не осознавая, руководствуемся законами и идеями, открытыми много десятилетий назад. Рассматривая проблему хищник – жертва, мы догадываемся, что опосредованно жертва тоже влияет на хищника. Чем бы обедал лев, если бы не было антилоп; что бы делали управленцы, если бы не было рабочих; как развивать бизнес, если у покупателей нет средств…

Система «хищник-жертва» - сложная экосистема, для которой реализованы долговременные отношения между видами хищника и жертвы, типичный пример коэволюции. Отношения между хищниками и их жертвами развиваются циклически, являясь иллюстрацией нейтрального равновесия.

Изучение данной формы межвидовых взаимоотношений, помимо получения интересных научных результатов, позволяет решать многие практические задачи:

    оптимизация биотехнических мероприятий как по отношению к видам-жертвам, так и по отношению к хищникам;

    улучшение качества территориальной охраны;

    регуляция прессинга охоты в охотхозяйствах и т. д.

Выше сказанное определяет актуальность выбранной темы.

Целью курсовой работы является изучение взаимодействия особей в системе «хищник - жертва». Для достижения цели поставлены следующие задачи:

    хищничество и его роль в формировании трофических взамоотношений;

    основные модели взаимоотношения «хищник - жертва»;

    влияние общественного образа жизни в стабильности системы «хищник - жертва»;

    лабораторное моделирование системы «хищник - жертва».

Совершенно очевидно влияние хищников на численность жертв и наоборот, однако определить механизм и сущность этого взаимодействия достаточно сложно. Эти вопросы я намерен раскрыть в курсовой работе.

#�������################################################"#5#@#?#8#;#0###��####################+###########��\############### ###############��#���############# Глава 4

ГЛАВА 4. ЛАБОРАТОРНОЕ МОДЕЛИРОВАНИЕ СИСТЕМЫ «ХИЩНИК - ЖЕРТВА»

Ученые университета Дьюка в сотрудничестве с коллегами из Стэндфордского университета, Медицинского института Говарда Хьюза и Калифорнийского технологического института, работающие под руководством доктора Линчона Ю (Lingchong You), разработали живую систему из генетически модифицированных бактерий, которая позволит более детально изучить взаимодействия хищника и жертвы на популяционном уровне.

Новая экспериментальная модель является примером искусственной экосистемы, для создания которой исследователи программируют бактерии на выполнение новых функций. Такие перепрограммированные бактерии могут найти широкое применение в медицине, очистке окружающей среды и создании биокомпьютеров. В рамках данной работы ученые переписали «программное обеспечение» кишечной палочки (Escherichia coli) таким образом, что две разных бактериальных популяции сформировали в лабораторных условиях типичную систему взаимодействий хищник-жертва, особенностью которой являлось то, что бактерии не пожирали друг друга, а управляли численностью популяции-оппонента посредством изменения частоты «самоубийств».

Направление исследований, известное как синтетическая биология, возникло примерно в 2000 году, и в основе большинства созданных с тех пор систем лежит перепрограммирование одной бактерии. Разработанная авторами модель уникальна тем, что он состоит из двух живущих в одной экосистеме бактериальных популяций, выживание которых зависит друг от друга.

Ключевым моментом успешного функционирования такой системы является способность двух популяций взаимодействовать между собой. Авторы создали два штамма бактерий – «хищников» и «травоядных», в зависимости от ситуации высвобождающими в общую экосистему токсичные либо защитные соединения.

Принцип действия системы основан на поддержании соотношения количества хищников и жертв в регулируемой среде. Изменения количества клеток одной из популяций активируют перепрограммированные гены, что запускает синтез определенных химических соединений.

Так, малое количество жертв в среде вызывает активацию гена самоуничтожения в клетках хищника и их гибель. Однако, по мере увеличения численности жертв, высвобождаемое ими в среду соединение достигает критической концентрации и активирует ген хищника, обеспечивающий синтез «антидота» к суицидальному гену. Это ведет к росту популяции хищников, что, в свою очередь, приводит к накоплению в среде синтезируемого хищниками соединения, толкающего жертв на самоубийство.

С помощью флуоресцентной микроскопии ученые документировали взаимодействия между хищниками и жертвами.

Клетки-хищники, окрашенные в зеленый цвет, вызывают самоубийство клеток-жертв, окрашенных красным. Удлинение и разрыв клетки-жертвы свидетельствует о ее гибели.

Эта система не является точным отображением взаимодействий хищник-жертва в природе, т.к. бактерии-хищники не питаются бактериями-жертвами и обе популяции конкурируют за одни и те же пищевые ресурсы. Однако авторы считают, что разработанная ими система является полезным инструментом для биологических исследований.

Новая система демонстрирует четкую взаимосвязь между генетикой и динамикой популяций, что в будущем поможет при изучении влияния молекулярных взаимодействий на популяционные изменения, являющиеся центральной темой экологии. Система предоставляет практически неограниченные возможности изменения переменных для детального изучения взаимодействий между окружающей средой, регуляцией генов и популяционной динамикой.

Таким образом, с помощью управления генетического аппарата бактерии позволяет имитировать процессы развития и взаимодействия более сложных организмов.

ГЛАВА 3

ГЛАВА 3. ВЛИЯНИЕ ОБЩЕСТВЕННОГО ОБРАЗА ЖИЗНИ В СТАБИЛЬНОСТИ СИСТЕМЫ «ХИЩНИК - ЖЕРТВА»

Экологи из США и Канады показали, что групповой образ жизни хищников и их жертв радикально меняет поведение системы «хищник–жертва» и придает ей повышенную устойчивость. В основе данного эффекта, подтвержденного наблюдениями за динамикой численности львов и антилоп гну в парке Серенгети, лежит то простейшее обстоятельство, что при групповом образе жизни снижается частота случайных встреч хищников с потенциальными жертвами.

Экологи разработали целый ряд математических моделей, описывающих поведение системы «хищник–жертва». Эти модели, в частности, хорошо объясняют наблюдающиеся иногда согласованные периодические колебания численности хищников и жертв.


Для подобных моделей обычно характерен высокий уровень неустойчивости. Иными словами, при широком спектре входных параметров (таких как смертность хищников, эффективность превращения биомассы жертв в биомассу хищников и т. п.) в этих моделях рано или поздно все хищники либо вымирают, либо сначала съедают всех жертв, а потом всё равно погибают от голода.

В природных экосистемах, конечно, всё сложнее, чем в математической модели. По-видимому, существует множество факторов, способных повысить устойчивость системы «хищник–жертва», и в реальности дело редко доходит до таких резких скачков численности, как у канадских рысей и зайцев.

Экологи из Канады и США опубликовали в последнем номере журнала «Nature» статью, в которой обратили внимание на один простой и очевидный фактор, который может резко изменить поведение системы «хищник–жертва». Речь идет о групповом образе жизни.

Большинство имеющихся моделей исходят из предположения о равномерном распределении хищников и их жертв в пределах данной территории. На этом основаны расчеты частоты их встреч. Ясно, что чем выше плотность жертв, тем чаще натыкаются на них хищники. От этого зависит число нападений, в том числе успешных, и в конечном счете - интенсивность выедания жертв хищниками. Например, при избытке жертв (если не надо тратить время на поиски), скорость выедания будет ограничиваться только временем, необходимым хищнику для того, чтобы поймать, убить, съесть и переварить очередную жертву. Если добыча попадается редко, главным фактором, определяющим скорость выедания, становится время, необходимое для поисков жертвы.

В экологических моделях, используемых для описания систем «хищник–жертва», ключевую роль играет именно характер зависимости интенсивности выедания (число жертв, съедаемых одним хищником в единицу времени) от плотности популяции жертв. Последняя оценивается как число животных на единицу площади.

Следует обратить внимание, что при групповом образе жизни как жертв, так и хищников исходное допущение о равномерном пространственном распределении животных не выполняется, и поэтому все дальнейшие расчеты становятся неверными. Например, при стадном образе жизни жертв вероятность встречи с хищником фактически будет зависеть не от количества отдельных животных на квадратный километр, а от количества стад на ту же единицу площади. Если бы жертвы были распределены равномерно, хищники натыкались бы на них гораздо чаще, чем при стадном образе жизни, поскольку между стадами образуются обширные пространства, где нет никакой добычи. Сходный результат получается и при групповом образе жизни хищников. Прайд львов, бредущий по саванне, заметит ненамного больше потенциальных жертв, чем заметил бы одинокий лев, идущий тем же путем.

В течение трех лет (с 2003-го по 2007 год) ученые вели тщательные наблюдения за львами и их жертвами (прежде всего антилопами гну) на обширной территории парка Серенгети (Танзания). Плотность популяций фиксировалась ежемесячно; регулярно оценивалась также и интенсивность поедания львами различных видов копытных. И сами львы, и семь основных видов их добычи ведут групповой образ жизни. Авторы ввели в стандартные экологические формулы необходимые поправки, учитывающие это обстоятельство. Параметризация моделей проводилась на основе реальных количественных данных, полученных в ходе наблюдений. Рассматривалось 4 варианта модели: в первом групповой образ жизни хищников и жертв игнорировался, во втором учитывался только для хищников, в третьем - только для жертв, и в четвертом - для тех и других.


Как и следовало ожидать, лучше всего соответствовал реальности четвертый вариант. Он оказался к тому же и самым устойчивым. Это значит, что при широком спектре входных параметров в этой модели оказывается возможным длительное устойчивое сосуществование хищников и жертв. Данные многолетних наблюдений показывают, что в этом отношении модель тоже адекватно отражает реальность. Численности львов и их жертв в парке Серенгети довольно устойчивы, ничего похожего на периодические согласованные колебания (как в случае с рысями и зайцами) не наблюдается.

Полученные результаты показывают, что, если бы львы и антилопы гну жили поодиночке, рост численности жертв приводил бы к стремительному ускорению их выедания хищниками. Благодаря групповому образу жизни этого не происходит, активность хищников возрастает сравнительно медленно, и общий уровень выедания остается низким. По мнению авторов, подкрепленному рядом косвенных свидетельств, численность жертв в парке Серенгети лимитируется вовсе не львами, а кормовыми ресурсами.

Если выгоды коллективизма для жертв вполне очевидны, то в отношении львов вопрос остается открытым. Данное исследование наглядно показало, что групповой образ жизни для хищника имеет серьезный недостаток - по сути дела, из-за него каждому отдельному льву достается меньше добычи. Очевидно, что этот недостаток должен компенсироваться какими-то очень весомыми преимуществами. Традиционно считалось, что общественный образ жизни львов связан с охотой на крупных животных, с которыми трудно справиться в одиночку даже льву. Однако в последнее время многие специалисты (и в том числе авторы обсуждаемой статьи) стали сомневаться в правильности этого объяснения. По их мнению, коллективные действия необходимы львам только при охоте на буйволов, а с другими видами добычи львы предпочитают расправляться в одиночку.

Более правдоподобным выглядит предположение, что прайды нужны для регулирования чисто внутренних проблем, которых немало в львиной жизни. Например, у них распространен инфантицид - убийство самцами чужих детенышей. Самкам, держащимся группой, легче защищать своих детей от агрессоров. Кроме того, прайду гораздо легче, чем льву-одиночке, оборонять свой охотничий участок от соседних прайдов.

Источник : John M. Fryxell, Anna Mosser, Anthony R. E. Sinclair, Craig Packer. Group formation stabilizes predator–prey dynamics // Nature . 2007. V. 449. P. 1041–1043.

  1. Имитационное моделирование системы "Хищник -Жертва"

    Реферат >> Экономико-математическое моделирование

    ... системы «Хищник -Жертва» Выполнил Гизятуллин Р.Р гр.МП-30 Проверил Лисовец Ю.П МОСКВА 2007г. Введение Взаимодействие ... модель взаимодействия хищников и жертв на плоскости. Упрощающие предположения. Попробуем сопоставить жертве и хищнику некоторый...

  2. Хищник -Жертва

    Реферат >> Экология

    Приложения математической экологии является система хищник -жертва . Цикличность поведения этой системы в стационарной среде была... с помощью введения дополнительного нелинейного взаимодействия между хищником и жертвой . Полученая модель имеет на своей...

  3. Конспект экология

    Реферат >> Экология

    Фактором для жертвы . Поэтому взаимодействие «хищник жертва» носит периодический характер и описывается системой уравнений Лотки... сдвиг значительно меньше, чем в системе «хищник жертва» . Подобные взаимодействия наблюдаются и при бэтсовской мимикрии. ...

← Вернуться

×
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:
Я уже подписан на сообщество «sinkovskoe.ru»