Характеристика процесса горения. Виды химических реакций

Подписаться
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:

Горение

Горе́ние - сложный физико-химический процесс превращения компонентов горючей смеси в продукты сгорания с выделением теплового излучения, света и лучистой энергии. Описать природу горения можно как бурно идущее окисление .

Дозвуковое горение (дефлаграция) в отличие от взрыва и детонации протекает с низкими скоростями и не связано с образованием ударной волны . К дозвуковому горению относят нормальное ламинарное и турбулентное распространения пламени, к сверхзвуковому - детонацию .

Горение подразделяется на тепловое и цепное . В основе теплового горения лежит химическая реакция, способная протекать с прогрессирующим самоускорением вследствие накопления выделяющегося тепла. Цепное горение встречается в случаях некоторых газофазных реакций при низких давлениях .

Условия термического самоускорения могут быть обеспечены для всех реакций с достаточно большими тепловыми эффектами и энергиями активации .
Горение может начаться самопроизвольно в результате самовоспламенения либо быть инициированным зажиганием. При фиксированных внешних условиях непрерывное горение может протекать в стационарном режиме , когда основные характеристики процесса - скорость реакции , мощность тепловыделения, температура и состав продуктов - не изменяются во времени, либо в периодическом режиме , когда эти характеристики колеблются около своих средних значений. Вследствие сильной нелинейной зависимости скорости реакции от температуры, горение отличается высокой чувствительностью к внешним условиям. Это же свойство горения обусловливает существование нескольких стационарных режимов при одних и тех же условиях (гистерезисный эффект).

Процесс возникновения горения подразделяется на несколько видов: вспышка, возгорание, воспламенение, самовозгорание, самовоспламенение, взрыв и детонация. Кроме того, существуют и особые виды горения: тление и холоднопламенное горение. Вспышка - процесс мгновенного сгорания паров легковоспламеняющихся и горючих жидкостей, вызванный непосредственным воздействием источника воспламенения. Возгорание - явление возникновения горения под действием источника зажигания. Воспламенение - возгорание, сопровождающееся появлением пламени. При этом вся остальная масса горючего вещества остается относительно холодной. Самовозгорание - явление резкого увеличения скорости экзотермических реакций в веществе, приводящее к возникновению горения при отсутствии источника зажигания. Самовоспламенение - это самовозгорание, сопровождающееся появлением пламени. В производственных условиях могут самовозгораться древесные опилки, промасленная ветошь. Самовоспламеняться может бензин, керосин. Взрыв - быстрое химическое превращение вещества (взрывное горение), сопровождающееся выделением энергии и образованием сжатых газов, способных производить механическую работу.

Беспламенное горение

В отличие от обычного горения, когда наблюдаются зоны окислительного пламени и восстановительного пламени , возможно создание условий для беспламенного горения. Примером может служить каталитическое окисление органических веществ на поверхности подходящего катализатора , например, окисление этанола на платиновой черни .

Твердофазное горение

Это автоволновые экзотермические процессы в смесях неорганических и органических порошков, не сопровождающиеся заметным газовыделением, и приводящие к получению исключительно конденсированных продуктов. В качестве промежуточных веществ, обеспечивающих массо-перенос, образуются газовые и жидкие фазы, не покидающие, однако, горящую систему. Известны примеры реагирующих порошков, в которых образование таких фаз не доказано (тантал-углерод).

Как синонимы используются тривиальные термины «безгазовое горение» и «твердопламенное горение».

Примером таких процессов служит СВС (самораспространяющийся высокотемпературный синтез) в неорганических и органических смесях.

Тление

Вид горения, при котором пламя не образуется, а зона горения медленно распространяется по материалу. Тление обычно наблюдается у пористых или волокнистых материалов с высоким содержанием воздуха или пропитанных окислителями .

Автогенное горение

Самоподдерживающиеся горение. Термин используется в технологиях сжигания отходов . Возможность автогенного (самоподдерживающегося) горения отходов определяется предельным содержанием балластирующих компонентов: влаги и золы. На основе многолетних исследований шведский учёный Таннер предложил для определения границ автогенного горения использовать треугольник-схему с предельными значениями: горючих более 25 %, влаги менее 50 %, золы менее 60 %.

См. также

Примечания

Ссылки


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Горение" в других словарях:

    Физико химический процесс, при котором превращение вещества сопровождается интенсивным выделением энергии и тепло и массообменом с окружающей средой. Горение может начаться самопроизвольно в результате самовоспламенения либо быть инициированным… … Большой Энциклопедический словарь

    ГОРЕНИЕ, горения, мн. нет, ср. (книжн.). Действие и состояние по гл. гореть. Горение газа. Душевное горение. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    Блеск, переливы, энтузиазм, сияние, игра, взлет, душевный подъем, подъем духа, сверкание, блистание, одержимость, огонь, страсть, огонек, воодушевление, поблескивание, вдохновение, увлеченность, живинка, увлечение, сгорание, подъем Словарь… … Словарь синонимов

    Горение - ГОРЕНИЕ, химическое превращение, которое сопровождается интенсивным выделением тепла и тепло и массообменом с окружающей средой. Может начаться самопроизвольно (самовозгорание) или в результате зажигания. Характерное свойство горения способность… … Иллюстрированный энциклопедический словарь

    Сложная хим. реакция, протекающая в условиях прогрессивного самоускорения, связанного с накоплением в системе теплоты или катализирующих продуктов реакции. При Г. могут достигаться высокие (до неск. тыс. К) темп ры, причём часто возникает… … Физическая энциклопедия

    Физико химический процесс, при котором превращение вещества сопровождается интенсивным выделением энергии и тепло массообменом с окружающей средой. может начаться самопроизвольно в результате самовоспламенения либо может быть инициировано… … Словарь черезвычайных ситуаций

Оригинальный документ ?

ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ ПРОЦЕССОВ ГОРЕНИЯ

Химические процессы при горении. Природа горючих веществ. Лекция 3

Пожаровзрывоопасностъ веществ и материалов - это совокупность свойств, характеризующих их способность к возникновению и распростране­нию горения.

Следствием горения в зависимости от его скорости и условий протека­ния может быть пожар или взрыв.

Пожаровзрывоопасность веществ и материалов характеризуется пока­зателями, выбор которых зависит от агрегатного состояния вещества (мате­риала) и условий его применения.

При определении пожаровзрывоопасности веществ и материалов раз­личают следующие агрегатные состояния:

газы - вещества, давление насыщенных паров которых при нормаль­ных условиях (25°С и 101325 Па) превышает 101325 Па;

жидкости - вещества, давление насыщенных паров которых при нор­мальных условиях (25°С и 101325 Па) меньше 101325 Па. К жидкостям отно­сятся также твердые плавящиеся вещества, температура плавления или каплепадения которых ниже 50°С ;

твердые вещества и материалы - индивидуальные вещества и их сме­совые композиции с температурой плавления каплепадения выше 50°С , а также вещества, не имеющие температуру плавления (например, древесина, ткани, торф;

пыли - диспергированные вещества и материалы с размером частиц менее 850 мкм.

Горение как химическая реакция окисления веществ с участием кислорода

Горение - один из первых сложных физико-химических процессов, с которым человек встретился еще на заре своего развития. Процесс, овладев которым, он получил огромное превосходство над окружающими его живы­ми существами и силами природы.

Горение - одна из форм получения и преобразования энергии, основа многих технологических процессов производства. Поэтому человек постоян­но изучает и познает процессы горения.

История науки о горении начинается с открытия М.В. Ломоносова: "Горение есть соединение вещества с воздухом". Это открытие послужило основанием для открытия закона сохранения массы веществ пр и их физических и химических превращениях. Лавуазье уточнил определение процесса горения "Горение есть соединение вещества не с воздухом, а с кислородом воздуха".

В дальнейшем существенный вклад в изучение и развитие науки горении внесли советские и российские ученые А.В. Михельсон , Н.Н. Семенов, Я.В. Зельдовия , Ю.Б. Харитон, И.В. Блинов и др.

В основе процесса горения лежат экзотермические окислительно-восстановительные реакции, которые подчиняются законам химической кинетики, химической термодинамики и другим фундаментальным законам (закону сохранения массы, энергии и т.д.).

Горением называется сложный физико-химический процесс, при котором горючие вещества и материалы под воздействием высоких температур вступают в химическое взаимодействие с окислителем (кислоро­дом воздуха), превращаясь в продукты горения, и который сопровождается интенсивным выделением тепла и световым свечением.

В основе процесса горения лежит химическая реакция окисления, т.е. соединения исходных горючих веществ с кислородом. В уравнениях химиче­ских реакций горения учитывают и азот, который содержится в воздухе, хотя в реакциях горения не участвует. Состав воздуха условно принимают посто­янным , содержащим 21 % по объему кислорода и 79 % азота (в весовых со­ответственно 23 % и 77 % азота), т.е. на 1 объем кислорода приходится 3.76 объема азота. Или на 1 моль кислорода приходится 3.76 моль азота. Тогда, например, реакцию горения метана в воздухе можно записать так:

СН 4 + 2О 2 + 2 ´ 3.76 N 2 = СО 2 + 2Н 2 О + 2 ´ 3.76 N 2

Азот в уравнениях химических реакций учитывать необходимо потому, что он поглощает часть тепла, выделяемого в результате реакций горения, и вхо­дит в состав продуктов горения - дымовых газов.

Рассмотрим процессы окисления.

Окисление водорода осуществляется по реакции:

Н 2 + 0.5О 2 = Н 2 О.

Экспериментальные данные о реакции между водородом и кислородом много­численны и разнообразны. В любом реальном (высокотемпературном) пла­мени в смеси водорода и кислорода, возможно образование радикала * ОН или атомов водорода Н и кислорода О , которые инициируют окисление во­дорода до паров воды.

Горение углерода . Углерод, образующийся в пламенах , может быть газооб­разным, жидким или твердым. Его окисление независимо от агрегатного со­стояния происходит за счет взаимодействия с кислородом. Горение может быть полным или неполным, что определяется содержанием кислорода:

С + О 2 = СО 2 (полное) 2С + О 2 = 2СО (неполное)

Гомогенный механизм не исследован (углерод в газообразном состоянии). Взаимодействие углерода в твер­дом состоянии наиболее изучено. Этот процесс схематически можно пред­ставить из следующих этапов:

1. доставка окислителя (О 2 ) к поверхности раздела фаз путем молекулярной и конвективной диффузии;

2. физическая адсорбция молекул окислителя;

3. взаимодействие адсорбированного окислителя с поверхностными атомами углерода и образование продуктов реакции;

4.десорбция продуктов реакции в газовую фазу.

Горение окиси углерода . Суммарная реакция горения окиси углерода запишется СО + 0.5О 2 = СО 2 , хотя окисление монооксида углерода имеет более сложный механизм Основные закономерности горения окиси углерода можно объяснить на ос­новании механизма горения водорода, включая в него реакции взаимодейст­вия окиси углерода с образующимся в системе гидрооксидом и атомным ки­слородом, т.е. процесс этот многостадийный:

* ОН + СО = СО 2 + Н;О + СО = СО 2

Прямая реакция СО + О 2 -> СО 2 маловероятна, так как реальные сухие смеси СО и О 2 характеризуются чрезвычайно низкими скоростями горения или не могут воспламениться вообще.

Окисление простейших углеводородо в. Метан горит с образованием диоксида углерода и паров воды:

СН 4 + О 2 = СО 2 + 2Н 2 О.

Но этот процесс на самом деле включает в себя целый ряд реакций, в которых участвуют моле­кулярные частицы с высокой химической активностью (атомы и свободные радикалы): * СН 3 , * Н, * ОН. Хотя эти атомы и радикалы существуют в пламени короткое время, они обеспечивают быстрый расход горючего. В процессе го­рения природного газа возникают комплексы углерода, водорода и кислоро­да, а также комплексы углерода и кислорода, при разрушении которых обра­зуются СО, СО 2 , Н 2 О. Предположительно схему горения метана можно запи­сать так:

СН 4 → С 2 Н 4 →С 2 Н 2 →углеродистые продукты+О 2 → C x U y O z CO , СО 2 ,Н 2 О.

Термическое разложение, пиролиз твердых веществ

При повышении температуры твердого горючего материала происхо­дит разрыв химических связей с образованием более простых компонентов (твердых, жидких, газообразных). Этот процесс называется термическим раз­ложением или пиролизом . Термическое разложение молекул органических соединений происходит в пламени, т.е. при повышенных температурах вбли­зи поверхности горения. Закономерности разложения зависят не только от горючего, но и от температуры пиролиза, скорости ее изменения, размеров образца, его формы, степени распада и т.д.

Рассмотрим процесс пиролиза на примере наиболее распространенного твердого горючего материала - древесины.

Древесина представляет собой смесь большого количества веществ различного строения и свойств. Основными ее компонентами являются гемицеллюлоза (25 %), целлюлоза (50 %), лигнин (25 %). Гемицеллюлоза со­стоит из смеси пентазанов (С 5 Н 8 О 4), гексазанов (С 6 Н 10 О 5), полиуронидов . Лигнин имеет ароматическую природу и содержит связанные с ароматиче­скими кольцами углеводы. В среднем древесина содержит 50 % С , 6 % Н, 44 % О. Это пористый материал, объем пор в котором достигает 50 - 75 %. Наи­менее термостойким компонентом древесины является гемицеллюлоза (220 - 250°С), наиболее термостойким компонентом - лигнин (интенсивное его разложение наблюдается при температуре 350 - 450°С). Итак, разложение древесины состоит из следующих процессов:

пп

Температура,°С

Характеристика процессов

до 120 - 150

сушка, удаление физически связанной воды

150 - 180

Разложение наименее стойких компонентов (лумино-вых кислот) с выделением СО 2 , Н 2 О

250 - 300

пиролиз древесины с выделением СО, СН 4 , Н 2 , СО 2 , Н 2 О и т.д.; образующаяся смесь способна воспламе­няться от источника зажигания

350 - 450

Интенсивный пиролиз с выделением основной массы горючих веществ (до 40 % от всей массы); газообраз­ная смесь состоит из 25 % Н 2 и 40 % предельных и ненасыщенных углеводородов; обеспечивается мак­симальная поставка летучих компонентов в зону пла­мени; процесс на этой стадии экзотермический; коли­чество тепла, которое выделяется, достигает 5 - 6 % от низшей теплоты сгорания Q ≈ 15000 кДж/кг

500 - 550

Скорость термического разложения резко снижается; выход летучих компонентов прекращается (конец пи­ролиза); при 600 °С выделение газообразных продук­тов прекращается

Аналогично древесине протекает пиролиз каменного угля, торфа. Од­нако выход летучих у них наблюдается при других температурах. Каменный уголь состоит их более твердых термостойких углеродсодержащих компо­нентов, и разложение его протекает менее интенсивно и при более высоких температурах (рис.1).

Горение металлов

По характеру горения металлы делятся на две группы: летучие и неле­тучие. Летучие металлы имеют Т пл . < 1000 K и Т кип . < 1500 K . К ним относятся щелочные металлы (литий, натрий, калий) и щелочноземельные (магний, кальций). Горение металлов осуществляется следующим образом: 4 Li + О 2 = 2 Li 2 O . Нелетучие металлы имеют Т пл . > 1000 K и Т кип . > 2500 K .

Механизм горения во многом определяется свойствами оксида металла. Температура летучих металлов ниже температуры плавления их оксидов. При этом последние представляют собой достаточно пористые образования. При поднесении искры зажигания к поверхности металла происходит его испарение и окисление.

При достижении концентрации паров, равной нижнему концентрационному пределу воспламенения, происходит их воспламенение. Зона диффузионного горения устанавливается у поверхности, большая доля тепла передается металлу, и он нагревается до температуры кипения.

Образующиеся пары, свободно диффундируя через пористую оксидную пленку, поступают в зону горения. Кипение металла вызывает периодическое разрушение оксидной пленки, что интенсифицирует горение. Продукты горения (оксиды металлов) диффундируют не только к поверхности металла, способствуя образованию корки оксида металла, но и в окружающее пространство, где, конденсируясь, образуют твердые частицы в виде белого дыма. Образование белого плотного дыма является визуальным признаком горения летучих металлов.

У нелетучих металлов, обладающих высокими температурами фазово­го перехода, при горении на поверхности образуется весьма плотная оксидная пленка, которая хорошо сцепляется с поверхностью металла. В результате этого скорость диффузии паров металла через пленку резко снижается и крупные частицы, например, алюминия или бериллия, гореть не способны. Как правило, пожары таких металлов имеют место в том случае, когда они вводятся в виде стружки, порошков, аэрозолей. Их горение происходит без образования плотного дыма. Образование плотной оксидной пленки на поверхности металла приводит к взрыву частицы. Это явление особенно, часто наблюдающееся при движении частицы в высокотемпера­турной окислительной среде, связывают с накоплением паров металлов под оксидной пленкой с последующим внезапным ее взрывом. Это естественно приводит к резкой интенсификации горения.

Горение пылей

Пыль - это дисперсная система, состоящая из газообразной дисперсной среды (воздух) и твердой фазы (мука, сахар, древесина, уголь и т.д.).

Распространение пламени по пыли происходит за счет прогрева холодной смеси лучистым потоком от фронта пламени. Твердые частицы, поглощая тепло от лучистого потока, нагреваются, разлагаются с выделением горючих продуктов, которые образуют горючие смеси с воздухом.

Аэрозоль, имеющая очень мелкие частицы, при воспламенении быстро сгорает в зоне воздействия источника зажигания. Однако толщина зоны пламени настолько мала, что интенсивность его излучения оказывается недостаточной для разложения частиц, и стационарного распространения пламени по таким частицам не происходит.

Аэрозоль, содержащая крупные частицы, также неспособна к стационарному горению. С увеличением размера частиц снижается удельная поверхность теплообмена, и возрастает время их прогрева до температуры разложения.

Если время образования горючей паровоздушной смеси перед фронтом пламени за счет разложения частичек твердого материала больше времени существования фронта пламени, то горение происходить не будет.

Факторы, влияющие на скорость распространения пламени по пылевоздушным смесям:

1. концентрация пыли (максимальная скорость распространения пламени имеет место для смесей несколько выше стехиометрического состава, например, для торфяной пыли при концентрации 1 - 1.5 кг/м 3);

2.зольность (при увеличении зольности уменьшается концентрация горючего компонента и уменьшается скорость распространения пламени);

Классификация пыли по взрывопожарной опасности:

I класс - наиболее взрывоопасная пыль (концентрация до 15 г/м 3);

II класс - взрывоопасная до 15-65 г/м 3

III класс - наиболее пожароопасная > 65 г/м 3 Т св ≤ 250°С;

IV класс - пожароопасная > 65 г/м 3 Т св > 250°С.

Бескислородное горение

Существует ряд веществ, которые при повышении их температуры выше определенного уровня претерпевают химическое разложение, приводя­щее к свечению газа, едва отличимому от пламени. Пороха и некоторые синтетические материалы могут гореть без доступа воздуха или в нейтральной среде (в чистом азоте).

Горение целлюлозы (звено - С 6 Н 7 О 2 (ОН) 3 - ) можно представить в виде внут­ренней окислительно-восстановительной реакции в молекуле, содержащей атомы кислорода, которые могут реагировать с углеродом и водородом целлюлозного звена.

Пожар, в котором участвует нитрат аммония, может поддерживаться без подвода кислорода. Эти пожары вероятны при большом содержании нит­рата аммония (около 2000 т) в присутствии органического вещества, в част­ности, бумажных пакетов или упаковочных мешков.

В качестве примера можно привести аварию в 1947 г. Судно “ Grandcamp ” назодилось в порту Техас-Сити с грузом около 2800 т нитрата аммония. Пожар возник в грузовом отсеке с нитратом аммония, упакованном в бумажные мешки. Капитан судна принял решение не гасить огонь водой, чтобы не испортить груз, и пытался ликвидировать пожар, задраив палубные люки и впуская пар в грузовой отсек. Такие меры способствуют ухудшению ситуации, усиливая пожар без доступа воздуха, поскольку происходит подогрев нитрата аммония. Пожар начался в 8 часов утра, а в 9 час. 15 мин.п роизошел взрыв. В результате погибло более 200 человек, столпившихся в порту и наблюдавших за пожаром, в том числе команда судна и экипаж двух самолетов из 4 человек, облетавших судно.

В 13 час 10 мин следующего дня на другом судне, транспортировавшем нитрат аммония и серу, которое загорелось от первого судна накануне, также произошел взрыв.

Маршалл описывает пожар, возникший вблизи Франкфурта в 1961 г. Самопроизвольное термическое разложение, вызванное лентой транспортера, привело к загоранию 8.. т удобрений, треть этого количества составлял нитрат аммония, а остальное - инертные вещества, используемые в качестве удобрений. Пожар продолжался 12 часов. В результате пожара выделялось большое количество ядовитых газов, в состав которых входил азот.

Горение – это химическая реакция окисления горючего с кислородом, протекающая сравнительно быстро во времени с выделением большого количества теплоты.

В процессе горения продукты сгорания нагреваются до высоких температур.

Общее уравнение горения любого углеводородного газа с кислородом имеет следующий вид:

где m и n – соответственно количество атомов углерода и водорода в молекуле

Q – тепловой эффект реакции окисления.

В таблице 3.1приведены реакции горения основных горючих газов с кислородом.

Реакции горения горючих газов с кислородом

Таблица 3.1

В таблице 3.1приведены реакции окисления наиболее известных горючих газов с кислородом. Однако в реальных условиях окислитель (кислород) подается в зону горения не чистом виде, а в составе воздуха. Известно, что воздух, в основном состоит из двух частей: кислорода и азота. В состав воздуха входит также в незначительном количестве двуокись углерода СО 2 , а также редкие газы. Учитывая их незначительное количество в составе воздуха, то ими пренебрегаем.

Таким образом, если мы примем объем воздуха за 100%, то содержание кислорода составит 21%, а азота 79%. Следовательно, на 1 м 3 кислорода воздуха приходиться 79/21 = 3.76 м 3 азота, или 1 м 3 кислорода содержится в 100/21 = 4.76 м 3 воздуха.

Учитывая выше изложенные соотношения, мы можем записать общее уравнение горения углеводородов с воздухом:

В таблице 3.2 приведены уравнения реакции горения горючих газов с воздухом.

Следует отметить, что приведенные в таблицах 3.1 и 3.2 уравнения являются стехиометрическими, т.е. такое соотношение горючего газа и окислителя (кислорода, воздуха), при котором горючему газу подается теоретически необходимое количество окислителя. Однако в практике сжигания газа в реальных условиях приходится подавать в зону несколько больше окислителя, чем это следует из стехиометрических уравнений. Это связано, главным образом с несовершенством качества перемешивания горючего газа и окислителя.

Уравнения реакций горения горючих газов с воздухом

Таблица 3.2

Отношение действительного расхода окислителя (кислорода или воздуха) к теоретически необходимому называется коэффициентом избытка воздуха и обозначается α , т.е.:

где V д – действительный расход воздуха;

V т – теоретически необходимое количество воздуха.

В таблице 3.3 приведены значения теоретически необходимого количества окислителя (кислорода и воздуха), а также объема продуктов сгорания при сжигании 1 м 3 газа и коэффициенте избытка воздуха равном 1 (a = 1).

Теоретически необходимое количество окислителя и объем продуктов сгорания при сжигании 1м 3 при α = 1


Таблица 3.3

В практических расчетах иногда нам не известен химический состав газов, а известна лишь теплота сгорания. Необходимо определить теоретически необходимое количество воздуха, необходимое для полного сжигания 1 м 3 газа.

Для этого случая имеется эмпирическая формула Д.И. Менделеева:

где Q н – низшая теплота сгорания газа, кДж /м 3 .

Уравнения реакций горения различных газов с кислородом и воздухом отражает лишь соотношение между горючим и окислителем, а не объясняют механизма протекания этих реакций. В реальных условиях процесс горения значительно сложнее.

Разработал современную теорию механизма кинетики реакции горения газов советский ученый, академик Н.Н. Семенов . Согласно его теории в пламени газовоздушной смеси протекают цепные реакции горения газов. В результате чего образуются промежуточные нестойкие продукты в виде свободных атомов радикалов. В соответствии с теорией Н.Н. Семенова реакция горения водорода с кислородом не сводится просто к соединению двух молекул водорода и одной кислорода с образованием двух молекул воды. В ходе взаимодействия этих двух газов сначала происходит образование промежуточных веществ в виде атомов водорода и кислорода, а также происходит образование свободных гидроксильных радикалов ОН.

Для начала процесса горения необходимо каким-то образом активизировать горючую смесь. Иными словами необходимо создать такие условия, при которых реагенты будут обладать большим запасом энергии. Этот запас энергии необходим для реализации процесса горения. Указанный выше запас энергии может быть создан подогревом газовоздушной смеси до температуры ее воспламенения. Эта энергия, называемая энергией активации, необходима главным образом для того, чтобы разрушить имеющиеся межмолекулярные связи в реагентах.

В процессе горения происходит непрерывное образование новых связей наряду с разрушением старых. При образовании новых связей происходит значительное выделение энергии, в то время как разрыв старых связей сопровождается всегда затратами энергии. Благодаря тому, что в процессе горения энергия, которая выделяется при образовании новых связей, имеет большое значение, по сравнению с энергией, затраченной на разрыв старых связей, суммарный тепловой эффект остается положительным.

Реакция водорода с кислородом является наиболее простой и изученной. Поэтому рассмотрим эту разветвленную реакцию на примере.

В соответствии с теорией Н.Н. Семенова в начальный момент реакции, в результате энергии активации и столкновения молекул водорода и кислорода, происходит образование двух гидроксильных радикалов ОН:

. (3.5)

Свободный же атом водорода Н, в свою очередь, вступает в реакцию с молекулой кислорода. В результате чего образуется гидроксильный радикал ОН и свободный атом кислорода т.е.:

. (3.7)

Радикал может опять вступить в химическую реакцию с водородом и опять, в результате реакции, образовать воду и свободный водород, а атом кислорода, в свою очередь, может вступить в реакцию с молекулой водорода, что приведет к образованию еще одного радикала ОН и атома водород Н, т.е.:

. (3.8)

Указанный выше механизм цепной реакции горения водорода с кислородом показывает возможность многократного взаимодействия одного радикала ОН с атомами водорода. В результате этого взаимодействия образуются молекулы воды.

Следовательно, свободные атомы и радикалы являются активными центрами при создании цепной реакции.

Реакцию горения водорода с кислородом, объясняющую механизм цепной реакции, можно записать так:

H 2 O O + (H 2)…

OH + (H 2) ® H +(O 2) ® OH + (H 2)…

O + (H 2) ® OH +(H 2) ® H 2 O

H +(O 2) ® OH +H 2 …

Механизм горения окиси углерода с кислородом отличается большей сложностью. По данным ученых Института Химической физики АН СССР окись углерода не вступает в реакцию с сухим кислородом. Ими было установлено также, что добавление в смесь небольшого количества водорода или влаги приводит к началу реакции окисления. В результате происходит следующая последовательность химических реакций:

H 2 O ® OH + H; (3.10)

OH + CO ® CO 2 + H; (3.11)

H + O 2 ® OH + O; (3.12)

CO + OH ® CO 2 + H; (3.13)

CO + O ® CO 2 ; (3.14)

H + O 2 = OH + O (3.15)

Как следует из приведенных химических реакций, наличие небольшого количества влаги приводит к образованию в зоне горения гидроксилов и свободных атомов. Как было отмечено ранее и гидроксильные радикалы, и свободные атомы являются инициаторами создания и носителями цепной реакции.

Еще более сложный механизм окисления углеводородов. Наряду с некоторым сходством с механизмом горения водорода и окиси углерода, механизм горения углеводородов имеет и ряд существенных отличий. Анализируя продукты сгорания, было установлено, что в них присутствуют альдегиды и главным образом формальдегид (НСНО).

Рассмотрим механизм окисления углеводородов на примере самого простого из них – метана. Механизм окисления метана проходит четыре стадии, на каждой из которых протекают следующие химические реакции:

На первой стадии:

H + O 2 ® OH + O; (3.16)

CH 4 + OH ® CH 3 + H 2 O; (3.17)

CH 4 + O ® CH 2 + H 2 O. (3.18)

На второй стадии:

CH 3 + O 2 ® HCHO + OH; (3.19)

CH 2 + O 2 ® HCHO + O; (3.20)

На третьей стадии:

HCHO + OH ® HCO + H 2 O (3.21)

HCHO + O ®СО + H 2 O; (3.22)

HCO+ O 2 ® CO + O + OH (3.23).

На четвертой стадии:

CO + O ® CO 2 (3.24)

Дата публикации 10.02.2013 20:58

Горением называется реакция окисления, протекающая с высокой скоростью, которая сопровождается выделением тепла в большом количестве и, как правило, ярким свечением, которое мы называем пламенем. Процесс горения изучает физическая химия, в которой к горению принято относить все экзотермические процессы, имеющие самоускоряющуюся реакцию. Такое самоускорение может происходить из-за повышения температуры (т. е. иметь тепловой механизм) или накопления активных частиц (иметь диффузионную природу).

Реакция горения имеет наглядную особенность - наличие высокотемпературной области (пламени), ограниченной пространственно, где и происходит большая часть преобразования исходных веществ (топлива) в продукты сгорания. Данный процесс сопровождается выбросом большого количества тепловой энергии. Для начала реакции (появления пламени) требуется затратить некоторое количество энергии на поджигание, затем процесс идет самопроизвольно. Его скорость зависит от химических свойств веществ, участвующих в реакции, а также от газодинамических процессов при сгорании. Реакция горения имеет определенные характеристики, важнейшие из которых - теплотворная способность смеси и та температура (называемая адиабатической), которая теоретически могла бы достигаться при полном сгорании без учета теплопотерь.

По агрегатному состоянию окислителя и горючего процесс сгорания может быть отнесен к одному из трех типов. Реакция горения может быть:

Гомогенной, если горючее и окислитель (предварительно смешанные) находятся в газообразном состоянии,

Гетерогенной, при которой твердое или жидкое горючее вступает во взаимодействие с газообразным окислителем,

Реакцией горения порохов и взрывчатых веществ.

Гомогенное горение является наиболее простым, имеет постоянную скорость, зависящую от состава и молекулярной теплопроводности смеси, температуры и давления.

Гетерогенное горение наиболее распространено как в природе, так и в искусственных условиях. Скорость его зависит от конкретных условий процесса сжигания и от физических характеристик ингредиентов. У жидких горючих на скорость сгорания большое влияние оказывает скорость испарения, у твердых - скорость газификации. Например, при сгорании угля процесс образует две стадии. На первой из них (в случае сравнительно медленного нагрева) выделяются летучие компоненты вещества (угля), на второй догорает коксовый остаток.

Горение газов (например, горение этана) имеет свои особенности. В газовой среде пламя может распространяться на обширное расстояние. Оно может двигаться по газу с дозвуковой скоростью, причем данное свойство присуще не только газовой среде, но и мелкодисперсной смеси жидких и твердых горючих частиц, смешанной с окислителем. Для обеспечения устойчивого горения в таких случаях требуется специальная конструкция устройства топки.

Последствия, которые вызывает реакция горения в газовой среде, бывают двух видов. Первый - это турбулизация газового потока, приводящая к резкому увеличению скорости процесса. Возникающие при этом акустические возмущения потока могут привести к следующей стадии - зарождению ударной волны, ведущей к детонации смеси. Переход горения в стадию детонации зависит не только от собственных свойств газа, но и от размеров системы и параметров распространения.

Сгорание топлива используется в технике и промышленности. Основной задачей при этом является достижение максимальной полноты сгорания (т.е. оптимизация тепловыделения) за заданный промежуток. Используется горение, например, в горном деле - методы разработки различных полезных ископаемых основаны на использовании горючего процесса. Но в определенных природных и геологических условиях явление горения может стать фактором, несущим серьезную опасность. Реальную опасность, например, представляет процесс самовозгорания торфа, приводящий к возникновению эндогенных пожаров.

Горение - быстропротекающая химическая реакция соединения горючих компонентов с кислородом, сопровождающаяся интенсивным выделением теплоты и резким повышением температуры продуктов сгорания. Реакции горения описываются т.н. стехиометрическими уравнениями, характеризующими качественно и количественно вступающие в реакцию и образующиеся в результате ее вещества(Стехиометрический состав горючей смеси (от греч. stoicheion - основа, элемент и греч. metreo - измеряю) - состав смеси, в которой окислителя ровно столько, сколько необходимо для полного окисления топлива ). Общее уравнение реакции горения любого углеводорода

C m H n + (m + n/4) O 2 = mCO 2 + (n/2) Н 2 O + Q (8.1)

Где m, n - число атомов углерода и водорода в молекуле; Q - тепловой эффект реакции, или теплота сгорания.
Реакции горения некоторых газов приведены в табл. 8.1. Эти уравнения являются балансовыми, и по ним нельзя судить ни о скорости реакций, ни о механизме химических превращений.

Тепловой эффект (теплота сгорания) Q - количество теплоты, выделяющееся при полном сгорании 1 кмоля, 1 кг или 1 м 3 газа при нормальных физических условиях. Различают высшую Q в и низшую Q н теплоту сгорания: высшая теплота сгорания включает в себя теплоту конденсации водяных паров в процессе горения (в реальности при сжигании газа водяные пары не конденсируются, а удаляются вместе с другими продуктами сгорания). Обычно технические расчеты обычно ведут по низшей теплоте сгорания, без учета теплоты конденсации водяных паров (около 2400 кДж/кг).

КПД, рассчитанный по низшей теплоте сгорания, формально выше, но теплота конденсации водяных паров достаточно велика, и ее использование более чем целесообразно. Подтверждение этому - активное применение в отопительной технике контактных теплообменников, весьма разнообразных по конструкции.

Для смеси горючих газов высшая (и низшая) теплота сгорания газов определяется по соотношению

Q = r 1 Q 1 + r 2 Q 2 + ... + r n Q n (8.2)

Где r 1 , r 2 , …, r n - объемные (молярные, массовые) доли компонентов, входящих в смесь; Q 1 , Q 2 , …, Q n - теплота сгорания компонентов.

Воспользовавшись табл. 8.1, высшую и низшую теплоту сгорания, кДж/м 3 , сложного газа можно определять по следующим формулам:

Q в = 127,5 Н 2 + 126,4 СО + 398 СН 4 + 703 С 2 Н 6 + 1012 С 8 Н 8 + 1338 C 4 H 10 +1329 C 4 H 10 + 1693 С 5 Н 12 + 630 С 2 Н 4 + 919 С 3 Н 6 +1214 C 4 H 8 (8.3)

Q н = 107,9 H 2 + 126,4 CO + 358,8 CH 4 + 643 C 2 H 6 + 931,8 C 8 H 8 + 1235 C 4 H 10 + + 1227 C 4 H 10 + 1566 C 5 H 12 + 595 C 2 H 4 + 884 C 8 H 6 + 1138 C 4 H 8 (8.4)

Где H 2 ,CO,CH 4 и т.д. - содержание отдельных составляющих в газовом топливе, об. %.

Процесс горения протекает гораздо сложнее, чем по формуле (8.1), так как наряду с разветвлением цепей происходит их обрыв за счет образования промежуточных стабильных соединений, которые при высокой температуре претерпевают дальнейшие преобразования. При достаточной концентрации кислорода образуются конечные продукты: водяной пар Н 2 О и двуокись углерода СО 2 . При недостатке окислителя, а также при охлаждении зоны реакции, промежуточные соединения могут стабилизироваться и попадать в окружающую среду.

Интенсивность тепловыделения и рост температуры приводят к увеличению в реагирующей системе активных частиц. Такая взаимосвязь цепного реагирования и температуры, свойственная практически всем процессам горения, привела к введению понятия цепочечно-теплового взрыва - сами химические реакции горения имеют цепной характер, а их ускорение происходит за счет выделения теплоты и роста температуры в реагирующей системе.

Скорость химической реакции в однородной смеси пропорциональна произведению концентраций реагирующих веществ:

W = kС 1 С 2 (8.5)

Где С 1 и С 2 - концентрации реагирующих компонентов, кмоль/м 3 ; k - константа скорости реакции, зависящая от природы реагирующих веществ и температуры.

При сжигании газа концентрации реагирующих веществ можно условно считать неизменными, так как в зоне горения происходит непрерывный приток свежих компонентов однозначного состава.

Константа скорости реакции (по уравнению Аррениуса):

К = К 0 е -Е/RT (8.6)

Где К 0 - предэкспоненциальный множитель, принимаемый для биометрических гомогенных смесей, ≈1,0; Е - энергия активации, кДж/кмоль; R - универсальная газовая постоянная, Дж/(кг К); Т - абсолютная температура, К (°С); е - основание натуральных логарифмов.

Предэкспоненциальный множитель К0 можно истолковать как константу, отражающую полноту столкновения молекул, а Е - как минимальную энергию разрыва связей молекул и образования активных частиц, обеспечивающих эффективность столкновений. Для распространенных горючих смесей она укладывается в пределах (80÷150) 103 кДж/кмоль.

Уравнение (8.6) показывает, что скорость химических реакций резко возрастает с увеличением температуры: например, повышение температуры с 500 до 1000 К влечет повышение скорости реакции горения в 2·104÷5 108 раз (в зависимости от энергии активации).

На скорость реакций горения влияет их цепной характер. Первоначалаьно генерируемый реакцией атомы и радикалы вступают в соединения с исходными веществами и между собой, образуя конечные продукты и новые частицы, повторяющие ту же цепь реакций. Нарастающее генерирование таких частиц приводит к «разгону» химических реакций - фактически взрыву всей смеси.

Высокотемпературное горение углеводородов имеет весьма сложный характер и связано с образованием активных частиц в виде атомов и радикалов, а также промежуточных молекулярных соединений. В качестве примера приводятся реакции горения простейшего углеводорода - метана:
1. Н + О 2 -› ОН + О
СН 4 + ОН -› СН 3 + Н 2 О
СН 4 + О -› СН 2 + Н 2 О

2. СН 3 + О 2 -› НСНО + ОН
СН 2 + О 2 -› НСНО + О

3. НСНО + ОН -› НСО + Н 2 О
НСНО + О -› СО + Н 2 О
НСО + О 2 -› СО + О + ОН

4. СО + О -› СО 2
СО + ОН -› СО 2 + Н

Итог единичного цикла:
2СН 4 + 4О 2 -› 2СО 2 + 4Н 2 О

Таблица 8.1. Реакции горения и теплота сгорания сухих газов (при 0°С и 101,3 кПа)

Газ Реакция горения Теплота сгорания
Молярная, кДж/кмоль Массовая, кДж/кг Объемная, кДж/м 3
высшая низшая высшая низшая высшая низшая
Водород H 2 + 0,5O 2 = H 2 O 286,06 242,90 141 900 120 080 12 750 10 790
Оксид углерода CO + 0,5O 2 = CO 2 283,17 283,17 10 090 10 090 12 640 12 640
Метан CH 4 + 2O 2 = CO 2 + 2H 2 O 880,90 800,90 55 546 49 933 39 820 35 880
Этан C 2 H 6 + 0,5O 2 = 2CO 2 + 3H 2 O 1560,90 1425,70 52 019 47 415 70 310 64 360
Пропан C 3 H 8 + 5H 2 O = 3CO 2 +4H 2 O 2221,40 2041,40 50 385 46 302 101 210 93 180
н -Бутан 2880,40 2655,00 51 344 47 327 133 800 123 570
Изобутан C 4 H 10 + 6,5O 2 = 4CO 2 + 5H 2 O 2873,50 2648,30 51 222 47 208 132 960 122 780
н -Пентан C 5 H 12 + 8O 2 = 5CO 2 + 6H 2 O 3539,10 3274,40 49 052 45 383 169 270 156 630
Этилен C 2 H 4 + 3O 2 = 2CO 2 + 2H 2 O 1412,00 1333,50 50 341 47 540 63 039 59 532
Пропилен C 3 H 6 + 4,5O 2 = 3CO 2 + 3H 2 O 2059,50 1937,40 48 944 46 042 91 945 88 493
Бутилен C 4 H 8 + 6O 2 = 4CO 2 + 4H 2 O 2720,00 2549,70 48 487 45 450 121 434 113 830

← Вернуться

×
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:
Я уже подписан на сообщество «sinkovskoe.ru»