Большая энциклопедия нефти и газа. Комплексное обследование коррозионного состояния и режимов электрохимической защиты действующих магистральных газонефтепроводов

Подписаться
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:

Гончаров, Александр Алексеевич

Ученая cтепень:

Кандидат технических наук

Место защиты диссертации:

Оренбург

Код cпециальности ВАК:

Специальность:

Химическое сопротивление материалов и защита от коррозии

Количество cтраниц:

Глава 1. Анализ условий работы и технического состояния ТП и оборудования ОНГКМ.

1.1 Условия работы металлических конструкций.

1.2. Обеспечение эксплуатационных свойств объектов ОГКМ.

1.3. Коррозионное состояние ТП и оборудования ОГКМ.

1.3.1. Коррозия НКТ и ТП.

1.3.2 Коррозия коммуникаций и оборудования УКПГ.

1.3.3 Коррозионное состояние оборудования ОГПЗ.

1.4. Методы определения остаточного ресурса.

Глава 2. Анализ причин повреждений оборудования и трубопроводов ОНГКМ.

2.1. Промысловое оборудование и трубопроводы.

2.2. Соединительные трубопроводы.

2.3. Оборудование и трубопроводы ОГПЗ.

2.4. Трубопроводы очищенного газа.

Выводы к главе 2.

Глава 3. Определение характеристик надежности и прогнозирование дефектности оборудования и ТП ОНГКМ.

3.1 Анализ отказов оборудования и ТП.

3.2 Определение характеристик надежности металлоконструкций.

3.3 Моделирование коррозионных повреждений ТП по результатам внутритрубной УЗД.

3.4 Прогнозирование дефектности трубопроводов.

Выводы к главе 3.

Глава 4. Методы оценки остаточного ресурса оборудования и ТП.

4.1. Оценка ресурса конструкций по изменению сопротивления сталей СР.

4.2. Особенности оценки работоспособности конструкций, имеющих водородные расслоения.

4.3 Определение остаточного ресурса оборудования и

ТП с поврежденной поверхностью.

4.3.1 Параметры распределения"глубин коррозионных повреждений.

4.3.2 Критерии предельных состояний конструкций с повреждениями поверхности.

4.3.3. Прогнозирование остаточного ресурса ТП.

4.4 Методика диагностирования оборудования и трубопроводов.

Выводы к главе 4.

Введение диссертации (часть автореферата) На тему "Коррозионное состояние и долговечность оборудования и трубопроводов сероводородсодержащих нефтегазовых месторождений"

Наличие в нефти и газе сероводорода обусловливает необходимость применения определенных марок сталей и специальной технологии сварочно-монтажных работ (СМР ) при обустройстве данных месторождений, а при эксплуатации оборудования и трубопроводов (ТП) необходим комплекс диагностических и противокоррозионных мероприятий. Помимо общей и язвенной коррозии сварных конструкций сероводород вызывает сероводородное растрескивание (СР) и водородное расслоение (ВР) оборудования и трубопроводов.

Эксплуатация металлических конструкций сероводородсодержащих нефтегазовых месторождений связана с осуществлением многопланового контроля за коррозионным состоянием оборудования и трубопроводов, а также с проведением большого количества ремонтных работ: ликвидацией аварийных ситуаций; подключением новых скважин и трубопроводов к действующим; заменой аппаратов,запорной арматуры,дефектных участков трубопроводов и т.п.

Трубопроводы и оборудование Оренбургского нефтегазоконденсатного месторождения (ОНГКМ) в настоящее время выработали проектный нормативный ресурс. Следует ожидать снижения надежности этих металлических конструкций в процессе эксплуатации вследствие накопления внутренних и внешних повреждений. Вопросы диагностирования ТП и оборудования ОНГКМ и оценки потенциальной опасности повреждений на данный период времени изучены недостаточно.

В связи с вышеизложенным являются актуальными исследования, связанные с выявлением основных причин повреждений металлических конструкций сероводородсодержащих нефтегазоконденсатных месторождений, разработкой методик диагностирования трубопроводов и оборудования и оценки их остаточного ресурса.

Работа выполнена в соответствии с приоритетным направлением развития науки и техники (2728п-п8 от 21.07.96 г.) "Технология обеспечения безопасности продукции, производства и объектов" и постановлением Правительства России от 16.11.1996 г. N 1369 по проведению в 1997-2000 г.г. внутритрубной диагностики ТП в пределах территорий Уральского района и Тюменской области.

1. Анализ условий работы и технического состояния ТП и оборудования ОГКМ

Заключение диссертации по теме "Химическое сопротивление материалов и защита от коррозии", Гончаров, Александр Алексеевич

Основные выводы

1. Определены основные причины повреждений ТП и оборудования в процессе 20 лет эксплуатации ОНГКМ: НКТ и муфты НКТ подвержены язвенной коррозии и СР, фонтанная арматура - СР; в аппаратах УКПГ после 10-летней эксплуатации возникают ВР; детали аппаратов выходят из строя из-за язвенной коррозии; дефектные сварные соединения ТП подвергаются СР, в металле ТП после 15 лет эксплуатации возникают ВР; запорно-регулирующая арматура теряет герметичность вследствие охрупчивания уплотнительных элементов; аппараты ОГПЗ подвержены язвенной коррозии, имеются отказы аппаратов вследствие ВР и СР; теплообменное оборудование выходит из строя из-за забивки межтрубного пространства солевыми отложениями и сквозной язвенной коррозии металла; отказы насосов обусловлены разрушением подшипников, а поршневых компрессоров - разрушением штоков поршня и шпилек; большинство отказов ТП очищенного газа происходит из-за дефектов сварных соединений.

2. Создана автоматизированная база данных, содержащая более 1450 отказов ТП и оборудования и позволившая выявить закономерности распределения во времени отказов конструкций, обусловленных одинаковыми причинами: количество отказов вследствие язвенной коррозии, механических повреждений, потери герметичности и ВР возрастает с увеличением срока эксплуатации; а количество отказов из-за СР максимально в первые пять лет эксплуатации ОНГКМ, затем снижается и остается практически на одном уровне.

3.Установлено, что среднее время безотказной работы, вышедших из строя аппаратов УКПГ и ОГПЗ, превышает в 1,Зч-1,4 раза запланированное проектом, составляющее 10-И 2 лет. Средняя интенсивность отказов ТП ОНГКМ

3 1 составляющая 1,3-10" год" находится в пределах, характерных для величин потока отказов газопроводов и конденсатопроводов. Средняя интенсивность

3 1 отказов НКТ составляет 1,8-10" год" . Средняя интенсивность отказов аппаратов ОГПЗ составляет 5-10"4 год"1, что близко к этому показателю для энергетических установок АЭС (4 Т0"4год""). Средняя интенсивность отказов аппаратов УКПГ

168 равна 13-10"4 год"1 и в 2,6 раза превышает данную характеристику для аппаратов ОГПЗ, что, в основном, объясняется заменой аппаратов УКПГ, имеющих несквозные водородные расслоения.

4.Установлена зависимость количества дефектов от режима работы ТП и построена регрессионная модель прогноза образования коррозионных поражений на внутренней поверхности ТП. Моделирование коррозионного состояния ТП по результатам внутритрубной дефектоскопии, позволяет определять наиболее экономичные и безопасные режимы эксплуатации ТП.

5. Разработаны методики оценки:

Остаточного ресурса оборудования и ТП по изменению сопротивления металлов сероводородному растрескиванию;

Работоспособности конструкций, в которых зафиксированы водородные расслоения, при условии их периодического контроля;

Критериев предельных состояний оболочковых конструкций с поверхностными коррозионными повреждениями и внутренними металлургическими дефектами;

Остаточного ресурса оборудования и ТП с коррозионными повреждениями поверхности.

Методики позволили обосновать сокращение количества демонтируемых аппаратов и на порядок уменьшить планируемое количество вырезок дефектных участков ТП.

6. Разработана методика диагностирования оборудования и ТП, определяющая периодичность, способы и объем контроля технического состояния оборудования и ТП, признаки оценки вида дефектов и их потенциальной опасности, условие дальнейшей эксплуатации или ремонта конструкций. Основные положения методики вошли в «Положение о диагностировании технологического оборудования и трубопроводов П «Оренбурггазпром », подверженных воздействию сероводородсодержащих сред», утвержденные РАО «ГАЗПРОМ » и Госгортехнадзором России.

Список литературы диссертационного исследования кандидат технических наук Гончаров, Александр Алексеевич, 1999 год

1. Акимов Г.В. Теория и методы исследования коррозии металлов. М. Изд. АН СССР 1945 г. 414 с.

2. Андрейкив А.Е. Панасюк В.В. Механика водородного охрупчивания металлов и расчет элементов конструкций на прочность /АН УССР . Физ.-мех. Ин-т- Львов, 1987. -50 с.

3. Арчаков Ю.И., Тесля Б.М., Старостина М.К. и др. Коррозионная стойкость оборудования химических производств. JL: Химия, 1990. 400 с.

4. Болотин В.В. Применение методов теории вероятностей и теории надежности в расчетах сооружений. -М.:Стройиздат, 1971.-255 с.

5. ВСН 006-89. Строительство магистральных и промысловых трубопроводов. Сварка. Миннефтегазстрой. М., 1989. - 216 с.

6. Гафаров H.A., Гончаров A.A., Гринцов A.C., Кушнаренко В.М. Методы контроля коррозии трубопроводов и оборудования// Химическое и нефтяное машиностроение. 1997. -№ 2. - С. 70-76.

7. Гафаров H.A., Гончаров A.A., Гринцов A.C., Кушнаренко В.М. Экспресс-. оценка сопротивления металлов сероводородному растрескиванию. // Химическое и нефтяное машиностроение. 1998. - № 5. - С. 34-42.

8. Гафаров H.A., Гончаров A.A., Кушнаренко В.М. Коррозия и защита оборудования сероводородсодержащих нефтегазовых месторождений. М.: Недра.- 1998.-437 с.

9. Гафаров H.A., Гончаров A.A., Кушнаренко В.М. Методы контроля сварных соединений конструкций, контактирующих с наводороживающими средами//Сварочное производство. 1997. -№ 12. - С. 18-20.

10. Гафаров H.A., Гончаров A.A., Кушнаренко В.М., Щепинов Д.Н. Моделирование коррозионного состояния ТП по результатам внутритрубной диагностики/Международный конгресс «Защита-98». М. 1998. - С. 22.

11. Гончаров A.A., Овчинников П.А. Анализ диагностических работ за 19998 год на объектах предприятия «Оренбурггазпром » и перспективы их совершенствования в плане реализации в 1999 г «Положения о диагностировании.»

12. Гончаров А.А, Нургалиев Д.М.,Митрофанов A.B. И др. Положение о диагностировании технологического оборудования и трубопроводов предприятия "Оренбурггазпром", подверженных воздействию сероводородсодержащих сред М.: 1998.-86с.

13. Гончаров A.A. Организация диагностирования оборудования и трубопроводов П «Оренбурггазпром », выработавших ресурс. Материалы международного НТ семинара. М.: ИРЦ Газпром. - 1998. - С. 43-47.

14. Гончаров A.A. Эксплуатационная надежность технологического оборудования и трубопроводов//Газовая промышленность.-1998.-№ 7. С. 16-18.

15. Гончаров A.A., Чирков Ю.А. Прогнозирование остаточного ресурса трубопроводов ОГКМ. Материалы международного НТ семинара. М.: ИРЦ Газпром. - 1998. - С. 112-119.

16. ГОСТ 11.007-75 Правила определения оценок и доверительных границ для параметров распределения Вейбулла.

17. ГОСТ 14249-89. Сосуды и аппараты. Нормы и методы расчета на прочность.

18. ГОСТ 14782-86. Контроль неразрушающий. Соединения сварные. Методы ультразвуковые.

19. ГОСТ 17410-78. Контроль неразрушающий. Трубы металлические бесшовные цилиндрические. Методы ультразвуковой дефектоскопии.

20. ГОСТ 18442-80. Контроль неразрушающий. Капиллярные методы. Общие требования.

21. ГОСТ 21105-87. Контроль неразрушающий. Магнитопорошковый метод.

22. ГОСТ 22727-88. Прокат листовой. Методы ультразвукового контроля.

23. ГОСТ 24289-80. Контроль неразрушающий вихретоковый. Термины и определения.

24. ГОСТ 25221-82. Сосуды и аппараты. Днища и крышки сферические неотбортованные. Нормы и методы расчета на прочность.

25. ГОСТ 25859-83. Сосуды и аппараты стальные. Нормы и методы расчета на прочность при малоцикловых нагрузках.

26. ГОСТ 27.302-86. Надежность в технике. Методы определения допускаемого отклонения параметра технического состояния и прогнозирования остаточного ресурса составных частей агрегатов машин.

27. ГОСТ 28702-90. Контроль неразрушающий. Толщиномеры ультразвуковые контактные. Общие технические требования

28. ГОСТ 5272-68. Коррозия металлов. Термины.

29. ГОСТ 6202-84. Сосуды и аппараты. Нормы и методы расчета на прочность обечаек и днищ от воздействия опорных нагрузок.

30. ГОСТ 9.908-85. Металлы и сплавы. Методы определения показателей коррозии и коррозионной стойкости.

31. Гумеров А.Г., Гумеров K.M., Росляков A.B., Разработка методов повышения ресурса длительно эксплуатирующихся нефтепроводов. -М.: ВНИИОЭНГ, 1991.

32. Дубовой В.Я., Романов В.А. Влияние водорода на механические свойства стали // Сталь. 1974. - Т. 7. - N 8. - С. 727 - 732.

33. Дьяков В.Г., Шрейдер A.B. Защита от сероводородной коррозии оборудования нефтеперерабатывающей и нефтехимической промышленности. -М.: ЦНИИТЭнефтехим, 1984. 35 с.

34. Зайвочинский Б.И. Долговечность магистральных и технологических трубопроводов. Теория, методы расчета, проектирования. М.: Недра. 1992. -271с.

35. Захаров Ю.В. Влияние напряжений на пластичность стали в растворе сероводорода. // Коррозия и защита в нефтегазовой промышленности. -1975. -N10.-С. 18-20.

36. Иино И. Водородное вспучивание и растрескивание.-перевод ВЦП N В-27457, 1980, Босеку гидзюцу, t.27,N8, 1978, с.312-424.

37. Инструкция по вихретоковому контролю линейной части магистральных газопроводов.-М.: РАО «Газпром », ВНИИГАЗ. 1997 г.- 13 с.

38. Инструкция по входному контролю арматуры в сероводородостойком исполнении. М.: ВНИИГАЗ. 1995. - 56 с.

39. Инструкция по освидетельствованию, отбраковке и ремонту в процессе эксплуатации и капитального ремонта линейной части магистральных газопроводов. М. ВНИИгаз, 1991г. -12 с.

40. Исходные данные обосновывающие материалы и технологии ингибиторной защиты внутри промысловых трубопроводов. Отчет о НИР // Донецк. ЮЖНИИГИПРОГАЗ. 1991. - 38 с.172

41. Карпенко Г.В., Крипякевич Р.И. Влияние водорода на свойства стали.- М.: Металлургиздат, 1962. 198 с.

42. КостецкийБ.И., Носовский И.Г. и др., Надежность и долговечность машин. -"Техника". 1975. -408 с.

43. Котлы стационарные паровые и водогрейные и трубопроводы пара и горячей воды. Нормы расчета на прочность. ОСТ 108.031.02 75. -Л.: ЦКТИ, 1977. -107 с.

44. Кушнаренко В.М., Гринцов A.C., Оболенцев Н.В. Контроль взаимодействия металла с рабочей средой ОГКМ.- М.: ВНИИЭгазпром, 1989.- 49 с.

45. Лившиц Л.С., Бахрах Л.П., Стромова Р.П. и др. Сульфидное растрескивание низкоуглеродистых легированных сталей // Коррозия и защита трубопроводов, скважин, газопромыслового и газоперерабатывающего оборудования. 1977. - N 5. - С. 23 - 30.

46. Малов Е.А. О состоянии аварийности на магистральных и промысловых трубопроводах нефтяной и газовой промышленности // Тез.семинара.,23-24 мая 1996г. М. Центральный Российский дом знаний, с. 3-4.

47. Маннапов Р.Г. Оценка надежности химического и нефтяного оборудования при поверхностном разрушении. ХН-1, ЦИНТИХИМНЕФТЕМАШ, Москва, 1988.-38 с.

48. Метод оценки и прогнозирование коррозии для изменившихся условий на ОГКМ. Отчет о НИР // ВНИИ природных газов.-М.: 1994.28 с.

49. Методика оценки остаточного ресурса работоспособности сосудов /пылеуловителей, фильтр-сепараторов и др./, работающих под давлением на КС и ДКС РАО «ГАЗПРОМ ».// АО ЦКБН РАО «ГАЗПРОМ » 1995 г. 48 с.

50. Методика вероятностной оценки остаточного ресурса технологических стальных трубопроводов. М.: НТП «Трубопровод », 1995 г. (Согласовано Госгортехнадзором России 11.01.1996г.)

51. Методика диагностирования технического состояния оборудования и аппаратов, эксплуатирующихся в сероводородсодержащих средах. (Утверждена Минтопэнерго России 30.11.1993 г. Согласована Госгортехнадзором России 30.11.1993 г.)

52. Методика оценки ресурса остаточной работоспособности технологического оборудования нефтеперерабатывающих, нефтехимических и химических производств г. Волгоград, ВНИКТИ нефтехимоборудование, 1992 г.

53. Мазур И.И., Иванцов О.М., Молдованов О.И. Конструктивная надежность и экологическая безопасность трубопроводов. М.: недра, 1990. - 264 с.

54. Механика разрушений / Под ред. Д.Темплина М.: Мир, 1979.- 240с.173

55. Методика прогнозирования остаточного ресурса нефтезаводских трубопроводов, сосудов, аппаратов и технологических блоков установок подготовки нефти, подвергающихся коррозии.- М.: МИНТОПЭНЕРГО. -1993.- 88 с.

56. Методика оценки сроков службы газопроводов. М.ИРЦ Газпром, 1997 г.- 84с.

57. Методические указания по диагностическому обследованию состояния коррозии и комплексной защите подземных трубопроводов от коррозии. -М.: СОЮЗЭНЕРГОГАЗ, ГАЗПРОМ, 1989. 142 с.

59. Мирочник В.А., Окенко А.П., Саррак В.И. Зарождение трещины разрушения в феррито-перлитных сталях в присутствии водорода // ФХММ.- 1984. N 3. -С. 14-20.

60. Митенков Ф.М., Коротких Ю.Г., Городов Г.Ф. и др. Определение и обоснование остаточного ресурса машиностроительных конструкций при долговременной эксплуатации. //Проблемы машиностроения и надежности машин, N 1, 1995.

61. МСКР-01 -85. Методика испытания сталей на стойкость против сероводородного коррозионного растрескивания.- М.: ВНИИНМАШ, 1985. 7 с.

62. Некасимо А., Иино М., Мацудо X., Ямада К. Водородное ступенчатое растрескивание стали трубопроводов, работающих в сероводородсодержащих средах. Проспект фирмы Ниппон Стал Корпорейшн, Япония, 1981.С. 2 40.

63. Нормы расчета на прочность элементов реакторов, парогенераторов, сосудов и трубопроводов атомных электростанций, опытных и исследовательских ядерных реакторов и установок. М.: Металлургия, 1973. - 408 с.

64. Нургалиев Д.М., Гафаров Н.А.,Ахметов В.Н.,Кушнаренко В.М., Щепинов Д.Н., Аптикеев Т.А. К оценке дефектности трубопроводов при внутритрубной дефектоскопии. Шестая международная деловая встреча "Диагностика-96".-Ялта 1996 г.-М.:ИРЦ ГАЗПРОМ. с.35-41.

65. Нургалиев Д.М., Гончаров A.A., Аптикеев Т.А. Методика технического диагностирования трубопроводов. Материалы международного НТ семинара. М.: ИРЦ Газпром. - 1998. - С. 54-59.m

67. Павловский Б.Р., Щугорев В.В., Холзаков Н.В. Водородная диагностика: опыт и перспективы применения // Газовая промышленность. -1989. Вып. 3. -С. 30-31

68. Павловский Б.Р. и др. Экспертиза по проблеме ресурса соединительных трубопроводов, транспортирующих влажный сероводород содержащий газ: Отчет о НИР // АООТ . ВНИИНЕФТЕМАШ.-М., 1994.-40 с

69. ПБ 03-108-96. Правила устройства и безопасной эксплуатации технологических трубопроводов. М.: НПО ОБТ, 1997 - 292 с. (Утверждены Госгортехнадзором России 02.03.1995 г.)

70. Перунов Б.В., Кушнаренко В.М. Повышение эффективности строительства трубопроводов, транспортирующих сероводородсодержащие среды. М. : Информнефтегазстрой. 1982. Вып. 11. - 45 с.

71. Петров H.A. Предупреждение образования трещин подземных трубопроводов при катодной поляризации. М.: ВНИИОЭНГ, 1974. - 131 с.

72. ПНАЭ Г-7-002-86. Нормы расчета на прочность оборудования и трубопроводов атомных энергетических установок. М.: ЭНЕРГОАТОМИЗДАТ, 1986 г.

73. ПНАЭ Г-7-014-89. Унифицированные методики контроля основных материалов (полуфабрикатов), сварных соединений и наплавки оборудования и трубопроводов АЭУ. Ультразвуковой контроль. Часть 1. М.: ЭНЕРГОАТОМИЗДАТ, 1990 г.

74. ПНАЭ Г-7-019-89. Унифицированные методики контроля основных материалов (полуфабрикатов), сварных соединений и наплавки оборудования и трубопроводов АЭУ. Контроль герметичности. Газовые и жидкостные методы. ЭНЕРГОАТОМИЗДАТ, г. Москва, 1990 г

75. Пол Мосс. British Gas. Старые проблемы новые решения. "Нефтегаз" на выставке "НЕФТЕГАЗ-96".М.:- 1996.- С. 125-132.

76. Половко A.M. Основы теории надежности.-М.: «Наука », 1964.-446 с.

77. Положение о входном контроле арматуры, труб и соединительных деталей на предприятии «Оренбурггазпром ». Утверждено «Оренбурггазпром » 26.11.96г. Согласовано Оренбургским округом Госгортехнадзора России 20.11.1996 г.175

78. Положение о порядке диагностирования технологического оборудования взрывоопасных производств топливноэнергетического комплекса. (Утверждено Минтопэнерго России 24.01.1993 г. Согласовано Госгортехнадзором России 25.12.1992 г.)

79. Положение о системе технического диагностирования паровых и водогрейных котлов промышленной энергетики. -М.: НГП "ДИЭКС"1993. 36с.

80. Положение о системе технического обслуживания и плановопредупре-дительных ремонтов промыслового оборудования для газодобывающих предприятий.- Краснодар:ПО Союзоргэнергогаз.- 1989.- 165 с.

81. Положение об экспертном техническом диагностировании трубопроводов, Оренбург, 1997. 40 с.

82. Полозов В.А. Критерии опасности повреждений магистральных газопроду-ктопроводов. // М. Газовая промышленность №6, 1998 г.

83. Правила устройства и безопасной эксплуатации сосудов, работающих под давлением. (ПБ 10-115-96).- М.: ПИО ОБТ.- 1996.- 232с.

84. Р 50-54-45-88. Расчеты и испытания на прочность. Экспериментальные методы определения напряженно-деформированного состояния элементов машин и конструкций-М.: ВНИИНМАШ. 1988 -48 с.

85. Р 54-298-92. Расчеты и испытания на прочность. Методы определения сопротивления материалов воздействию сероводородсодержащих сред М.: ГОССТАНДАРТ РОССИИ, ВНИИНМАШ, ОрПИ. 26 с.

86. РД 09-102-95. Методические указания по определению остаточного ресурса потенциально опасных объектов поднадзорных Госгортехнадзору России. -М.: Госгортехнадзор. Пост. N 57 от 17.11.95. 14 с.

87. РД 26-02-62-97. Расчёт на прочность элементов сосудов и аппаратов, работающих в коррозионно-активных сероводородсодержащих средах. М.: ВНИИНефтемаш, ЦКБН, 1997 г.

88. РД 26-15-88. Сосуды и аппараты. Нормы и методы расчета на прочность и герметичность фланцевых соединений. М.: НИИХИММАШ, УкрНИИ-ХИММАШ, ВНИИНЕФТЕМАШ. - 1990 г. - 64 с.

89. РД 34.10.130-96. Инструкция по визуальному и измерительному контролю. (Утверждена Минтопэнерго РФ 15.08.96 г.)

90. РД 39-132-94. Правила по эксплуатации, ревизии, ремонту и отбраковке нефтепромысловых трубопроводов. М.: НПО ОБТ - 1994- 272 с.

92. РД-03-131-97. Правила организации и проведения акустико-эмиссионного контроля сосудов, аппаратов, котлов, технологических трубопроводов. (Утверждены постановлением Госгортехнадзора России от 11.11.96 г. № 44.)

93. РД-03-29-93. Методические указания по проведению технического освидетельствования паровых и водогрейных котлов, сосудов, работающих под давлением, трубопроводов пара и горячей воды М.: НПО ОБТ, 1994 г.

94. РД26-10-87 Методические указания. Оценка надежности химического и нефтяного оборудования при поверхностном разрушении. М. ОКСТУ 1987 г. 30с.

95. РД-51-2-97. Инструкция по внутритрубной инспекции трубопроводных систем. М.: ИРЦ Газпром, 1997 48 с.

100. Розенфельд И.Л. Ингибиторы коррозии.-М.: Химия, 1977.-35 е.,

101. Саррак В.И. Водородная хрупкость и структурное состояние стали //МИТОМ. 1982. - N 5. - С. 11 - 17.

102. Северцев H.A. Надежность сложных систем в эксплуатации и отработке. -М.: Высшая школа. 1989.- 432 с.

103. СНиП Ш-42-80.Магистральные трубопроводы. М.:Стройиздат, 1981.- 68 с.

104. СНиП 2.05.06-85*. Магистральные трубопроводы М.: Минстрой России. ГУЛ ЦПП, 1997. -60 с.

105. СНиП 3.05.05-84. Технологическое оборудование и технологические трубопроводы. Утверждены Миннефтехимпромом СССР 01.01.1984 г.

106. Сталь магистральных труб для транспортировки высокосернистого нефтяного газа. Проспект фирмы Ниппон Кокан ЛТД, 1981. 72 с.

107. Стандарт МЭК . Техника анализа надежности систем. Метод анализа вида и последствий отказов. Публикация 812 (1985). М.: 1987.

108. Стеклов О.И., Бодрихин Н.Г., Кушнаренко В.М., Перунов Б.В. Испытание сталей и сварных соединений в наводороживающих средах.- М.:-Металлургия.- 1992.- 128 с.

109. Томашов Н.Д. Теория коррозии и защиты металлов. М. Изд. АН СССР 1960 г. 590 с.

110. У орд K.P., Данфорд Д.Х., Манн Э.С. Дефектоскопия действующих трубопроводов для выявления коррозионных и усталостных трещин. "Диагностика-94".-Ялта 1994г.-М.:ИРЦ ГАЗПРОМ.-С.44-60.17?

111. Ф.А.Хромченко, Надежность сварных соединений труб котлов и паропроводов. М.: Энергоиздат, 1982. - 120 с.

112. Шрейдер А.В., Шпарбер И.С., Арчаков Ю.И. Влияние водорода на нефтяное и химическое оборудование.- М.: Машиностроение, 1979.- 144 с.

113. Швед М.М. Изменение эксплуатационных свойств железа и стали под влиянием водорода. Киев: Наукова думка, 1985. - 120 с.

114. Яковлев А.И. Коррозионное воздействие сероводорода на металлы. ВНИИЭгазпром, М.: 1972. 42 с.

115. Ямамота К., Мурата Т. Разработка нефтескважинных труб, предназначенных для эксплуатации в среде влажного высокосернистого газа // Технический доклад фирмы "Nippon Steel Corp".-1979.-63 с.

116. ANSI/ASME В 31G-1984. Manual For Determining the Remaining Strength of Corroded Pipelines. ASME. New York.13 0 British Gas Engineering Standard BGC/PS/P11. 42 p.

117. Biefer G.I. The Stepwise Cracking of Pipe Line Steel in Sour Environements // Materials Performance, 1982. - Iune. - P. 19 - 34.

118. Marvin C.W. Determining the strength of Corroded Pipe. // Materials protection and Performance. 1972. - V. 11. - P. 34 - 40.

119. NACE MR0175-97.Material Requirements. Sulfide Stress Cracking Resistance Metallic Materials for Oil field Equipment.l997. 47 p.

120. Nakasugi H.,Matsuda H. Development of new dine-Pipe Steels for Sour Gas Servis // Nippon Steel Techn. rep.- 1979. N14.- P.66-78.

121. O"Grandy T.J., Hisey D.T., Kiefner J.F., Pressure calculation for corroded pipe developed//Oil and Gas J.-1992.-№42.-P. 84-89.

122. Smialawski M. Hydrogening Steel. Pergam Press L. 1962. 152 p.

123. Terasaki F., Ikeda A., Tekejama M., Okamoto S., The Hydrogen Indu-ced Cracking Sucseptibilities of Various Kinds of Commerc.Rolled Steels under Wet Hydrogene Sulfide // Environement. The Sumitomo Search. 1978. - N 19. - P. 103-111.

124. Thomas J. O"Gradyll, Daniel T. Hisey, John F. Kiefner Pressure calculation for corroded pipe developed. Oil & Gas Journal. Oct. 1992. P. 84-89.

125. NACE Standard ТМ0177-96.Standard Test Method Laboratory Testing of Metals for Resistanc to Specific Forms of Environmental Cracking in H2S Environments. 32 p.

126. NACE Standard TM0284-96 Standart Tesn Metod Evaluation of Pipeline and pressure Vessel Steels for Resistance to Hydrogen-Induced Cracking. 10 p

127. Townsend H. Hydrogen Sulfide Stress Corrosion Cracking of High Stranght Steel Wire // Corrosion.- 1972.- V.28.- N2.- P.39-46.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания.
В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.

большого диаметра">

480 руб. | 150 грн. | 7,5 долл. ", MOUSEOFF, FGCOLOR, "#FFFFCC",BGCOLOR, "#393939");" onMouseOut="return nd();"> Диссертация - 480 руб., доставка 10 минут , круглосуточно, без выходных и праздников

Аскаров Герман Робертович. Оценка влияния нестабильного температурного режима на коррозионное состояние газопроводов большого диаметра: диссертация... кандидата технических наук: 25.00.19 / Аскаров Герман Робертович;[Место защиты: Уфимский государственный нефтяной технический университет].- Уфа, 2014.- 146 с.

Введение

1. Современные представления о температурном влиянии на коррозионное состояние газопровода 8

1.1 Краткая характеристика коррозионных процессов в трубопроводном транспорте 8

1.1.1 Характерные коррозионные дефекты на стальной трубе 10

1.2 Нарушение защитных свойств изоляционного покрытия 11

1.3 Коррозионная агрессивность грунтов 15

1.4 Причины формирования коррозионных элементов на наружной поверхности газопровода 19

1.4.1 Условия формирования макро-коррозионных элементов на наружной поверхности газопровода 19

1.4.2 Изменение электрического сопротивления грунта, прилегающего к трубопроводу, при движении влаги в коррозионно-активном слое грунта 23

1.5 Влияние температуры и колебаний температуры на коррозионное состояние газопровода 31

1.6 Диагностика газопроводов с использованием внутритрубных снарядов. 32

1.7 Модели для прогнозирования коррозионных процессов 34 Выводы к главе 1 40

2. Оценка импульсного воздействия влажности и температуры на коррозионную активность грунтов, окружающих газопровод 42

2.1 Физическое моделирование и выбор управляющих параметров. 42

2.2 Краткое описание экспериментальной установки. 45

2.3 Результаты опытов и эффект повышения коррозионной активности грунтов при импульсном температурном воздействии 48

2.4 Исследование влияния частоты колебаний температуры и тепловых параметров на коррозионную активность грунтов 58

2.5 Зависимость скорости коррозии от средней температуры при нестабильном теплообмене 67

Выводы к главе 2 70

3. Прогноз коррозионного состояния газопровода на основе данных внутритрубной дефектоскопии 71

3.1 Критерии оценки коррозионной опасности. 71

3.2 Анализ коррозионного состояния участка газопровода по данным внутритрубной дефектоскопии 74

3.2.1 Характеристика участка газопровода 74

3.2.2 Анализ результатов ВТД. 75

3.3 Образование и скорость развития коррозионных очагов на трубопроводах с пленочной изоляцией. 80

3.4 Коррозионный прогноз дефектности труб большого диаметра. 85

Выводы к главе.3 . 100

4. Разработка метода ранжирования участков газопроводов по степени опасности для вывода в ремонт 102

4.1. Методика ранжирования участков газопроводов по степени опасности 101

4.1.1 ВТД газопроводов при ранжировании по степени опасности 101

4.1.2 Уточняющие интегральные показатели для определения выводимых в ремонт участков газопроводов. 103

4.2 Комплексная диагностика изоляционного покрытия и средств ЭХЗ 104

4.2.1 Факторы опасности коррозионного повреждения трубопроводов. 105

4.2.2 Пример расчета комплексного показателя коррозионной активности 106

4.3 Учет колебаний температуры на газопроводах больших диаметров 107

4.4 Суммарный интегральный показатель. 109

4.4.1 Пример расчета суммарного интегрального показателя. 110

4.5 Эффективность разработки 113

Выводы к главе 4 . 115

Литература 117

Введение к работе

Актуальность работы

Общая протяжённость эксплуатируемых в системе ОАО «Газпром» подземных магистральных газопроводов составляет около 164,7 тыс. км. Основным конструкционным материалом для сооружения газопроводов в настоящее время является сталь, которая обладает хорошими прочностными свойствами, но низкой коррозионной стойкостью в условиях окружающей среды – грунта, который при наличии влаги в поровом пространстве является коррозионно-активной средой.

После 30-ти и более лет эксплуатации магистральных газопроводов изоляционное покрытие стареет и перестает выполнять защитные функции, вследствие чего коррозионное состояние подземных газопроводов существенно ухудшается.

Для определения коррозионного состояния магистральных газопроводов в настоящее время используется внутритрубная дефектоскопия (ВТД), которая с достаточной точностью определяет местоположение и характер коррозионных повреждений, что позволяет отслеживать и прогнозировать их образование и развитие.

Значительную роль в развитии коррозионных процессов играет наличие грунтовых вод (почвенного электролита), причем следует отметить, что скорость коррозии в большей степени возрастает не в постоянно обводненном или сухом грунте, а в грунте с периодическим увлажнением.

Предшествующими исследованиями установлена связь между импульсным изменением температуры газопровода и колебанием влажности в коррозионно-активном слое грунта. Однако не были определены количественные параметры импульсного температурного воздействия на активизацию коррозионных процессов.

Исследование коррозионной агрессивности грунтов на участках пролегания магистральных газопроводов при импульсном тепловом воздействии и прогноз коррозионного состояния трубопроводов являются актуальными для газотранспортной отрасли.

Цель работы

Разработка и совершенствование методов определения коррозионного состояния участков магистральных газопроводов для своевременного вывода их в ремонт.

Основные задачи :

1 Определение изменения удельного электрического сопротивления грунта вокруг магистрального газопровода и анализ особенностей коррозионных процессов в трубопроводном транспорте.

2 Исследование в лабораторных условиях влияния импульсного теплового воздействия перекачиваемого газа и влажности на коррозионную активность грунта, окружающего подземный газопровод.

3 Исследование образования и развития коррозионных дефектов на магистральном газопроводе и прогноз его коррозионного состояния по данным внутритрубной дефектоскопии.

4 Разработка методики ранжирования участков магистральных газопроводов на основе прогноза их коррозионного состояния для вывода в ремонт.

Научная новизна

1 Определено изменение и построены эпюры удельного электрического сопротивления грунта в зависимости от влажности по периметру подземного газопровода большого диаметра.

2 Экспериментально доказан факт активизации коррозионных процессов при импульсном изменении температуры перекачиваемого газа по сравнению со стабильным температурным воздействием, а также определен диапазон температур, в котором при нестабильном (импульсном) температурном воздействии развивается максимальная скорость коррозии.

3 Определена функциональная зависимость для прогноза образования и развития коррозионных дефектов на магистральных газопроводах.

Практическая ценность работы

На основании проведенных исследований разработан стандарт предприятия РД 3-М-00154358-39-821-08 «Методика ранжирования газопроводов ООО «Газпром трансгаз Уфа» по результатам внутритрубной дефектоскопии для вывода их в ремонт», согласно которому проводится ранжирование участков магистральных газопроводов между крановыми узлами с целью определения последовательности вывода их в ремонт.

Методы исследований

Поставленные в работе задачи решались с использованием теории подобия путем моделирования условий теполомассообмена подземного газопровода с окружающим грунтом.

Результаты диагностических работ обрабатывались по методу наименьших квадратов с проведением корреляционного анализа. Расчеты проводились с использованием пакета прикладных программ «StatGrapfics Plus 5.1».

На защиту выносятся :

Результаты исследований изменения удельного электрического сопротивления грунта в зависимости от влажности по периметру магистрального газопровода;

Результаты лабораторных исследований импульсного теплового воздействия на активизацию коррозионных процессов на стальном трубопроводе;

Метод ранжирования участков магистральных газопроводов для вывода их в ремонт.

Публикации

Основные результаты диссертационной работы опубликованы в 30 научных трудах, из них четыре статьи в ведущих рецензируемых научных журналах, рекомендованных ВАК Министерства образования и науки РФ.

Структура и объем работы

Условия формирования макро-коррозионных элементов на наружной поверхности газопровода

Коррозионные разрушения металла происходят на наружной поверхности газопровода в местах нарушения изоляционного покрытия, несмотря на наличие катодной защиты газопровода. Часто эти явления наблюдаются на начальных участках газопроводов (10-20 км после выхода с компрессорной станции), с пересеченной местностью, приуроченых к оврагам, балкам, местам с периодическим увлажнением.

Анализ и обобщение многочисленных материалов показывает, что на активацию коррозионных процессов влияет поведение грунтовых вод под тепловым воздействием газопровода, которое усиливается по мере совместного влияния (или совпадения) как минимум трех факторов:

Импульсного изменения температуры газопровода;

Нарушения изоляционного покрытия газопровода;

Большой диаметр трубопровода.

1. Принципиальное отличие начального участка от конечного (при отсутствии или стабильности отборов газа по трассе) в том, что именно на начальном участке газопровода максимально ощущаются колебания или импульсное изменение температуры газа. Эти колебания происходят как из-за неравномерности газопотребления, так и по причине несовершенства системы воздушного охлаждения газа, подаваемого в газопровод. При использовании аппаратов воздушного охлаждения погодные колебания температуры воздуха вызывают аналогичные колебания температуры газа и как по волноводу передаются непосредственно на начальный участок газопровода (особенно это явление проявляется на первых 20…30 км газопровода).

В опытах Исмагилова И.Г. было зарегистрировано, что температурная волна в 5 0С, искусственно созданная отключением АВО газа на КС Полянская, прошла до следующей станции КС Москово со снижением амплитуды до 2 0С. На нефтепроводах, где скорости движения потоков на порядок меньше, в силу инерционности продукта перекачки, такого явления не наблюдается.

2. При нарушении изоляционного покрытие происходит формирование макрокоррозионных элементов на наружной поверхности трубопровода. Как правило, это происходит на участках с резким изменением параметров окружающей среды: омического сопротивления грунтов и коррозионных сред (рисунок 1.3 и рисунок 1.4).

3. Эффект «большого диаметра». Геометрические параметры горячего трубопровода таковы, что и температура, и влажность грунта, а следовательно и прочие характеристики: омическое сопротивление грунта, свойства грунтовых электролитов, поляризационные потенциалы и т. д. – меняются по периметру. Влажность по периметру меняется в пределах от 0,3 % до 40 % и до полного насыщения. Удельное сопротивление грунта при этом изменяется в 10 …100 раз.

Рисунок 1.4 – Модель макрокоррозионных элементов Исследования показали, что температура перекачиваемого газа влияет на катодную поляризацию трубной стали в карбонатных растворах. Зависимость потенциалов максимума анодного тока от температуры линейна. Увеличение температуры ведет к возрастанию тока растворения и смещает интервал потенциалов анодного тока в отрицательную область. Увеличение температуры приводит не только к изменению скорости электрохимических процессов, но и изменяет значения рН раствора.

С ростом температуры карбонатного раствора потенциал максимума анодного тока, связанного с образованием оксида, при возрастании температуры на 10 С смещается в сторону отрицательных значений потенциала на 25 мВ . Вследствие неоднородности грунта, изменения его влажности и аэрации, неравномерного уплотнения, оглеения и др. эффектов, а также дефектов самого металла, возникает большое количество макрокоррозионных элементов. При этом коррозионному разрушению в большей степени подвергаются анодные участки, имеющие более положительный потенциал, по сравнению с катодными, чему способствует импульсное тепловое воздействие газопровода на миграционные процессы в грунтовом электролите.

Колебательные процессы температуры и влажности в грунте провоцирует общую коррозию. Макрокоррозионные элементы, локализованные на поверхности, развиваются по сценарию КРН или очагами язвенной коррозии. На общность электрохимического процесса, приводящего к образованию коррозионных язв и трещин, указывается в .

Именно неравновесные термодинамические процессы происходят более интенсивно и с максимальным эффектом проявления основных признаков. При импульсном температурном воздействии на грунт, почти синхронно, меняются параметры, определяющие его коррозионную активность. Так как этот процесс происходит на протяжении всего времени эксплуатации газопровода под сильным воздействием доминирующих параметров, то место локализации макроэлемента становится вполне определенным, зафиксированным по отношению к геометрическим отметкам.

Как показано в непрерывное колебательное движение грунтовой влаги, которое можно объяснить с позиций термокапиллярно-пленочного механизма движения происходит на протяжении всего времени эксплуатации газопровода.

Таким образом, даже при наличии катодной защиты газопровода, в местах повреждения изоляционного покрытия газопровода большого диаметра вследствие неравномерности распределения влажности грунта по периметру трубы неизбежно возникают макрокоррозионные элементы, провоцирующие почвенную коррозию металла трубы.

Одним из важных условий протекания коррозионных процессов является наличие в почвенном электролите диссоциированных ионов.

Ранее не принимаемый к рассмотрению фактор, определяющий протекание неравновесных процессов, импульсное температурное воздействие газа на стенку трубопровода и импульсное изменение влажности грунта, прилегающего к трубопроводу.

Результаты опытов и эффект повышения коррозионной активности грунтов при импульсном температурном воздействии

График кинетической кривой активности коррозионных процессов во времени. основываясь на физических представлениях процесса (рисунок 1.9) и используя закономерности кинетической кривой, экстраполировать результаты внутритрубной дефектоскопии по выявленным в различные периоды эксплуатации максимальным и средним дефектам. Но это вряд ли позволит прогнозировать динамику количественного роста коррозионных дефектов.

Представленные модели, описывают коррозионные процессы в рамках конкретных ситуаций, при соблюдении определенных условий, химической среды, температуры, сталей различных марок, давления и т.п. Особый интерес представляют модели, описывающие коррозионные процессы аналогичных систем (магистральных трубопроводов) с изоляционным покрытием, работающих в схожих условиях с газопроводами и регистрация результатов также на базе внутритрубной диагностики. Например, в методике проведения факторного анализа на магистральных нефтепроводах, независимо от диаметра и вида изоляционного покрытия авторами предлагается модель: где L-коэффициент затухания коррозионного процесса; Н – глубина коррозионного повреждения, мм; Но – толщина стенки трубы, мм; t – время эксплуатации, год.

Из приведенной формулы 1.6 видно, что авторами принято утверждение, что в начале эксплуатации трубопроводов коррозия имеет наиболее интенсивный рост, а затем носит затухающий характер вследствие пассивации. Вывод и обоснование формулы (1.6) приводятся в работе .

Утверждение, что коррозионные процессы стартуют с началом эксплуатации трубопровода, является довольно спорным, т.к. новое изоляционное покрытие обеспечивает защиту значительно надежней, чем со временем, когда изоляция стареет и теряет свои защитные свойства.

Несмотря на обилие исследований, ни одна из моделей, предложенных для прогнозирования коррозионных процессов, не позволяет в полной мере учитывать влияние температуры на скорость коррозии, т.к. не учитывают ее импульсное изменение в процессе эксплуатации.

Это утверждение позволяет сформулировать цель исследований: экспериментально доказать, что нестабильный температурный режим газопровода является первопричиной активации коррозионных процессов на наружной поверхности газопровода.

1. Проведен анализ литературных источников с целью раскрытия влияния температуры газа на коррозионное состояние газопровода:

1.1. Рассмотрены особенности коррозионных процессов в трубопроводном транспорте;

1.2.Определена роль коррозионной активности грунтов при утере изоляционным покрытием защитных свойств. 1.3. Изучена техническая возможность внутритрубной дефектоскопии по оценке дефектности трубопроводов.

1.4. Рассмотрены модели других исследователей по прогнозированию коррозионных процессов.

2. Исследованы причины формирования макрокоррозионных элементов на наружной поверхности трубопровода.

3. Доказано, что при движении влаги в коррозионно- активном слое грунта происходит изменение электрического сопротивления грунта, прилегающего к трубопроводу.

Анализ коррозионного состояния участка газопровода по данным внутритрубной дефектоскопии

На то, что периодическое увлажнение грунта ускоряет коррозионные процессы, указывает практика эксплуатации магистральных газопроводов.

Изучая это явление, Исмагилов И.Г. доказал, что магистральный газопровод большого диаметра является мощным источником тепла, оказывающим импульсное температурное воздействие на грунт и вызывающий колебательные движения влаги в коррозионно – активном слое грунта .

Однако, высказанное им предположение, что импульсное температурное воздействие усиливает коррозионную активность слоя грунта, прилегающего к трубопроводу, нуждается в экспериментальном подтверждении.

Поэтому целью исследования является постановка эксперимента для изучения и оценки коррозионной активности грунтов при импульсном температурном воздействии.

Задачи исследования коррозионных процессов обычно решаются экспериментальным путем. Существуют различные методы оценки влияния коррозии, в т. ч. и ускоренных коррозионных испытаний .

Таким образом, необходимо смоделировать условия тепломассообмена с окружающим грунтом, характерные для участка газопровода, пересекающего овраг, по дну которого протекает ручей и определить в какой степени изменяется коррозионная активность грунта при импульсном воздействии температуры и влажности.

Наиболее точно исследовать воздействие каждого фактора (импульсной температуры и влажности) возможно в лабораторных условиях, где фиксировано и с высокой точностью регулируется параметры процесса коррозии. Импульсный температурный режим газопровода при квазистационарном теплообмене моделировался для газопроводов, проходящих по территории Башкортостана и сходных с ним регионов. Согласно теории подобия, при равенстве чисел подобия, характеризующих процесс теплообмена, с соблюдением геометрического подобия, процессы теплообмена можно считать подобными .

Грунт, использованный в эксперименте, взят с трассы газопровода «Уренгой – Петровск» участка Поляна – Москово с позиций 3 часа, 12 часов и 6 часов по периметру газопровода. Теплофизические свойства грунта, использованного в лабораторных исследованиях, одинаковые с натурными, т.к. образцы грунтов отобраны с коррозионно-активного участка действующего газопровода. Для одинаковых грунтов автоматически выполнилось равенство чисел Лыкова Lu и Ковнера Кв для натуры и модели:

При соблюдении равенства температурных напоров, идентичности грунтов и одинаковом уровне их влажности выполнялось равенство чисел Коссовича Ко и Постнова Pn.

Таким образом, задача моделирования условий тепломассообмена, в данном случае, сводилась к такому подбору параметров установки, чтобы обеспечивалось равенство чисел Фурье Fo и Кирпичева Ki для натуры и модели.

При соответствии чисел Фурье Fo = ax/R годовому периоду эксплуатации трубопровода диаметром 1,42 м, при равенстве коэффициентов температуропроводности а = а, на основании (2.5) получаем для модели:

Так, при диаметре опытной трубы 20 мм годовой период на установке должен «проходить» за 1,7 ч.

Условия теплообмена моделировались критерием Кирпичева

При глубине заложения газопровода до оси трубы Н0 = 1,7 м и Н0/Rтр = 2,36 (относительная глубина заложения газопровода на участке Поляна – Москово), на основании равенства (2.6), получаем для модели:

Для моделирования «ручья» необходимо выдержать равенство чисел Рейнольдса для натуры и модели:

Так как жидкость одна и та же, вода - то на основании (2.12) и с учетом геометрического подобия, получаем равенство:

Соответствующие расчеты с учетом (2.13) показывают, что подача воды, имитирующей ручей на данной установке, должна быть капельной.

Так как в процессе эксперимента необходимо менять температуру стенки трубы в пределах реального ее изменения 30...40С , и регулировать, поддерживая импульсный режим, то в качестве управляющего параметра была выбрана температура tтр наружной поверхности стальной трубки - образца Ст. 3.

Для определения относительной коррозионной активности грунта при импульсном температурном воздействии, по сравнению со стабильным температурным воздействием, был выбран ускоренный метод испытания , на основании которого коррозионная активность грунтов определяется по потере массы стальных образцов.

Уточняющие интегральные показатели для определения выводимых в ремонт участков газопроводов

С целью проведения анализа коррозионного состояния и изучения динамики роста коррозионных дефектов на действующем магистральном газопроводе диаметром 1420 мм, рассмотрены результаты диагностики его технического состояния. Одним из ключевых направлений диагностики является ВТД, которая в настоящее время является наиболее оперативным и информативным методом диагностики магистральных газопроводов.

В таблице 3.1 приводятся общие критерии выделения участков магистральных газопроводов высокой, повышенной и умеренной коррозионной опасности по глубине коррозии. Согласно к участкам с высокой коррозионной опасностью (ВКО) относят участки со скоростью коррозии более 0,3 мм/год и глубиной более 15% от толщины стенки трубы.

Критерии оценки по глубине коррозионных поражений (в процентах от толщины стенки) применяют к трубопроводам с периодом эксплуатации, приближающимся к 30% амортизационного срока службы (11 лет и более).

Необходимым и достаточным условием для отнесения любого участка магистральных газопроводов к одной из трех степеней коррозионной опасности является соответствие хотя бы одному из трех указанных критериев.

Согласно к зонам повышенной коррозионной опасности относятся участки магистральных трубопроводов диаметром свыше 1000 мм на которых следует применять усиленный тип защитных покрытий,.

По результатам пропуска снарядов-дефектоскопов оценивают интегральный показатель коррозионного состояния участков магистральных газопроводов по плотности коррозионных дефектов sкд.

Интегральный показатель плотности коррозионных дефектов не учитывает неравномерность их распределения по длине газопровода и может применяться только для предварительной оценки коррозионного состояния магистральных газопроводов с обязательным указанием суммарной протяженности участков (в км), по которым он рассчитывается.

Поэтому, после определения интегрального показателя коррозионного состояния магистрального газопровода выполняется дифференцированный анализ участков магистрального газопровода по глубине и интенсивности коррозионных повреждений:

Оценивается характер распределения коррозионных дефектов по длине газопровода;

Выделяются участки ВКО и ПКО (коррозионной опасности);

Определяются показатели интенсивности коррозионных повреждений в пределах участков ВКО и ПКО;

Для всего контролируемого участка газопровода (от камеры запуска до камеры приема снаряда-дефектоскопа) рассчитывается коэффициент неравномерности плотности коррозионных повреждений bн, который равен

отношению суммарной длины неповрежденных коррозией участков к суммарной длине участков, имеющих повреждения (каверны и трещины), зарегистрированные внутритрубным дефектоскопом:

Более точно отражает степень коррозионной опасности (охвата) коэффициент дефектности труб Кд.

Так как размеры труб известны, то определены и линейные параметры дефектных участков. При известном количестве дефектных труб появляется возможность планировать их замену при капитальном ремонте (переизоляции) участка. В нефтепроводном транспорте, например, в АК «ТРАНСНЕФТЬ» для определения коррозионного состояния участков трубопроводов используют «Методику проведения факторного анализа коррозионных повреждений магистральных нефтепроводов по данным внутритрубной диагностики и выработки рекомендаций по ее предотвращению», которая также базируется на положении об изменении скорости развития коррозионных повреждений во времени . В основу факторного анализа положен метод разделения системы магистральных нефтепроводов на участки (кластеры), для которых сохраняется постоянство основных факторов, определяющих развитие коррозионных повреждений, а кинетика развития коррозионных повреждений во времени описывается регрессионными уравнениями – характеристическими зависимостями. По полученным характеристическим зависимостям осуществляется прогноз глубины коррозионных повреждений для случая однократного и повторного обследования внутритрубными приборами участка трубопровода.

Для анализа коррозионного состояния были рассмотрены параллельные участки (1843 – 1914 км) газопроводов Уренгой-Петровск и Уренгой-Новопсков, находящиеся на выходе с КС «Полянская», «горячий участок», подверженные активному и длительному коррозионному воздействию.

Это потенциально наиболее опасный участок в масштабах ООО «Газпром трансгаз Уфа», где с 1998 по 2003 годы на участке произошли 6 аварий по причине КРН (5 аварий на газопроводе Уренгой-Петровск, 1 авария на газопроводе Уренгой-Новопсков). После четырех аварий 1998 года, было проведено обследование в протяженных шурфах двенадцати участков газопровода Уренгой-Петровск (1844-1857 км), расположенных в оврагах и балках. При обследовании было выявлено 744 очага КРН, в том числе глубиной до 7,5 мм. С целью устранения очагов КРН было заменено 700 м трубопроводов . Аналогичная работа была проведена в 2000 году на газопроводе Уренгой-Новопсков, при этом было выявлено 204 очага КРН .

Участки со стресс-коррозионными дефектами не классифицируются в нормативной литературе на критерии высокой или повышенной категории коррозионной опасности . Но, с учетом вышеизложенного, участок в коридоре газопроводов 1843-1914 км по составу грунтов, может быть отнесен к коррозионно-активному.

Несмотря на принятые меры, в 2003 года на газопроводе Уренгой-Петровск, на рассматриваемом участке, произошли еще 2 аварии по причине КРН. С 2003 года диагностику технического состояния в газотранспортной отрасли стали проводить снарядами нового поколения НПО «Спецнефтегаз», которые при первой внутритрубной дефектоскопия выявили 22 участка с дефектами КРН, при этом максимальная глубина отдельных трещин достигала половины толщины стенки трубы. Согласно «Правилам эксплуатации магистральных газопроводов» внутритрубную дефектоскопию рекомендуется проводить в среднем один раз в 5 лет. Однако, учитывая особые обстоятельства (аварии по причине КРН, значительное количество выявленных участков с дефектами КРН), ООО «Газпром трансгаз Уфа» с целью отслеживания и предупреждения развития стресс -коррозионных дефектов, в короткий период с 2003г. по 2005 г. провело второй пропуск внутритрубного дефектоскопа .

ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО
АКЦИОНЕРНАЯ КОМПАНИЯ
ПО ТРАНСПОРТУ НЕФТИ «ТРАНСНЕФТЬ»
ОАО «АК «ТРАНСНЕФТЬ»

ТЕХНОЛОГИЧЕСКИЕ
РЕГЛАМЕНТЫ

ПРАВИЛА ПРОВЕДЕНИЯ ОБСЛЕДОВАНИЙ
КОРРОЗИОННОГО СОСТОЯНИЯ
МАГИСТРАЛЬНЫХ НЕФТЕПРОВОДОВ

Москва 2003

Регламенты, разработанные и утвержденные ОАО «АК «Транснефть», устанавливают общеотраслевые обязательные для исполнения требования по организации и выполнению работ в области магистрального нефтепроводного транспорта, а также обязательные требования к оформлению результатов этих работ.

Регламенты (стандарты предприятия) разрабатываются в системе ОАО «АК «Транснефть» для обеспечения надежности, промышленной и экологическом безопасности магистральных нефтепроводов, регламентации и установления единообразия взаимодействия подразделений Компании и ОАО МН при ведении работ по основной производственной деятельности как между собой, так и с подрядчиками, органами государственного надзора, а также унификации применения и обязательного исполнения требований соответствующих федеральных и отраслевых стандартов, правил и иных нормативных документов.

ПРАВИЛА ПРОВЕДЕНИЯ ОБСЛЕДОВАНИЙ
КОРРОЗИОННОГО СОСТОЯНИЯ
МАГИСТРАЛЬНЫХ НЕФТЕПРОВОДОВ

1. ОБЛАСТЬ ПРИМЕНЕНИЯ ПРАВИЛ

1.1. Правила обследования распространяются на магистральные нефтепроводы подземной прокладки, имеющие систему активной защиты от коррозии и тип изоляционного покрытия, соответствующий .

1.2. При разработке правил использованы нормативные документы:

Сооружения стальные магистральные. Общие требования к защите от коррозии.

Трубопроводы стальные магистральные. Общие требования к защите от коррозии.

РД 153-39.4-039-99 «Нормы проектирования ЭХЗ магистральных трубопроводов и площадок магистральных нефтепроводов».

2. ЗАДАЧИ ОБСЛЕДОВАНИЯ

Основными задачами обследования являются:

2.1. Оценка коррозионного состояния нефтепроводов.

2.2. Оценка состояния противокоррозионной защиты.

2.3. Своевременное обнаружение и устранение коррозионных повреждений.

2.4. Разработка и проведение мероприятий по повышению эффективности защиты, оптимизации работы средств ЭХЗ.

3. ОРГАНИЗАЦИЯ РАБОТ ПО ПРОТИВОКОРРОЗИОННОМУ ОБСЛЕДОВАНИЮ

3.1. Комплексное противокоррозионное обследование должно проводиться производственными лабораториями ЭХЗ при ОАО МН или специализированными организациями, имеющими разрешение (лицензию) Госгортехнадзора на проведение данных работ.

3.2. Обследование должно проводиться:

Не позднее чем через 6 месяцев после ввода в эксплуатацию системы электрохимической защиты вновь построенных нефтепроводов с обязательной выдачей сертификата соответствия качества противокоррозионной защиты государственным стандартам;

Не реже 1 раза в 5 лет для нефтепроводов, проложенных на участках с высокой коррозионной опасностью по ;

Не реже 1 раза в 10 лет на остальных участках.

Внеочередное обследование при обнаружении в процессе эксплуатации вредного влияния от систем ЭХЗ вновь построенных близлежащих и пересекающих подземных коммуникаций и от электрифицированных железных дорог.

3.3. В соответствии с периодичностью обследования по п. в ОАО МН должна быть разработана программа противокоррозионного обследования на ближайшие 10 лет.

3.4. Ежегодно до 1 января следующего года Программа должна корректироваться с учетом выполненных в текущем году работ по обследованию.

3.5. Обследование должно проводиться с использованием полевых лабораторий ЭХЗ и современного измерительного оборудования, как отечественного, так и импортного.

3.6. Методика обследования должна соответствовать РД «Инструкция по комплексному обследованию коррозионного состояния магистральных нефтепроводов».

3.7. Договоры на обследование со сторонними организациями должны быть заключены до 1 апреля текущего года.

3.8. Обязательным приложением к договору является «Программа коррозионного обследования нефтепровода», составленная на основании «Инструкции по комплексному обследованию коррози онного состояния МН», с учетом особенностей коррозионного состояния и коррозионных факторов обследуемого участка.

3.9. Окончательный срок выдачи результатов по коррозионному обследованию сторонней организацией должен быть не позднее 1 апреля следующего года. Информационный отчет с предварительными, наиболее важными результатами должен быть выдан до 1 ноября текущего года для своевременного включения в план следующего года мероприятий, требующих капитальных затрат.

4. СОСТАВ КОМПЛЕКСНОГО ОБСЛЕДОВАНИЯ

4.1. Анализ коррозионной опасности по трассе нефтепроводов проводится на основе данных коррозионной опасности грунтов, в том числе и микробиологической, наличию и характеру блуждающих токов, наличию участков, длительное время находившихся без защиты.

4.2. Сбор и анализ статистических данных об условиях эксплуатации противокоррозионной защиты обследуемого участка нефтепровода за весь предшествующий комплексному обследованию период: технологических характеристик средств ЭХЗ, сведений о работе средств электрохимической защиты за прошедший период эксплуатации, сведений по состоянию изоляции.

4.3. Проведение комплекса электрометрических работ:

По локализации дефектов и оценке переходного сопротивления изоляционного покрытия методом градиента потенциала, методом выносного электрода и другими методами;

По измерению защитного потенциала по протяженности, а в зонах блуждающих токов - по протяженности и по времени;

По измерению коррозионных характеристик почвы - удельного сопротивления грунта, поляризационных характеристик почвы.

4.4. Определение коррозионно-опасных мест на основе обработки и анализа данных обследования.

4.5. Вскрытие нефтепровода в коррозионно-опасных местах в процессе обследования с составлением актов шурфовки, устранение дефектов изоляции и коррозионных повреждений силами эксплуатационных служб.

4.6. Решение расчетно-аналитических задач по обеспечению коррозионной безопасности нефтепровода:

4.6.1. Оценка состояния изоляции, в том числе:

Прогнозирование изменения ее физико-химических свойств во времени;

Оценка остаточного ресурса изоляции;

Определение оптимального срока и очередности ремонта изоляции участков.

4.6.2. Определение технического состояния средств ЭХЗ:

Соответствие параметров установок нормативным документам;

Техническое состояние элементов установок ЭХЗ;

Прогнозирование изменения параметров установок ЭХЗ во времени;

Выработка мероприятий по оптимизации работы и срокам проведения ремонта средств ЭХЗ.

4.6.3. Оценка коррозионного состояния нефтепровода.

4.7. Составление отчета по проведенному обследованию с выдачей рекомендаций по совершенствованию комплексной защиты нефтепроводов.

4.8. При необходимости разработка проекта ремонта и реконструкции средств ЭХЗ на основе рекомендаций обследования.

4.9. Результаты обследования должны быть представлены на бумажных и магнитных носителях.

4.10. Служба ЭХЗ ОАО МН после получения отчета должна использовать результаты обследования для пополнения эксплуатационной и архивной базы данных о состоянии противокоррозионной защиты.

5. ОСНОВНЫЕ ПОЛОЖЕНИЯ МЕТОДИКИ ОБСЛЕДОВАНИЯ

5.1. Анализ коррозионной опасности по трассе нефтепровода

5.1.2. Оценку коррозионной опасности по трассе нефтепровода производят с целью выделения участков, требующих первоочередного обследования с расширенным перечнем электрометрических работ.

5.1.3. Оценка коррозионной опасности не производится в том случае, когда коррозионно-опасные участки установлены ранее.

5.1.4. Измерение удельного электрического сопротивления грунта производится по четырехэлектродной схеме Веннера.

5.1.5. Коррозионную опасность от биологической коррозии определяют с помощью микробиологического анализа грунтов по существующим методикам.

5.1.6. Коррозионную опасность от блуждающих токов рассчитывают по формулам с учетом расстояния между электрифицированной ж/д и нефтепроводом, расстояния между тяговыми подстанциями и рода тока ж/д (постоянный, переменный).

5.1.7. Общая коррозионная опасность рассчитывается с учетом величин, указанных в пп. - . По результатам оценки коррозионной опасности определяют очередность и объем обследования участков нефтепроводов.

5.2. Анализ данных по условиям эксплуатации противокоррозионной защиты за предыдущий период.

5.2.1. Цель анализа:

Определение опасных в коррозионном отношении участков нефтепровода;

Интегральная оценка сопротивления изоляции по участкам за весь период эксплуатации.

5.2.2. Для анализа необходимо обобщить данные:

По результатам осмотра нефтепровода в шурфах по представленным актам шурфовки;

По внутритрубной дефектоскопии;

По коррозионным отказам нефтепроводов;

По проводившимся ранее замерам защитного потенциала и режимам работы установок ЭХЗ.

5.2.3. Участки, имевшие коррозионные поражения, подлежат детальному изучению. Все коррозионные поражения следует сопоставить с оценкой коррозионной опасности, определенной на первом этапе обследования.

5.2.4. Ретроспективная оценка состояния изоляции производится по сопротивлению изоляции, рассчитанному по эксплуатационным данным установок ЭХЗ и распределению разности потенциалов вдоль трубопровода.

5.3. Проведение электрометрических работ

5.3.1. Поиск дефектных мест в изоляции производят одним из следующих методов:

Выносного электрода;

Градиента напряжения постоянного тока;

Продольного градиента;

Поперечного градиента.

5.3.2. Измерение защитного потенциала по протяженности определяют по поляризационному потенциалу.

5.3.3. Поляризационный потенциал измеряют по методикам в соответствии с и НТД.

5.3.4. Сплошные измерения защитного потенциала могут быть выполнены следующим образом:

Методом выносного электрода;

Методом интенсивных измерений с использованием отключения средств ЭХЗ.

5.3.5. На основании замеров составляется график распределения защитного потенциала вдоль нефтепровода.

5.4. Решение расчетных задач по обеспечению коррозионной безопасности

5.4.1. При оценке текущего состояния изоляции и прогнозировании изменения ее параметров решают следующие задачи:

Дают интегральную оценку по сопротивлению ее постоянному току;

Определяют физико-химические свойства изоляции;

Рассчитывают остаточный ресурс изоляции;

Определяют оптимальный срок переизоляции нефтепровода.

5.4.2. Определение параметров средств ЭХЗ и прогнозирование изменения ее параметров во времени.

Расчеты производятся на основании исходных данных:

Электрических параметров катодных и протекторных установок;

Паспортных характеристик средств ЭХЗ;

Конструктивных и электрических параметров анодных заземлений;

Данных периодического контроля установок ЭХЗ.

5.4.3. Оценка остаточного ресурса элементов установок ЭХЗ производится:

Для установок катодной защиты:

Анодного заземления;

Катодного преобразователя;

Дренажной линии;

Защитного заземления.

Для установок дренажной защиты:

Дренажа;

Дренажной линии;

Для протекторных установок - протекторов.

5.4.4. Комплексная оценка состояния ЭХЗ нефтепровода осуществляется в соответствии с по следующим критериям:

Общая защищенность;

Защищенность трубопровода по протяженности;

Защищенность трубопровода по времени.

5.5. Оценка коррозионного состояния нефтепровода производится с целью выявления наиболее опасных в коррозионном отношении участков нефтепроводов

5.5.1. Оценка производится путем обобщения всех данных обследования и данных по наличию коррозионных повреждений. Сводные данные по коррозионному состоянию заносятся в форму, определяемую НТД по противокоррозионному обследованию.

5.5.2. Коррозионную опасность определяют по сумме баллов, которыми оцениваются влияние различных коррозионных факторов.

5.6.2. На основании анализа данных о состоянии изоляционного покрытия и расчетов остаточного ресурса изоляции должны быть выделены участки и сроки ремонта изоляции.

5.6.3. На основании данных о работе средств ЭХЗ и технико-экономических расчетов по остаточному ресурсу и оптимизации должны быть определены мероприятия по совершенствованию системы ЭХЗ для обеспечения требуемой защиты по протяженности и по времени.

Диагностика - это часто встречающееся слово в современном мире. Оно так крепко вжилось в наш ежедневный словарный круговорот, что мы и не обращаем на него никакого особого внимания. Сломалась стиральная машина - диагностика, обслуживание в сервисе любимого авто - диагностика, поход к врачу - диагностика. Эрудированный человек скажет: диагностика с греческого - «способность распознавать». Так что же нам, собственно, необходимо распознать в техническом состоянии металлического объекта, подвергающегося коррозии и в системах электрохимической (в основном катодной) защиты при их наличии на объекте? Об этом мы кратко и расскажем в данном обзоре.

В первую очередь договоримся о терминах. Когда употребляется термин коррозионная диагностика (обследование) в 90 % случаев идет речь о наружной поверхности рассматриваемого объекта. Диагностика выполняется, например, на наружной поверхности подземных трубопроводов, резервуаров, других металлоконструкций, подверженных почвенной коррозии или коррозии блуждающими токами, наружной поверхности причальных сооружений, корродирующих под влиянием соленой и пресной воды и т.д. Если мы говорим об анализе коррозионных процессов на внутренней поверхности тех же трубопроводов или резервуаров, то вместо терминов «диагностика» или «обследование» обычно применяется термин «мониторинг». Разные термины подразумевают разные принципы обеспечения коррозионной безопасности - исследование коррозионного состояния наружной поверхности обычно проводится дискретно, 1 раз в 3-5 лет, а мониторинг коррозионных процессов внутри исследуемого объекта осуществляется или непрерывно, или с небольшим интервалом (1 раз в месяц).

Так с чего же начать при диагностике коррозионного состояния рассматриваемого объекта? С оценки потенциальной опасности и текущего положения вещей. Если объект, например, подводный, то на первом этапе потенциально возможно провести визуальный контроль наличия коррозионных дефектов и следов коррозии, и при их наличии оценить текущую и прогнозируемую опасность. В местах, где визуальный контроль невозможен, оценка потенциальной опасности проводится по косвенным признакам. Рассмотрим ниже основные диагностируемые параметры потенциальной коррозионной опасности и их влияние на процесс коррозионного разрушения:


Помимо указанных выше основных факторов, при проведении диагностики коррозионного состояния, в зависимости от характеристик объекта, изучают большое количество дополнительных параметров, таких как: водородный показатель (pH) грунта или воды (особенно при потенциальной опасности коррозионного растрескивания под напряжением), наличие коррозионно-опасных микроорганизмов, содержание солей в грунте или воде, возможность аэрации и увлажнения объекта и т.д. Все эти факторы могут при определенных условиях резко увеличивать скорость коррозионного разрушения объекта обследования.

После изучения параметров потенциальной коррозионной опасности часто проводят прямые измерения глубины коррозионных повреждений на объекте. Для этих целей используется весь спектр методов неразрушающего контроля - визуальный и измерительный контроль, ультразвуковые методы, магнитометрический контроль и т.д. Места контроля выбираются исходя из их потенциальной опасности по результатам выполненной оценки на первом этапе. Для подземных объектов для обеспечения доступа непосредственно к объекту выполняют шурфование.

На финальном этапе могут быть выполнены лабораторные исследования, например оценка скорости коррозии в лабораторных условиях или металлографические исследования состава и структуры металла в местах коррозионных дефектов.

Если диагностика выполняется на объекте, который уже оснащен системами противокоррозионной электрохимической защиты, то помимо исследования коррозионного состояния самого объекта выполняется диагностика исправности и качества работы существующей системы ЭХЗ, т.е. ее работоспособность в целом и значения выходных и контролируемых параметров в частности. Опишем наиболее важные параметры системы ЭХЗ, которые необходимо контролировать при проведении комплексного обследования систем ЭХЗ.

  1. Катодный потенциал . Главный параметр работоспособности систем катодной и протекторной защиты. Определяет степень защищённости объекта от коррозии средствами ЭХЗ. Нормативные значения задаются основополагающими нормативными документами по противокоррозионной защите: ГОСТ 9.602-2005 и ГОСТ Р 51164-98. Измеряется как на стационарных пунктах (КИП и КДП), так и по трассе методом выносного электрода.
  2. Состояние средств ЭХЗ: станций катодной, протекторной и дренажной защиты, анодных заземлений, КИП, изолирующих фланцев, кабельных линий и т.д. Все характеристики обследуемого оборудования должны быть в рамках значений, заданных в проекте. Дополнительно следует выполнить прогноз работоспособности оборудования на период до следующего обследования. Например, станции катодной защиты должны иметь запас по току для возможности регулирования защитного потенциала объекта при неминуемом старении изоляционного покрытия. Если запаса по току нет, следует запланировать замену станции катодной защиты на более мощную и/или ремонт анодного заземления.
  3. Влияние системы ЭХЗ на сторонние объекты . В случае ошибок проектирования систем ЭХЗ возможно их вредное влияние на сторонние металлические сооружения. Особенно часто это бывает на трубопроводах месторождений нефти и газа, промышленных площадках, объектах внутри плотной городской застройки. Механизм такого влияния подробно описан . Оценка такого влияния обязательно должна проводиться в рамках диагностики систем ЭХЗ.

По результатам обследования должен быть подготовлен технический отчет, который должен содержать все числовые данные произведенных замеров, графики защитных потенциалов и так называемые трассовки, описание выявленных недостатков и дефектов, подробные фотоматериалы и т.д. Также в отчете должен быть сделан вывод по коррозионной опасности объекта с локализацией мест повышенного риска и разработаны технические решения по противокоррозионной защите.

Итак, по выполнении всех этапов диагностики заказчик получает отчет, в котором содержится подробная информация по коррозионному состоянию объекта и состоянию системы ЭХЗ. Но добытая диагностическими бригадами (порой с большим трудом, учитывая особенности местности и климата) информация просто пропадет, станет неактуальной, если в течение определенного времени ее не отработать, т.е. своевременно не устранить дефекты, которые были выявлены в ходе обследования, или не оборудовать объект обследования дополнительными средствами противокоррозионной защиты. Коррозионная ситуация на объекте постоянно меняется и если сразу не отработать полученную диагностическую информацию она может сильно устареть. Поэтому если владелец заботится о коррозионной безопасности своих объектов, то их система противокоррозионной защиты регулярно модернизируется по результатам так же регулярно выполняемых диагностических обследований, и риск коррозионного отказа на таких объектах минимален.

Тэги: блуждающие токи, диагностика коррозии, диагностика коррозионного состояния, изоляционное покрытие, индукционное влияние, источники переменного тока, коррозионная опасность, коррозионно-опасные микроорганизмы, коррозионное обследование, коррозионное растрескивание под напряжением, коррозионное состояние, сопротивление электролита, состояние изоляционного покрытия, электрохимическая защита, электрохимический потенциал, ЭХЗ

← Вернуться

×
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:
Я уже подписан на сообщество «sinkovskoe.ru»