Значение слова баллистика. Внутренняя баллистика

Подписаться
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:

Вне орудийного ствола. Существует также понятие терминальной (конечной) баллистики, имеющий отношение к взаимодействию снаряда и тела, в которое он попадает, и движению снаряда после попадания. Терминальной баллистикой занимаются оружейники-специалисты по снарядам и пулям, прочнисты и другие специалисты по броне и защите, а также криминалисты. Также в практической физике в этом направлении используется закон рычага.

Главной задачей научной Б. является математическое решение задачи о зависимости кривого полета (траектории) брошенных и выстрелянных тел от ее факторов (силы пороха, силы тяжести, сопротивления воздуха, трения). Для этой цели является необходимым знание высшей математики, и добытые таким путем результаты представляют ценность только для людей науки и конструкторов оружия. Но понятно, что для солдата-практика стрельба является делом простого навыка.

История

Первые исследования относительно формы кривой полета снаряда (из огнестрельного оружия) сделал в 1546 г. Тарталья . Галилей установил при посредстве законов тяжести свою параболическую теорию, в которой не было принято во внимание влияние сопротивления воздуха на снаряды. Теорию эту можно применить без большой ошибки к исследованию полета ядер только при небольшом сопротивлении воздуха. Изучением законов воздушного сопротивления мы обязаны Ньютону, который доказал в 1687 г., что кривая полета не может быть параболой. Робинс (в 1742 г.) занялся определением начальной скорости ядра и изобрел употребляемый и поныне баллистический маятник . Первое настоящее решение основных задач баллистики дал знаменитый математик Эйлер . Дальнейшее движение Б. дали Гуттон, Ломбард (1797 г.) и Обенгейм (1814 г.). С 1820 г. влияние трения стало все более и более изучаться, и в этом отношении много работали физик Магнус , французские ученые Пуассон и Дидион и прусский полковник Отто. Новым толчком к развитию Б. послужило введение во всеобщее употребление нарезного огнестрельного орудия и продолговатых снарядов. Вопросы Б. стали усердно разрабатываться артиллеристами и физиками всех стран; для подтверждения теоретических выводов стали производиться опыты, с одной стороны, в артиллерийских академиях и школах, с другой стороны, на заводах, изготовляющих оружие; так, напр., очень полные опыты для определения сопротивления воздуха произведены были в Петерб. в 1868 и 1869 г., по распор. ген.-ад. Баранцева, заслуженным профессором Михайловской артиллерийской академии , Н. В. Маиевским , оказавшим большие услуги Б., - и в Англии Башфортом. В последнее время на опытном поле пушечного завода Круппа определялась скорость снарядов из орудий разного калибра в различных точках траектории, и достигнуты были очень важные результаты. Кроме Н. В. Маиевского, заслуги которого оценены надлежащим образом и всеми иностранцами, в ряду множества ученых, в новейшее время работавших по Б., особенно заслуживают внимания: проф. Алж. лицея Готье, франц. артиллеристы - гр. Сен-Роберт, гр. Магнус де Спарр, майор Мюзо, кап. Жуффре; итал. арт. капит. Сиаччи, изложивший в 1880 г. решение задач прицельной стрельбы, Нобль, Нейман, Прен, Эйбль, Резаль, Сарро и Пиобер, положивший основание внутренней Б.; изобретатели баллистических приборов - Уитстон, Константинов, Наве, Марсель, Депре, Лебуланже и др.

Баллистическая экспертиза

Исследование стрелкового оружия на стенде в ходе баллистической экспертизы.

Вид судебно-криминалистической экспертизы , задача которой состоит в том, чтобы дать следствию ответы на технические вопросы, возникающие в ходе расследования случаев применения огнестрельного оружия. В частности, установление соответствия между стреляной пулей (а также гильзой и характером разрушений, произведённых пулей) и оружием, из которого был произведён выстрел.

См. также

Примечания

Литература

По внешней баллистике

  • Н. В. Майевский «Курс внешн. Б.» (СПб., 1870);
  • Н. В. Майевский «О решении задач прицельной и навесной стрельбы» (№ 9 и 11 «Арт. Журн.», 1882 г.)
  • Н. В. Майевский «Изложение способа наименьших квадратов и применение его преимущественно к исследованию результатов стрельбы» (СПб., 1881 г.);
  • X. Г., «По поводу интегрирования уравнений вращательного движения продолговатого снаряда» (№ 1, « Арт. Журн.», 1887 г.);
  • Н. В. Майевский «Trait é de Baiist, exter.» (Париж, 1872);
  • Дидион, «Trait é de Balist.» (Пар., 1860);
  • Робинс, «Nouv. principes d’artil. com. par Euler et trad. par Lombard» (1783);
  • Лежандр, «Dissertation sur la question de ballst.» (1782);
  • Поль де Сен-Роберт, « Mè moires scientit.» (т. I, «Balist», Typ., 1872);
  • Отто, "Tables balist, g énèrales pour le tir élevè " (Пар., 1844);
  • Нейман, «Theorie des Schiessens und Werfens» («Archiv f. d. Off. d. preus. Art. und. Ing. Corps» 1838 и след.);
  • Пуассон (Poisson), «Recherches sur le mouvement des project» (1839);
  • Гели (H élie), «Traité de Baiist, experim.» (Пар., 1865);
  • Сиаччи, (Siacci), «Corso di Balistica» (Typ., 1870);
  • Магнус де Спарр (Magnus de Sparre), «Mouvement des projects oblongs dans le cas du tir du plein fouet» (Пар., 1875);
  • Мюзо (Muzeau), «Sur le mouv. des project. oblongs dans Pair» (Пар., 1878);
  • Башфорт (Baschforth), «A mathematical treatise on thy motion of projectiles» (Лонд., 1873);
  • Тилли (Tilly), «Balist.» (Брюсс., 1875);
  • Астье (Astier), «Balist ext.» (Фонтенбло, 1877);
  • Резаль (R èsal), «Traité de mec. gener.» t. i, «Mouv. des proj. obl. d. l’air» (Пар., 1873);
  • Матиэ (Mathieu), «Dynamique analyt»;
  • Сиаччи, «Nuovo metodo per rivolvere и problemi del tiro» (Giorno di Art. e Gen. 1880, part. II punt 4);
  • Отто (Otto), «Erörterung über die Mittel fü r Beurtheilung der Wahrscheinlichkeit des Treffens» (Берл., 1856);
  • Дидион (Didion), «Calcul des probabilit è s applique au tir des project.» (Пар., 1858);
  • Лиагр (Liagre), «Calcul des probabilit è s»;
  • Сиаччи (Siacci), «Sur le calcul des tables de tir» («Giorn. d’Art, et Gen.», parte II, 1875 г.) Жуффре (Jouffret),
  • Сиаччи (Siacci), «Sur r è tablisse meut et l’usage des tables de tir» (Париж, 1874);
  • Сиаччи (Siacci), «Sur la probabilit è du tir des bouches а feu et la methode des moindre carr è s» (Париж, 1875);
  • Гаупт, «Mathematische Theorie aer Flugbahn der gezog. Geschosse» (Берлин, 1876);
  • Гентш, «Ballistik der Handfeuerwaffen» (Берлин, 1876).

По внутренней баллистике

  • Нобль и Эйбль, «Исследование взрывчатых составов; действие восплам. пороха» (перев. В. А. Пашкевича, 1878);
  • Пиобер, «Propri étè s et effets de la poudre»;
  • Пиобер, «Mouvement des gazs de la poudre» (1860);
  • Поль де С.-Робер (Pol de St. Robert), «Principes de thermodynamique» (1870);
  • Резаль (R èsal), «Recherches sur le mouvement des project. dans des arme s а’feu» (1864);
  • A. Руцкий (Rutzki), «Die Theorie der Schiesspr ä parate» (Вена, 1870);
  • M. Э. Сарро (Sarrau) «Recherches theorethiqnes sur les effets de la poudre et des substances explosives» (1875);
  • M. Э. Сарро (Sarrau) «Nouvelles recherches sur les effets de la poudre dans les armes» (1876) и
  • M. Э. Сарро (Sarrau) «Formules pratiques des vitesse et des pressions dans les armes» (1877).

Ссылки

  • Зависимость формы траектории от угла бросания. Элементы траектории
  • Коробейников А. В., Митюков Н. В. Баллистика стрел по данным археологии: введение в проблемную область. Монография адресованная студентам и историческим реконструкторам. Описаны методики реконструкции стрел по их наконечникам, способы баллистической экспертизы городищ для оценки их уровня защиты, модели бронепробиваемости стрел и пр.

Wikimedia Foundation . 2010 .

Синонимы :
  • Безработица
  • Старый город (Вильнюс)

Смотреть что такое "Баллистика" в других словарях:

    БАЛЛИСТИКА - (от греч. ballein бросать). Наука о движении тяжелых тел, брошенных в пространство, преимущественно артиллерийских снарядов. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. БАЛЛИСТИКА [Словарь иностранных слов русского языка

    БАЛЛИСТИКА - (Ballistics) наука о движении тяжелого тела, брошенного в пространство. Прилагается преимущественно к изучению движения снарядов, пуль, а также авиабомб. Внутренняя Б. изучает движение снаряда внутри канала орудия, внешняя Б. по вылете снаряда.… … Морской словарь

    БАЛЛИСТИКА - (немецкое Ballistik, от греческого ballo бросаю), 1) наука о движении артиллерийских снарядов, неуправляемых ракет, мин, бомб, пуль при стрельбе (пуске). Внутренняя баллистика изучает движение снаряда в канале ствола, внешняя после его вылета. 2) … Современная энциклопедия

    БАЛЛИСТИКА - БАЛЛИСТИКА, наука о движении снарядов, включая пули, артиллерийские снаряды, бомбы, ракеты и УПРАВЛЯЕМЫЕ СНАРЯДЫ. Внутренняя баллистика изучает движение снарядов в канале ствола орудия. Внешняя баллистика исследует траекторию полета снарядов.… … Научно-технический энциклопедический словарь

ОСНОВЫ ВНУТРЕННЕЙ И ВНЕШНЕЙ БАЛЛИСТИКИ

Баллистика (нем. Ballistik, от греч. ballo - бросаю), наука о движении артиллерийских снарядов, пуль, мин, авиабомб, активнореактивных и реактивных снарядов, гарпунов и т.п.

Баллистика – военно-техническая наука, основывающаяся на комплексе физико-математических дисциплин. Различают внутреннюю и внешнюю баллистику.

Возникновение баллистики как науки относится к XVI в. Первыми трудами по баллистике являются книги итальянца Н. Тартальи «Новая наука» (1537) и «Вопросы и открытия, относящиеся к артиллерийской стрельбе» (1546). В XVII в. фундаментальные принципы внешней баллистики были установлены Г. Галилеем, разработавшим параболическую теорию движения снарядов, итальянцем Э. Торричелли и французом М. Мерсенном, который предложил назвать науку о движении снарядов баллистикой (1644). И. Ньютон провёл первые исследования о движении снаряда с учётом сопротивления воздуха – «Математические начала натуральной философии» (1687). В XVII – XVIII в в. исследованием движения снарядов занимались: голландец Х. Гюйгенс, француз П. Вариньон, швейцарец Д. Бернулли, англичанин Б. Робинс, русский учёный Л. Эйлер и др. Экспериментальные и теоретические основы внутренней баллистики заложены в XVIII в. в трудах Робинса, Ч. Хеттона, Бернулли и др. В XIX в. были установлены законы сопротивления воздуха (законы Н.В. Маиевского, Н.А. Забудского, Гаврский закон, закон А.Ф. Сиаччи). В начале 20 в. дано точное решение основной задачи внутренней баллистики – работы Н.Ф. Дроздова (1903, 1910), исследовались вопросы горения пороха в неизменном объёме – работы И.П. Граве (1904) и давления пороховых газов в канале ствола – работы Н.А. Забудского (1904, 1914), а также француза П. Шарбонье и итальянца Д. Бианки. В СССР большой вклад в дальнейшее развитие в баллистики внесён учёными Комиссии особых артиллерийских опытов (КОСЛРТОП) в 1918-1926. В этот период В.М. Трофимовым, А.Н. Крыловым, Д.А. Вентцелем, В.В. Мечниковым, Г.В. Оппоковым, Б.Н. Окуневым и др. выполнен ряд работ по совершенствованию методов расчёта траектории, разработке теории поправок и по изучению вращательного движения снаряда. Исследования Н.Е. Жуковского и С.А. Чаплыгина по аэродинамике артиллерийских снарядов легли в основу работ Е.А. Беркалова и др. по совершенствованию формы снарядов и увеличению дальности их полёта. В.С. Пугачев впервые решил общую задачу о движении артиллерийского снаряда. Важную роль в решении проблем внутренней баллистики играли исследования Трофимова, Дроздова и И.П. Граве, написавшего в 1932-1938 наиболее полный курс теоретической внутренней баллистики.



Значительный вклад в развитие методов оценки и баллистического исследования артиллерийских систем и в решение специальных задач внутренней баллистики внесли М.Е. Серебряков, В.Е. Слухоцкий, Б.Н. Окунев, а из иностранных авторов – П. Шарбонье, Ж. Сюго и др.

В период Великой Отечественной войны 1941-1945 под руководством С.А. Христиановича проведены теоретические и экспериментальные работы по повышению кучности реактивных снарядов. В послевоенное время эти работы продолжались; исследовались также вопросы повышения начальных скоростей снарядов, установления новых законов сопротивления воздуха, повышения живучести ствола, развития методов баллистического проектирования. Значительное развитие получили работы по исследованию периода последействия (В.Е. Слухоцкий и др.) и развитию методов Б. для решения специальных задач (гладкоствольные системы, активнореактивные снаряды и др.), задач внешней и внутренней Б. применительно к реактивным снарядам, дальнейшего совершенствования методики баллистических исследований, связанных с использованием ЭВМ.

Сведения внутренней баллистики

Внутренняя баллистика - это наука, занимающаяся изучением процессов, которые происходят при выстреле, и в особенности при движении пули (гранаты) по каналу ствола.

Сведения внешней баллистики

Внешняя баллистика - это наука, изучающая движение пули (гранаты) после прекращения действия на нее пороховых газов. Вылетев из канала ствола под действием пороховых газов, пуля (граната) движется по инерции. Граната, имеющая реактивный двигатель, движется по инерции после истечения газов из реактивного двигателя.

Полет пули в воздухе

Вылетев из канала ствола, пуля движется по инерции и подвергается действию двух сил силы тяжести и силы сопротивления воздуха



Сила тяжести заставляет пулю постепенно понижаться, а сила сопротивления воздуха непрерывно замедляет движение пули и стремится опрокинуть ее. На преодоление силы сопротивления воздуха затрачивается часть энергии пули

Сила сопротивления воздуха вызывается тремя основными причинами трением воздуха, образованием завихрений образованием бал­листической волны (рис. 4)

Пуля при полете сталкивается с частицами воздуха и заставляет их колебаться. Вследствие этого перед пулей повышается плотность воздуха и образуются звуковые волны, образуется баллистическая волна Сила сопротивления воздуха зависит от формы пули, скорости полета, калибра, плотности воздуха

Рис. 4. Образование силы сопротивления воздуха

Для того чтобы пуля не опрокидывалась под действием силы сопро­тивления воздуха, ей придают с помощью нарезов в канале ствола быстрое вращательное движение. Таким образом, в результате действия на пулю силы тяжести и силы сопротивления воздуха она будет двигаться не равномерно и прямолинейно, а опишет кривую линию - траекторию.

Их при стрельбе

На полет пули в воздухе оказывают влияние метеорологические, баллистические и топографические условия

При пользовании таблиц необходимо помнить, что данные траектории в них соответствуют нормальным условиям стрельбы.

За нормальные (табличные) условия приняты следующие.

Метеорологические условия:

· атмосферное давление на горизонте оружия 750 мм рт. ст.;

· температура воздуха на горизонте оружия +15 градусов Цельсия;

· относительная влажность воздуха 50% (относительной влажностью называется отношение количества водяных паров, содержащихся в воздухе, к наибольшему количеству водяных паров, которое может содержаться в воздухе при данной температуре),

· ветер отсутствует (атмосфера неподвижна).

Рассмотрим, какие поправки дальности на внешние условия стрельбы приводятся в таблицах стрельбы для стрелкового оружия по наземным целям.

Табличные поправки дальности при стрельбе из стрелкового оружия по наземным целям, м
Изменение условий стрельбы от табличных Вид патрона Дальность стрельбы, м
Температуры воздуха и заряда на 10°С Винтовочный
Обр. 1943 г. - -
Давления воздуха на 10 мм рт. ст. Винтовочный
Обр. 1943 г. - -
Начальной скорости на 10 м/сек Винтовочный
Обр. 1943 г. - -
На продольный ветер со скоростью 10 м/сек Винтовочный
Обр. 1943 г. - -

Из таблицы видно, что наибольшее влияние на изменение дальности полета пуль имеют два фактора: изменение температуры и падение начальной скорости. Изменения дальности, вызываемые отклонением давления воздуха и продольным ветром, даже на расстояния 600-800 м практического значения не имеют, и их можно не учитывать.

Боковой ветер вызывает отклонение пуль от плоскости стрельбы в ту сторону, куда он дует (см. рис. 11).

Скорость ветра определяется с достаточной точностью по простым признакам: при слабом ветре (2-3 м/сек) носовой платок и флаг колышутся и слегка развеваются; при умеренном ветре (4-6 м/сек) флаг держится развернутым, а платок развевается; при сильном ветре (8-12 м/сек) флаг с шумом развевается, платок рвется из рук и т. д. (см. рис.12).

Рис. 11 Влияние направления ветра на полет пули:

А – боковое отклонение пули при ветре, дующем под углом 90° к плоскости стрельбы;

А1 – боковое отклонение пули при ветре, дующем под углом 30° к плоскости стрельбы: А1=А*sin30°=A*0,5

А2 – боковое отклонение пули при ветре, дующем под углом 45° к плоскости стрельбы: А1=А*sin45°=A*0,7

В наставлениях по стрелковому делу приведены таблицы поправок на боковой умеренный ветер (4 м/сек), дующий перпендикулярно к плоскости стрельбы.

При отклонении условий стрельбы от нормальных может возникнуть необходимость определения и учета поправок дальности и направления стрельбы, для чего необходимо руководствоваться правилами в наставлениях по стрелковому делу

Рис. 12 Определение скорости ветра по местным предметам

Таким образом, дав определение прямому выстрелу, разобрав его практическое значение при стрельбе, а также влияние условий стрельбы на полет пули, необходимо умело применять эти знания при выполнении упражнений из табельного оружия как на практических занятиях по огневой подготовке, так и при выполнении служебно-оперативных задач.

Явление рассеивания

При стрельбе из одного и того же оружия, при самом тщательном соблюдении точности и однообразности производства выстрелов, каждая пуля вследствие ряда случайных причин описывает свою траекторию и имеет свою точку падения (точку встречи), не совпадающую с другими, вследствие чего происходит разбрасывание пуль.

Явление разбрасывания пуль при стрельбе из одного и того же оружия в практически одинаковых условиях называется естественным рассеиванием пуль или рассеиванием траектории. Совокупность траекторий пуль, полученных вследствие их естественного рассеивания, называется снопом траекторий.

Точка пересечения средней траектории с поверхностью цели (преграды) называется средней точкой попадания или центром рассеивания

Площадь рассеивания обычно имеет форму эллипса. При стрельбе из стрелкового оружия на близкие расстояния площадь рассеивания в вертикальной плоскости может иметь форму круга (рис13.).

Взаимноперпендикулярные линии, проведенные через центр рассеивания (среднюю точку попадания) так, чтобы одна из них совпала с направлением стрельбы, называются осями рассеивания.

Кратчайшие расстояния от точек встречи (пробоин) до осей рассеивания называются отклонениями.

Рис. 13 Сноп траектории, площадь рассеивания, оси рассеивания:

а – на вертикальной плоскости, б – на горизонтальной плоскости, средняятраектория обозначена красной линией, С – средняя точка попадания, ВВ 1 – осьрассеивания по высоте, ББ 1 , – ось рассеивания по боковому направлению, dd 1 , – ось рассеивания по дальности попадания. Площадь, на которой располагаются точки встречи (пробоины) пуль, полученные при пересечении снопа траекторий с какой-либо плоскостью, называется площадью рассеивания.

Причины рассеивания

Причины, вызывающие рассеивание пуль, могут быть сведены в три группы:

· причины, вызывающие разнообразие начальных скоростей;

· причины, вызывающие разнообразие углов бросания и направления стрельбы;

· причины, вызывающие разнообразие условий полета пули. Причинами, вызывающими разнообразие начальных скоростей пуль, являются:

· разнообразие в весе пороховых зарядов и пуль, в форме и размерах пуль и гильз, в качестве пороха, плотности заряжания и т. д. как результат неточностей (допусков) при их изготовлении;

· разнообразие температур зарядов, зависящее от температуры воздуха и неодинакового времени нахождения патрона в нагретом при стрельбе стволе;

· разнообразие в степени нагрева и качественном состоянии ствола.

Эти причины ведут к колебанию в начальных скоростях, а, следовательно, и в дальностях полета пуль, т. е. приводят к рассеиванию пуль по дальности (высоте) и зависят, в основном, от боеприпасов и оружия.

Причинами, вызывающими разнообразие углов бросания и направления стрельбы, являются:

· разнообразие в горизонтальной и вертикальной наводке оружия (ошибки в прицеливании);

· разнообразие углов вылета и боковых смещений оружия, получаемое в результате неоднообразной изготовки к стрельбе, неустойчивого и неоднообразного удержания автоматического оружия, особенно во время стрельбы очередями, неправильного использования упоров и неплавного спуска курка;

· угловые колебания ствола при стрельбе автоматическим огнем, возникающие вследствие движения и ударов подвижных частей оружия.

Эти причины приводят к рассеиванию пуль по боковому направлению и по дальности (высоте), оказывают наибольшее влияние на величину площади рассеивания и, в основном, зависят от выучки стреляющего.

Причинами, вызывающими разнообразие условий полета пуль, являются:

· разнообразие в атмосферных условиях, особенно в направлении и скорости ветра между выстрелами (очередями);

· разнообразие в весе, форме и размерах пуль (гранат), приводящее к изменению величины сопротивления воздуха,

Эти причины приводят к увеличению рассеивания пуль по боковому направлению и по дальности (высоте) и, в основном, зависят от внешних условий стрельбы и боеприпасов.

При каждом выстреле в разном сочетании действуют все три группы причин.

Это приводит к тому, что полет каждой пули происходит по траектории отличной от траектории других пуль. Полностью устранить причины, вызывающие рассеивание, следовательно, устранить и само рассеивание – невозможно. Однако зная причины, от которых зависит рассеивание, можно уменьшить влияние каждой из них и тем самым уменьшить рассеивание, или, как принято говорить, повысить кучность стрельбы.

Уменьшение рассеивания пуль достигается отличной выучкой стреляющего, тщательной подготовкой оружия и боеприпасов к стрельбе, умелым применением правил стрельбы, правильной изготовкой к стрельбе, однообразной прикладкой, точной наводкой (прицеливанием), плавным спуском курка, устойчивым и однообразным удержанием оружия при стрельбе, а также надлежащим уходом за оружием и боеприпасами.

Закон рассеивания

При большом числе выстрелов (более 20) в расположении точек встречи на площади рассеивания наблюдается определенная закономерность. Рассеивание пуль подчиняется нормальному закону случайных ошибок, который в отношении к рассеиванию пуль называется законом рассеивания.

Этот закон характеризуется следующими тремя положениями (рис.14):

1. Точки встречи (пробоины) на площади рассеивания располагаютсянеравномерно – гуще к центру рассеивания и реже к краям площади рассеивания.

2. На площади рассеивания можно определить точку, являющуюся центром рассеивания (среднюю точку попадания), относительно которой распределение точек встречи (пробоин)симметрично: число точек встречи по обе стороны от осей рассеивания, заключающихся в равных по абсолютной величине пределах (полосах), одинаково, и каждому отклонению от оси рассеивания в одну сторону отвечает такое же по величине отклонение в противоположную сторону.

3. Точки встречи (пробоины) в каждом частном случае занимаютне беспредельную, а ограниченную площадь.

Таким образом, закон рассеивания в общем виде можно сформулировать следующим образом:при достаточно большом числе выстрелов, произведенных в практически одинаковых условиях, рассеивание пуль (гранат) неравномерно, симметрично и небеспредельно.

Рис.14. Закономерность рассевания

Действительность стрельбы

При стрельбе из стрелкового оружия и гранатометов в зависимости от характера цели, расстояния до нее, способа ведения огня, вида боеприпасов и других факторов, могут быть достигнуты различные результаты. Для выбора наиболее эффективного в данных условиях способа выполнения огневой задачи необходимо произвести оценку стрельбы, т. е. определить ее действительность

Действительностью стрельбы называется степень соответствия результатов стрельбы поставленной огневой задаче. Она может быть определена расчетным путем или по результатам опытных стрельб.

Для оценки возможных результатов стрельбы из стрелкового оружия и гранатометов обычно принимаются следующие показатели: вероятность поражения одиночной цели (состоящей из одной фигуры); математическое ожидание числа (процента) пораженных фигур в групповой цели (состоящей из нескольких фигур); математическое ожидание числа попаданий; средний ожидаемый расход боеприпасов для достижения необходимой надежности стрельбы; средний ожидаемый расход времени на выполнение огневой задачи.

Кроме того, при оценке действительности стрельбы учитывается степень убойного и пробивного действия пули.

Убойность пули характеризуется ее энергией в момент встречи с целью. Для нанесения поражения человеку (вывода его из строя) достаточна энергия, равная 10 кг/м. Пуля стрелкового оружия сохраняет убойность практически до предельной дальности стрельбы.

Пробивное действие пули характеризуется ее способностью пробить преграду (укрытие) определенной плотности и толщины. Пробивное действие пули указывается в наставлениях по стрелковому делу отдельно для каждого вида оружия. Кумулятивная граната из гранатомета пробивает броню любого современного танка, САУ, бронетранспортера.

Для расчета показателей действительности стрельбы необходимо знать характеристики рассеивания пуль (гранат), ошибки в подготовке стрельбы, а также способы определения вероятности попадания в цель и вероятности поражения целей.

Вероятность поражения цели

При стрельбе из стрелкового оружия по одиночным живым целям и из гранатометов по одиночным бронированным целям одно попадание дает поражение цели Поэтому, под вероятностью поражения одиночной цели понимается вероятность получения хотя бы одного попадания при заданном числе выстрелов.

Вероятность поражения цели при одном выстреле (Р,) численно равняется вероятности попадания в цель (р). Расчет вероятности поражения цели при этом условии сводится к определению вероятности попадания в цель.

Вероятность поражения цели (Р,) при нескольких одиночных выстрелах, одной очередью или несколькими очередями, когда вероятность попадания для всех выстрелов одинаковая, равна единице минус вероятность промаха в степени, равной количеству выстрелов (п), т. е. Р,= 1 - (1- р)", где (1- р) - вероятность промаха.

Таким образом, вероятность поражения цели характеризует надежность стрельбы, т. е. показывает, в скольких случаях из ста, в среднем, в данных условиях будет поражена цель не менее, чем при одном попадании

Стрельба считается достаточно надежной, если вероятность поражения цели не менее 80%

Глава 3.

Весовые и линейные данные

Пистолет Макарова (рис.22) является личным оружием нападения и защиты, предназначенным для поражения противника на коротких расстояниях. Огонь из пистолета наиболее эффективен на расстояниях до 50 м.

Рис. 22

Сравним технические данные пистолета ПМ с пистолетами других систем.

По основным качествам показателями безотказности пистолета ПМ превосходили другие образцы пистолетов.

Рис. 24

а – левая сторона; б – правая сторона. 1 – основание рукоятки; 2 – ствол;

3 – стойка для крепления ствола;

4 – окно для размещения спускового крючка и гребня спусковой скобы;

5 – цапфенные гнезда для цапф спускового крючка;

6 – кривой паз для размещения и движения передней цапфы спусковой тяги;

7 – цапфенные гнезда для цапф курка и шептала;

8 – пазы для направления движения затвора;

9 – окно для перьев боевой пружины;

10 – вырез для затворной задержки;

11 – прилив с резьбовым отверстием для крепления рукоятки при помощи винта и боевой пружины при помощи задвижки;

12 – вырез для защелки магазина;

13 – прилив с гнездом для крепления спусковой скобы;

14 – боковые окна; 15 – спусковая скоба;

16 – гребень для ограничения движения затвора назад;

17 – окно для выхода верхней части магазина.

Ствол служит для направления полета пули. Внутри ствол имеет канал с четырьмя нарезами, вьющимися вверх направо.

Нарезы служат для сообщения вращательного движения. Промежутки между нарезами называются полями. Расстояние между противоположными полями (по диаметру) называются калибром канала ствола (у ПМ-9мм). В казенной части имеется патронник. Ствол соединяется с рамкой прессовой посадкой и закрепляется штифтом.

Рамка служит для соединения всех частей пистолета. Рамка с основанием рукоятки составляют одно целое.

Спусковая скоба служит для предохранения хвоста спускового крючка.

Затвор (рис. 25) служит для подачи патрона из магазина в патронник, запирания канала ствола при выстреле, удержания гильзы, извлечения патрона и постановки курка на боевой взвод.

Рис. 25

а – левая сторона; б – вид снизу. 1 – мушка; 2 - целик; 3 – окно для выбрасывания гильзы (патрона); 4 – гнездо для предохранителя; 5 – насечка; 6 – канал для помещения ствола с возвратной пружиной;

7 – продольные выступы для направления движения затвора по рамке;

8 – зуб для постановки затвора на затворную задержку;

9 – паз для отражателя; 10 – паз для разобщающего выступа рычага взвода; 11 – выем для разобщения шептала с рычагом взвода; 12 – досылатель;

13 – выступ для разобщения рычага взвода с шепталом; 1

4 – выем для помещения разобщающего выступа рычага взвода;

15 – паз для курка; 16 – гребень.

Ударник служит для разбивания капсюля (рис. 26)

Рис. 26

1 – боек; 2 – срез для предохранителя.

Выбрасыватель служит для удержания гильзы (патрона) в чашечке затвора до встречи с отражателем (рис. 27).

Рис. 27

1 – зацеп; 2 – пяточка для соединения с затвором;

3 – гнеток; 4 – пружина выбрасывателя.

Для работы выбрасывателя имеется гнеток и пружина выбрасывателя.

Предохранитель служит для обеспечения безопасности обращения с пистолетом (рис. 28).

Рис. 28

1 – флажок предохранителя; 2 – фиксатор; 3 – уступ;

4 – ребро; 5 – зацеп; 6 – выступ.

Целик вместе с мушкой служит для прицеливания (рис.25).

Возвратная пружина служит для возвращения затвора в переднее положение после выстрела, крайний виток одного из концов пружины имеет меньший диаметр по сравнению с другими витками. Этим витком пружина при сборке надевается на ствол (рис.29).

Рис. 29

Ударно-спусковой механизм (рис. 30) состоит из курка, шептала с пружиной, спусковой тяги с рычагом взвода, спускового крючка, боевой пружины и задвижки боевой пружины.

Рис.30

1 – курок; 2 – шептало с пружиной; 3 – спусковая тяга с рычагом взвода;

4 – боевая пружина; 5 – спусковой крючок; 6 – задвижка боевой пружины.

Курок служит для нанесения удара по ударнику (рис. 31).

Рис. 31
а – левая сторона; б – правая сторона; 1 – головка с насечкой; 2 – вырез;

3 – выем; 4 – предохранительный взвод; 5 – боевой взвод; 6 – цапфы;

7 – зуб самовзвода; 8 – выступ; 9 – углубление; 10 – кольцевой выем.

Шептало служит для удержания курка на боевом взводе и предохранительном взводе (рис. 32).

Рис. 32

1 – цапфы шептала; 2 – зуб; 3 – выступ; 4 – носик шептала;

5 – пружина шептала; 6 – стойка шептала.

Спусковая тяга с рычагом взвода служат для спуска курка с боевого взвода и взведении курка при нажиме на хвост спускового крючка (рис.33).

Рис. 33

1 – спусковая тяга; 2 – рычаг взвода; 3 – цапфы спусковой тяги;

4 – разобщающий выступ рычага взвода;

5 – вырез; 6 – выступ самовзвода; 7 – пяточка рычага взвода.

Спусковой крючок служит для спуска с боевого взвода и взведения курка при стрельбе самовзводом (рис. 34).

Рис. 34

1 – цапфа; 2 – отверстие; 3 – хвост

Боевая пружина служит для приведения в действие курка, рычага взвода и спусковой тяги (рис. 35).

Рис. 35

1 – широкое перо; 2 – узкое перо; 3 – отбойный конец;

4 – отверстие; 5 – защелка.

Задвижка боевой пружины служит для прикрепления боевой пружины к основанию рукоятки (рис. 30).

Рукоятка с винтом прикрывает боковые окна и заднюю стенку основания рукоятки и служит для удобства удержания пистолета в руке (рис. 36).

Рис. 36

1 – антабка; 2 – пазы; 3 – отверстие; 4 – винт.

Затворная задержка удерживает затвор в заднем положении по израсходованию всех патронов из магазина (рис. 37).

Рис. 37

1 – выступ; 2 – кнопка с насечкой; 3 – отверстие; 4 – отражатель.

Она имеет: в передней части – выступ для удержания затвора в заднем положении; кнопку с насечкой для освобождения затвора нажатием руки; в задней части – отверстие для соединения с левой цапфой шептала; в верхней части – отражатель для отражения наружу гильз (патронов) через окно в затворе.

Магазин служит для помещения подавателя и крышки магазина (рис. 38).

Рис. 38

1 – корпус магазина; 2 – подаватель;

3 – пружина подавателя; 4 – крышка магазина.

К каждому пистолету придается принадлежность: запасной магазин, протирка, кобура, пистолетный ремешок.

Рис. 39

Надежность запирания канала ствола при выстреле достигается большой массой затвора и силой возвратной пружины.

Принцип работы пистолета заключается в следующем: при нажатии на хвост спускового крючка, курок, освобождаясь от шептала, под действием боевой пружины ударяет по ударнику, который бойком разбивает капсюль патрона. В результате воспламеняется пороховой заряд и образуется большое количество газов, которые давят во все стороны одинаково. Пуля давлением пороховых газов выбрасывается из канала ствола, затвор под давлением газов, передающихся через дно гильзы, отходит назад, удерживая выбрасывателем гильзу сжимая возвратную пружину. Гильза при встрече с отражателем выбрасывается через окно в затворе. При отходе назад затвор поворачивает курок и ставит его на боевой взвод. Под воздействием возвратной пружины затвор возвращается вперед, захватывая очередной патрон из магазина, и досылает его в патронник. Канал ствола заперт свободным затвором, пистолет готов к выстрелу.

Рис. 40

Для производства следующего выстрела необходимо отпустить спусковой крючок и снова нажать на него. По израсходовании всех патронов затвор становится на затворную задержку и остается в крайне заднем положении.

Выстреле и после выстрела

Для заряжания пистолета необходимо:

· снарядить магазин патронами;

· вставить магазин в основание рукоятки;

· выключить предохранитель (повернуть флажок вниз)

· отвести затвор в крайнее заднее положение и резко отпустить его.

При снаряжении магазина патроны ложатся на подавателе в один ряд, сжимая пружину подавателя, которая, разжимаясь, поднимает патроны вверх. Верхний патрон удерживается загнутыми краями боковых стенок корпуса магазина.

При вставлении снаряженного магазина в рукоятку защелка заскакивает за выступ на стенке магазина и удерживает его в рукоятке. Подаватель находиться внизу под патронами, его зацеп не действует на затворную задержку.

При выключении предохранителя его выступ для восприятия удара курка поднимается, зацеп выходит из выема курка, освобождает выступ курка, таким образом, освобождается курок.

Полочка уступа на оси предохранителя освобождает шептало, которое под действием своей пружины опускается вниз, носик шептала становиться впереди предохранительного взвода курка

Ребро предохранителя выходит из-за левого выступа рамки и разъединяет затвор с рамкой.

Затвор может быть отведен рукой назад.

При отведении затвора назад происходит следующие: двигаясь по продольным пазам рамки затвор поворачивает курок, шептало под действием пружины заскакивает своим носиком за боевой взвод курка. Движение затвора назад ограничивается гребнем спусковой скобы. Возвратная пружина находиться в наибольшем сжатии.

При повороте курка передняя часть кольцевого выема смещает спусковую тягу с рычагом взвода вперед и несколько вверх, при этом выбирается часть свободного хода спускового крючка. Поднимаясь вверх вниз рычага взвода подходит к выступу шептала.

Патрон поднимается подавателем и становится впереди досылателя затвора.

При отпускании затвора возвратная пружина посылает его вперед, досылатель затвора продвигает верхний патрон в патронник. Патрон, скользя по загнутым краям боковых спинок корпуса магазина и по скосу на приливе ствола и в нижней части патронника, входит в патронник упираясь передним срезом гильзы в уступ патронника. Канал ствола заперт свободным затвором. Очередной патрон поднимается вверх до упора в гребень затвора.

Зацеп выбрасывается, заскакивая в кольцевую проточку гильзы. Курок – на боевом взводе (см. рис. 39 на стр. 88).

Осмотр боевых патронов

Осмотр боевых патронов производится с целью обнаружения неисправностей, которые могут привести к задержкам при стрельбе. При осмотре патронов перед стрельбой или заступлением в наряд необходимо проверить:

· нет ли на гильзах ржавчины, зеленого налета, вмятин, царапин, не вытаскивается ли пуля из гильзы.

· Нет ли среди боевых патронов учебных.

Если патроны запылились или загрязнились, покрылись небольшим зеленым налетом или ржавчиной, их необходимо обтереть сухой чистой ветошью.

Индекс 57-Н-181

9 мм патрон со свинцовым сердечником выпускается на экспорт Новосибирским заводом низковольтной аппаратуры (масса пули – 6,1г, начальная скорость – 315 м/с), Тульским патронным заводом (масса пули – 6,86г, начальная скорость – 303 м/с), Барнаульским станкостроительным заводом (масса пули – 6,1 г, начальная скорость – 325 м/с). Предназначен для поражения живой силы на дальности до 50 м. Применяется при стрельбе из 9 мм пистолета ПМ, 9 мм пистолета ПММ.

Калибр, мм - 9,0

Длина гильзы, мм – 18

Длина патрона, мм – 25

Масса патрона, г - 9,26-9,39

Марка пороха, - П-125

Масса порохового заряда, гр. - 0,25

Скорость в10 - 290-325

Капсюль-воспламенитель - КВ-26

Диаметр пули, мм - 9,27

Длина пули, мм - 11,1

Масса пули, г - 6,1- 6,86

Материал сердечника – свинец

Кучность - 2,8

Пробивное действие - не нормируется.

Спуск курка

Спуск курка по своему удельному весу в производстве меткого выстрела занимает первостепенное значение и является определяющим показателем степени подготовленности стрелка. Все ошибки стрельбы возникают исключительно вследствие неправильной обработки спуска курка. Ошибки прицеливания и колебания оружия позволяют показывать достаточно приличные результаты, но ошибки спуска неминуемо приводят к резкому увеличению рассеивания и даже к промахам.

Овладение техникой правильного спуска - это краеугольный камень искусства меткого выстрела из любого ручного оружия. Только тот, кто поймет это и сознательно овладеет техникой спуска курка, будет уверенно поражать любые цели, в любом состоянии сможет показывать высокие результаты и полностью реализовать боевые свойства личного оружия.

Спуск курка является самым сложным элементом для освоения, требующим длительной и самой кропотливой работы.

Напомним, что при вылете пули из канала ствола затвор смещается назад на 2 мм, и на руку никакого воздействия в это время нет. Пуля летит туда, куда было наведено оружие в момент, когда она покидает канал ствола. Следовательно, правильно нажать на спусковой крючок - это выполнить такие действия, при которых оружие не меняет своего прицельного положения в период от срыва курка до вылета пули из ствола.

Время от срыва курка до вылета пули очень мало и составляет примерно 0.0045 с, из которых 0.0038 с составляет время вращения курка и 0.00053-0.00061 с – время прохождения пули по стволу. Тем не менее за такой короткий временной промежуток при ошибках в обработке спуска оружие успевает отклониться от прицельного положения.

Что же это за ошибки, и каковы причины их появления? Для выяснения этого вопроса необходимо рассмотреть систему: стрелок-оружие, при этом следует различать две группы причин возникновения ошибок.

1. Технические причины - ошибки, обусловленные несовершенством серийного оружия (зазоры межу подвижными частями, плохая чистота обработки поверхностей, засорение механизмов, износ ствола, несовершенство и плохая отладка ударно-спускового механизма и т.п.)

2. Причины человеческого фактора - ошибки непосредственно человека, обусловленные различными физиологическими и психоэмоциональными особенностями организма каждого человека.

Обе группы причин возникновения ошибок самым тесным образом между собой связаны, проявляются в комплексе и влекут одна другую. Из первой группы технических ошибок наиболее ощутимую роль, отрицательно сказывающуюся на результате, играет несовершенство ударно-спускового механизма, к недостаткам которого относятся:

Содержание статьи

БАЛЛИСТИКА, комплекс физико-технических дисциплин, охватывающих теоретическое и экспериментальное исследование движения и конечного воздействия метаемых твердых тел – пуль, артиллерийских снарядов, ракет, авиационных бомб и космических летательных аппаратов. Баллистика разделяется на: 1) внутреннюю баллистику, изучающую методы приведения снаряда в движение; 2) внешнюю баллистику, изучающую движение снаряда по траектории; 3) баллистику в конечной точке, предметом изучения которой являются закономерности воздействия снарядов на поражаемые цели. Разработка и проектирование видов и систем баллистического оружия основываются на применении математики, физики, химии и конструкторских достижений для решения многочисленных и сложных задач баллистики. Основателем современной баллистики принято считать И.Ньютона (1643–1727). Формулируя законы движения и рассчитывая траекторию материальной точки в пространстве, он опирался на математическую теорию динамики твердого тела, которую разработали И.Мюллер (Германия) и итальянцы Н.Фонтана и Г.Галилей в 15 и 16 вв.

Классическая задача внутренней баллистики, которая состоит в расчете начальной скорости снаряда, максимального давления в стволе и зависимости давления от времени, для стрелкового оружия и пушек решена теоретически довольно полно. Что касается современных артиллерийских и ракетных систем – безоткатных орудий, газовых пушек, артиллерийских ракет и систем с реактивной тягой, – то здесь ощущается потребность в дополнительном уточнении баллистической теории. Типичные задачи баллистики с наличием аэродинамических, инерционных и гравитационных сил, действующих на снаряд или ракету в полете, за последние годы стали более сложными. Гиперзвуковые и космические скорости, вхождение носового конуса в плотные слои атмосферы, огромная длина траектории, полет за пределами атмосферы и межпланетные космические полеты – все это требует обновления законов и теорий баллистики.

Истоки баллистики теряются в древности. Самым первым ее проявлением было, несомненно, метание камней доисторическим человеком. Такие предшественники современного оружия, как лук, катапульта и баллиста, могут служить типичным примером самых ранних видов применения баллистики. Прогресс в конструировании оружия привел к тому, что в наши дни артиллерийские орудия стреляют 90-килограммовыми снарядами на расстояния более 40 км, противотанковые снаряды способны пробивать стальную броню толщиной 50 см, а управляемые ракеты могут доставить исчисляемую в тоннах боевую нагрузку в любую точку земного шара.

На протяжении многих лет использовались разные способы ускорения метательных снарядов. Лук ускорял стрелу за счет энергии, запасенной в согнутом куске дерева; пружинами баллисты служили скручиваемые сухожилия животных. Были опробованы электромагнитная сила, сила пара, сжатого воздуха. Однако ни один из способов не был столь успешен, как сжигание горючих веществ.

ВНУТРЕННЯЯ БАЛЛИСТИКА

Внутренняя баллистика – это раздел баллистики, изучающий процессы приведения снаряда в поступательное движение. Такие процессы требуют: 1) энергии; 2) наличия рабочего вещества; 3) наличия устройства, управляющего подводом энергии и разгоняющего снаряд.Устройством для разгона снаряда может служить орудийная система или реактивный двигатель.

Ствольные системы ускорения.

Общая классическая задача внутренней баллистики в применении к ствольным системам начального ускорения снаряда состоит в отыскании предельных соотношений между характеристиками заряжания и баллистическими элементами выстрела, которыми в совокупности полностью определяется процесс выстрела. Характеристики заряжания – это размеры пороховой каморы и канала ствола, конструкция и форма нарезов, а также массы порохового заряда, снаряда и орудия. Баллистические элементы – это давление газа, температура пороха и пороховых газов, скорость газов и снаряда, расстояние, преодолеваемое снарядом, и количество действующих в данный момент газов. Орудие, в сущности, представляет собой однотактный двигатель внутреннего сгорания, в котором снаряд движется как свободный поршень под давлением быстро расширяющегося газа.

Давление, возникающее вследствие превращения твердого горючего вещества (пороха) в газ, очень быстро повышается до максимального значения, составляющего от 70 до 500 МПа. При продвижении снаряда по каналу ствола давление довольно быстро падает. Длительность действия высокого давления – порядка нескольких миллисекунд для винтовки и нескольких десятых долей секунды для оружия большого калибра (рис. 1).

Характеристики внутренней баллистики ствольной системы ускорения зависят от химического состава метательного взрывчатого вещества, скорости его горения, формы и размера порохового заряда и от плотности заряжания (массы порохового заряда на единицу объема каморы орудия). Кроме того, на характеристиках системы могут сказываться длина ствола орудия, объем пороховой каморы, масса и «поперечная плотность» снаряда (масса снаряда, деленная на квадрат его диаметра). С точки зрения внутренней баллистики, желательна малая плотность, так как при этом снаряд достигает большей скорости.

Для удержания орудия с откатом в равновесии во время выстрела требуется прилагать значительную внешнюю силу (рис. 2). Внешняя сила, как правило, обеспечивается противооткатным механизмом, состоящим из механических пружин, гидравлических устройств и газовых амортизаторов, рассчитанных так, чтобы гасился направленный назад импульс ствола и казенной части с затвором орудия. (Импульс, или количество движения, определяется как произведение массы на скорость; по третьему закону Ньютона импульс, сообщаемый орудию, равен импульсу, передаваемому снаряду.)

В безоткатном орудии не требуется внешней силы для поддержания равновесия системы, так как здесь полное изменение импульса, сообщаемого всем элементам системы (газам, снаряду, стволу и казенной части) за заданное время, равно нулю. Чтобы оружие не давало отдачи, импульс движущихся вперед газов и снаряда должен быть равен и противоположно направлен импульсу газов, движущихся назад и выходящих наружу через казенную часть.

Газовая пушка.

Газовая пушка состоит из трех основных частей, показанных на рис. 3: секции сжатия, ограничительной секции и пускового ствола. Обычный пороховой заряд поджигается в каморе, что заставляет поршень двигаться по стволу секции сжатия и сжимать газообразный гелий, заполняющий канал ствола. Когда давление гелия нарастает до определенного уровня, разрывается диафрагма. Резкий прорыв газа под высоким давлением выталкивает снаряд из пускового ствола, а ограничительная секция останавливает поршень. Скорости снаряда, выпущенного газовой пушкой, могут достигать 5 км/с, тогда как для обычного орудия это максимум 2000 м/с. Более высокая эффективность газовой пушки объясняется малой молекулярной массой рабочего вещества (гелия) и соответственно высокой скоростью звука в гелии, воздействующем на донную часть снаряда.

Реактивные системы.

Реактивные пусковые установки выполняют в основном те же функции, что и артиллерийские орудия. Такая установка играет роль неподвижной опоры и обычно задает начальное направление полета реактивного снаряда. При пуске управляемой ракеты, имеющей, как правило, бортовую систему наведения, точная наводка, необходимая при стрельбе из орудия, не требуется. В случае же неуправляемых ракет направляющие пусковой установки должны вывести ракету на траекторию, ведущую к цели.

ВНЕШНЯЯ БАЛЛИСТИКА

Внешняя баллистика занимается движением снарядов в пространстве между пусковой установкой и целью. Когда снаряд приведен в движение, его центр масс прочерчивает в пространстве кривую, называемую траекторией. Основная задача внешней баллистики состоит в том, чтобы описать эту траекторию, определив положение центра масс и пространственное положение снаряда в функции времени полета (времени после запуска). Для этого нужно решить систему уравнений, в которых учитывались бы силы и моменты сил, действующие на снаряд.

Вакуумные траектории.

Самый простой из частных случаев движения снаряда – движение снаряда в вакууме над плоской неподвижной земной поверхностью. В этом случае предполагается, что на снаряд не действуют никакие другие силы, кроме земного тяготения. Уравнения движения, соответствующие такому предположению, легко решаются и дают траекторию параболической формы.

Траектории материальной точки.

Другой частный случай – движение материальной точки; здесь снаряд рассматривается как материальная точка, и учитываются его лобовое сопротивление (сила сопротивления воздуха, действующая в обратном направлении по касательной к траектории и замедляющая движение снаряда), сила тяжести, скорость вращения Земли и кривизна земной поверхности. (Вращение Земли и кривизну земной поверхности можно не учитывать, если время полета по траектории не очень велико.) Следует сказать несколько слов о лобовом сопротивлении. Сила лобового сопротивления D , оказываемого движению снаряда, дается выражением

D = rSv 2 C D (M ),

где r – плотность воздуха, S – площадь поперечного сечения снаряда, v – скорость движения, а C D (M ) – безразмерная функция числа Маха (равного отношению скорости снаряда к скорости звука в среде, в которой движется снаряд), называемая коэффициентом лобового сопротивления. Вообще говоря, коэффициент лобового сопротивления снаряда можно определить экспериментально в аэродинамической трубе или на испытательном полигоне, оснащенном точным измерительным оборудованием. Задача облегчается тем, что для снарядов разного диаметра коэффициент лобового сопротивления одинаков, если они имеют одинаковую форму.

Теория движения материальной точки (хотя в ней не учитываются многие силы, действующие на реальный снаряд) с очень хорошим приближением описывает траекторию ракет после прекращения работы двигателя (на пассивном участке траектории), как и траекторию обычных артиллерийских снарядов. Поэтому она широко применяется для вычисления данных, используемых в системах прицеливания оружия такого рода.

Траектории твердого тела.

Во многих случаях теория движения материальной точки неадекватно описывает траекторию снаряда, и тогда приходится рассматривать его как твердое тело, т.е. учитывать, что он будет не только двигаться поступательно, но и вращаться, и принимать во внимание все аэродинамические силы, а не только лобовое сопротивление. Такого подхода требует, например, расчет движения ракеты с работающим двигателем (на активном участке траектории) и снарядов любого типа, выпущенных перпендикулярно траектории полета высокоскоростного самолета. В некоторых случаях вообще невозможно обойтись без представления о твердом теле. Так, например, для попадания в цель необходимо, чтобы снаряд был устойчив (двигался головной частью вперед) на траектории. И в случае ракет, и в случае обычных артиллерийских снарядов этого достигают двумя путями – при помощи хвостовых стабилизаторов или за счет быстрого вращения снаряда вокруг продольной оси. Далее, говоря о стабилизации полета, отметим некоторые соображения, не учитываемые теорией материальной точки.

Стабилизация посредством хвостового оперения – это очень простая и очевидная идея; недаром один из самых древних снарядов – стрела – стабилизировался в полете именно таким способом. Когда оперенный снаряд движется с углом атаки или рыскания (углом между касательной к траектории и продольной осью снаряда), отличным от нуля, площадь позади центра масс, на которую действует сопротивление воздуха, больше площади впереди центра масс. Разность неуравновешенных сил заставляет снаряд повернуться вокруг центра масс так, чтобы этот угол стал равен нулю. Здесь можно отметить одно важное обстоятельство, не учитываемое теорией материальной точки. Если снаряд движется с отличным от нуля углом атаки, то на него действуют подъемные силы, обусловленные возникновением разности давлений по обе стороны снаряда. (На этом основана способность самолета летать.)

Идея стабилизации вращением не столь очевидна, но ее можно пояснить сравнением. Хорошо известно, что если колесо быстро вращается, то оно оказывает сопротивление попыткам повернуть ось его вращения. (Примером может служить обычный волчок, и это явление используется в приборах систем управления, навигации и наведения – гироскопах.) Самый обычный способ привести снаряд во вращение – нарезать в канале ствола спиральные канавки, в которые врезался бы металлический поясок снаряда при разгоне снаряда по стволу, что и заставляло бы его вращаться. В ракетах, стабилизируемых вращением, это достигается при помощи нескольких наклонных сопел. Здесь тоже можно отметить некоторые особенности, не учитываемые теорией материальной точки. Если выстрелить вертикально вверх, то стабилизирующее действие вращения заставит снаряд и после достижения верхней точки полета опускаться донной частью вниз. Это, конечно, нежелательно, а потому из орудий не стреляют под углом более 65–70° к горизонту. Второе интересное явление связано с тем, что, как можно показать на основании уравнений движения, стабилизируемый вращением снаряд должен лететь с отличным от нуля углом нутации, называемым «естественным». Поэтому на такой снаряд действуют силы, вызывающие деривацию – боковое отклонение траектории от плоскости стрельбы. Одна из этих сил – сила Магнуса; именно она вызывает искривление траектории «крученого» мяча в теннисе.

Все сказанное об устойчивости полета, не охватывая полностью явлений, определяющих полет снаряда, тем не менее иллюстрирует сложность задачи. Отметим лишь, что в уравнениях движения необходимо учитывать много разных явлений; в эти уравнения входит ряд переменных аэродинамических коэффициентов (типа коэффициента лобового сопротивления), которые должны быть известны. Решение этих уравнений – очень трудоемкая задача.

Применение.

Применение баллистики в боевых действиях предусматривает расположение системы оружия в таком месте, которое позволяло бы быстро и эффективно поразить намеченную цель с минимальным риском для обслуживающего персонала. Доставка ракеты или снаряда к цели обычно разделяется на два этапа. На первом, тактическом, этапе выбирается боевая позиция ствольного оружия и ракет наземного базирования либо положение носителя ракет воздушного базирования. Цель должна находиться в пределах радиуса доставки боезаряда. На этапе стрельбы производится прицеливание и осуществляется стрельба. Для этого необходимо определить точные координаты цели относительно оружия – азимут, возвышение и дальность, а в случае движущейся цели – и ее будущие координаты с учетом времени полета снаряда.

Перед стрельбой должны вноситься поправки на изменения начальной скорости, связанные с износом канала ствола, температурой пороха, отклонениями массы снаряда и баллистических коэффициентов, а также поправки на постоянно меняющиеся погодные условия и связанные с ними изменения плотности атмосферы, скорости и направления ветра. Кроме того, должны быть внесены поправки на деривацию снаряда и (при большой дальности) на вращение Земли.

С увеличением сложности и расширением круга задач современной баллистики появились новые технические средства, без которых возможности решения нынешних и будущих баллистических задач были бы сильно ограничены.

Расчеты околоземных и межпланетных орбит и траекторий, учитывающие одновременное движение Земли, планеты-цели и космического аппарата, как и влияние различных небесных тел, были бы крайне трудны без компьютеров. Скорости сближения гиперскоростных целей и снарядов столь велики, что совершенно исключается решение задач стрельбы на основе обычных таблиц и ручное задание параметров стрельбы. В настоящее время данные для стрельбы из большинства систем оружия хранятся в электронных банках данных и оперативно обрабатываются компьютерами. Выходные команды компьютера автоматически приводят оружие в положение с азимутом и возвышением, необходимыми для доставки боезаряда к цели.

Траектории управляемых снарядов.

В случае управляемых снарядов и без того сложная задача описания траектории усложняется тем, что к уравнениям движения твердого тела добавляется система уравнений, называемых уравнениями наведения, связывающая отклонения снаряда от заданной траектории с корректирующими воздействиями. Суть управления полетом снаряда такова. Если тем или иным путем с использованием уравнений движения определяется отклонение от заданной траектории, то на основе уравнений наведения для этого отклонения рассчитывается корректирующее действие, например, поворот воздушного или газового руля, изменение тяги. Это корректирующее действие, изменяющее те или иные члены уравнений движения, приводит к изменению траектории и уменьшению ее отклонения от заданной. Такой процесс повторяется, пока отклонение не уменьшится до приемлемого уровня.

БАЛЛИСТИКА В КОНЕЧНОЙ ТОЧКЕ

Баллистика в конечной точке рассматривает физику разрушающего действия оружия на поражаемые цели. Ее данные используются для усовершенствования большинства систем оружия – от винтовок и ручных гранат до ядерных боеголовок, доставляемых к цели межконтинентальными баллистическими ракетами, а также средств защиты – солдатских бронежилетов, танковой брони, подземных укрытий и т.д. Ведутся как экспериментальные, так и теоретические исследования явлений взрыва (химических взрывчатых веществ либо ядерных зарядов), детонации, проникновения пуль и осколков в различные среды, ударных волн в воде и грунте, горения и ядерных излучений.

Взрыв.

Эксперименты в области взрыва проводятся как с химическими взрывчатыми веществами в количествах, измеряемых граммами, так и с ядерными зарядами мощностью до нескольких мегатонн. Взрывы могут производиться в разных средах, таких, как земля и скальные породы, под водой, у поверхности земли в нормальных атмосферных условиях или в разреженном воздухе на больших высотах. Главный результат взрыва – образование ударной волны в окружающей среде. Ударная волна распространяется от места взрыва сначала со скоростью, превышающей скорость звука в среде; затем с уменьшением интенсивности ударной волны ее скорость приближается к скорости звука. Ударные волны (в воздухе, воде, грунте) могут поражать живую силу противника, разрушать подземные укрепления, морские суда, здания, наземные транспортные средства, самолеты, ракеты и спутники.

Для моделирования интенсивных ударных волн, возникающих в атмосфере и у поверхности земли при ядерных взрывах, применяются особые устройства, называемые ударными трубами. Ударная труба, как правило, представляет собой длинную трубу, состоящую из двух секций. На одном ее конце расположена камера сжатия, которая заполняется воздухом или другим газом, сжатым до сравнительно высокого давления. Другой ее конец представляет собой камеру расширения, открытую на атмосферу. При мгновенном разрыве тонкой диафрагмы, разделяющей две секции трубы, в камере расширения возникает ударная волна, бегущая вдоль ее оси. На рис. 4 показаны кривые давления ударной волны в трех поперечных сечениях трубы. В сечении 3 она принимает классическую форму ударной волны, возникающей при детонации. Внутри ударных труб можно размещать миниатюрные модели, которые будут претерпевать ударные нагрузки, аналогичные действию ядерного взрыва. Нередко проводятся испытания, в которых действию взрыва подвергаются более крупные модели, а иногда и полномасштабные объекты.

Экспериментальные исследования дополняются теоретическими, и вырабатываются полуэмпирические правила, позволяющие предсказывать разрушающее действие взрыва. Результаты таких исследований используются при проектировании боезарядов межконтинентальных баллистических ракет и противоракетных систем. Данные такого рода необходимы также при проектировании ракетных шахт и подземных убежищ для защиты населения от взрывного действия ядерного оружия.

Для решения специфических задач, характерных для верхних слоев атмосферы, имеются специальные камеры, в которых имитируются высотные условия. Одна из таких задач – оценка уменьшения силы взрыва на больших высотах.

Проводятся также исследования, в которых измеряются интенсивность и длительность прохождения ударной волны в грунте, возникающей при подземных взрывах. На распространение таких ударных волн влияют тип грунта и степень его слоистости. Лабораторные опыты проводятся с химическими ВВ в количествах менее 0,5 кг, тогда как в полномасштабных экспериментах заряды могут измеряться сотнями тонн. Такие эксперименты дополняются теоретическими исследованиями. Результаты исследований используются не только для усовершенствования конструкции оружия и убежищ, но и для обнаружения несанкционированных подземных ядерных взрывов. Исследования детонации требуют проведения фундаментальных исследований в области физики твердого тела, химической физики, газодинамики и физики металлов.

Осколки и пробивная способность.

Осколочные боевые части и снаряды имеют металлическую наружную оболочку, которая при детонации заключенного в нее заряда химического бризантного ВВ разрывается на многочисленные кусочки (осколки), разлетающиеся с большой скоростью. Во время Второй мировой войны были разработаны снаряды и боеголовки с зарядами кумулятивного действия. Такой заряд обычно представляет собой цилиндр из взрывчатого вещества, на переднем конце которого имеется коническая выемка с размещенным в ней коническим металлическим вкладышем, как правило медным. Когда с другого конца заряда ВВ начинается взрыв и вкладыш сжимается под действием очень высоких давлений детонации, образуется тонкая кумулятивная струя материала вкладыша, вылетающая в направлении цели со скоростью более 7 км/с. Такая струя способна пробивать стальную броню толщиной в десятки сантиметров. Процесс формирования струи в боеприпасе с зарядом кумулятивного действия показан на рис. 5.

Если металл находится в прямом контакте с взрывчатым веществом, ему могут передаваться давления ударной волны, измеряемые десятками тысяч МПа. При обычных размерах заряда ВВ порядка 10 см длительность импульса давления составляет доли миллисекунды. Столь огромные давления, действующие кратковременно, вызывают необычные процессы разрушения. Примером таких явлений может служить «скалывание». Детонация тонкого слоя ВВ, помещенного на броневую плиту, создает очень сильный импульс давления малой длительности (удар), пробегающий по толщине плиты. Дойдя до противоположной стороны плиты, ударная волна отражается как волна растягивающих напряжений. Если интенсивность волны напряжений превысит предел прочности на растяжение материала брони, происходит разрывное разрушение вблизи поверхности на глубине, зависящей от первоначальной толщины заряда ВВ и скорости распространения ударной волны в плите. В результате внутреннего разрыва броневой плиты образуется металлический «осколок», с большой скоростью отлетающий от поверхности. Такой летящий осколок может вызвать большие разрушения.

Чтобы выяснить механизм явлений разрушения, проводят дополнительные эксперименты в области металлофизики высокоскоростной деформации. Такие эксперименты проводятся как с поликристаллическими металлическими материалами, так и с монокристаллами различных металлов. Они позволили сделать интересный вывод относительно зарождения трещин и начала разрушения: в тех случаях, когда в металле имеются включения (примеси), трещины всегда начинаются на включениях. Проводятся экспериментальные исследования пробивной способности снарядов, осколков и пуль в разных средах. Ударные скорости лежат в пределах от нескольких сотен метров в секунду для низкоскоростных пуль до космических скоростей порядка 3–30 км/с, что соответствует осколкам и микрометеорам, встречающимся с межпланетными летательными аппаратами.

На основе таких исследований выводятся эмпирические формулы относительно пробивной способности. Так, установлено, что глубина проникновения в плотную среду прямо пропорциональна количеству движения снаряда и обратно пропорциональна площади его поперечного сечения. Явления, наблюдающиеся при ударе с гиперзвуковой скоростью, показаны на рис. 6. Здесь стальная дробинка со скоростью 3000 м/с ударяется о свинцовую пластину. В разное время, измеряемое микросекундами от начала соударения, сделана последовательность снимков в рентгеновских лучах. На поверхности пластины образуется кратер, и, как показывают снимки, из него выбрасывается материал пластины. Результаты исследования соударения при гиперзвуковой скорости делают более понятным образование кратеров на небесных телах, например на Луне, в местах падения метеоритов.

Раневая баллистика.

Для имитации действия осколков и пуль, поражающих человека, производят выстрелы в массивные мишени из желатина. Подобные эксперименты относятся к т.н. раневой баллистике. Их результаты позволяют судить о характере ран, которые может получить человек. Информация, которую дают исследования по раневой баллистике, дает возможность оптимизировать эффективность разных видов оружия, предназначающегося для уничтожения живой силы противника.

Броня.

С использованием ускорителей Ван-де-Граафа и других источников проникающего излучения исследуется степень радиационной защиты людей в танках и бронеавтомобилях, обеспечиваемая специальными материалами для брони. В экспериментах определяется коэффициент прохождения нейтронов сквозь плиты из разных слоев материалов, имеющие типичные танковые конфигурации. Энергия нейтронов может лежать в пределах от долей до десятков МэВ.

Горение.

Исследования в области воспламенения и горения проводятся с двоякой целью. Первая – получить данные, необходимые для увеличения способности пуль, осколков и зажигательных снарядов вызывать загорание топливных систем самолетов, ракет, танков и т.д. Вторая – повысить защищенность транспортных средств и стационарных объектов от зажигательного действия вражеских боеприпасов. Проводятся исследования по определению воспламеняемости разных топлив под действием различных средств воспламенения – искр электрического разряда, пирофорных (самовоспламеняющихся) материалов, высокоскоростных осколков и химических воспламенителей.

Баллистика изучает метание снаряда (пули) из ствольного оружия. Баллистику делят на внутреннюю, которая изучает явления происходящие в стволе в момент выстрела, и внешнюю, объясняющую поведение пули после вылета из ствола.

Основы внешней баллистики

Знание внешней баллистики (далее баллистики) позволяет стрелку еще до выстрела с достаточной для практического применения точностью знать, куда попадет пуля. На точность выстрела влияет масса взаимосвязанных факторов: динамическое взаимодействие деталей и частей оружия между собой и телом стрелка, газа и пули, пули со стенками канала ствола, пули с окружающей средой после вылета из ствола и многое другое.

После вылета из ствола пуля летит не по прямой, а по так называемой баллистической траектории, близкой к параболе. Иногда на малых дистанциях стрельбы отклонением траектории от прямолинейной можно пренебречь, однако на больших и предельных дистанциях стрельбы (что характерно для охоты) знание законов баллистики абсолютно необходимо.

Заметим, что пневматическое оружие обычно придает легкой пуле небольшую или среднюю скорость (от 100 до 380 м/с), поэтому искривление траектории полета пули от разных воздействий значительнее, чем для огнестрельного оружия.


вебсайт

На пулю, вылетевшую из ствола с определенной скоростью, в полете действуют две основные силы: сила тяжести и сила сопротивления воздуха. Действие силы тяжести направлено вниз, оно заставляет пулю непрерывно снижаться. Действие силы сопротивления воздуха направлено навстречу движению пули, оно заставляет пулю непрерывно снижать скорость полета. Все это приводит к отклонению траектории вниз.

Для повышения устойчивости пули в полете на поверхности канала ствола нарезного оружия имеются спиральные канавки (нарезы), которые придают пуле вращательное движение и тем самым предотвращают ее кувыркание в полете.


Вследствие вращения пули в полете

Вследствие вращения пули в полете, сила сопротивления воздуха действует неравномерно на разные части пули. В результате пуля встречает большее сопротивление воздуха одной из сторон и в полете все больше и больше отклоняется от плоскости стрельбы в сторону своего вращения. Это явление называется деривацией . Действие деривации неравномерно и усиливается к концу траектории.

Мощные пневматические винтовки могут придать пуле начальную скорость выше звуковой (до 360-380 м/с). Скорость звука в воздухе не постоянна (зависит от атмосферных условий, высоты над уровнем моря и т.д.), но ее можно принять равной 330-335 м/с. Легкие пули для пневматики с малой поперечной нагрузкой испытывают сильные возмущения и отклоняются от своей траектории, преодолевая звуковой барьер. Поэтому целесообразно стрелять более тяжелыми пулями с начальной скоростью приближающейся к скорости звука.

На траекторию полета пули также влияют метеоусловия - ветер, температура, влажность и давление воздуха.

Ветер считается слабым при его скорости 2 м/c, средним (умеренным) - при 4 м/c, сильным - при 8 м/c. Боковой умеренный ветер, действующий под углом 90° к траектории, уже весьма значительно влияет на легкую и "малоскоростную" пулю, выпущенную из пневматического оружия. Воздействие ветра той же силы, но дующего под острым углом к траектории - 45° и менее - вызывает вдвое меньшее отклонение пули.

Ветер, дующий вдоль траектории в ту или иную сторону, замедляет или ускоряет скорость пули, что нужно учитывать при стрельбе по движущейся цели. На охоте скорость ветра можно оценить с приемлемой точностью при помощи носового платка: если взять платок за два угла то при слабом ветре он будет слегка колыхаться, при умеренном - отклоняться на 45°, а при сильном - развиваться горизонтально поверхности земли.

Нормальными метеоусловиями считаются: температура воздуха - плюс 15°С, влажность - 50%, давление - 750 мм ртутного столба. Превышение температуры воздуха над нормальной приводит к повышению траектории на той же дистанции, а понижение температуры - к понижению траектории. Повышенная влажность приводит к понижению траектории, а пониженная - к повышению траектории. Напомним, что атмосферное давление изменяется не только от погоды, но и от высоты над уровнем моря - чем выше давление, тем ниже траектория.

Для каждого "дальнобойного" оружия и боеприпаса существуют свои таблицы поправок, позволяющие учитывать влияние метеоусловий, деривации, взаиморасположение стрелка и цели по высоте, скорости пули и других факторов на траекторию полета пули. К сожалению, для пневматического оружия подобные таблицы не публикуются, поэтому любители стрелять на предельные дистанции или в малоразмерные цели вынуждены составлять такие таблицы сами - их полнота и точность являются залогом успеха на охоте или соревнованиях.

При оценке результатов стрельбы нужно помнить, что на пулю с момента выстрела и до конца ее полета действуют некоторые случайные (не учитываемые) факторы, что приводит к небольшим отклонениям траектории полета пули от выстрела к выстрелу. Поэтому даже в "идеальных" условиях (например, при жестком закреплении оружия в станке, постоянстве внешних условий и т.п.) попадания пуль в цель имеют вид овала, сгущающегося к центру. Такие случайные отклонения называются девиацией . Формула ее расчета приведена ниже в этом разделе.

А теперь рассмотрим траекторию полета пули и ее элементы (см. рисунок 1).

Прямая линия, представляющая продолжение оси канала ствола до выстрела, называется линией выстрела. Прямая линия, являющаяся продолжением оси ствола при вылете из него пули, называется линией бросания. Из-за колебаний ствола его положение в момент выстрела и в момент вылета пули из ствола будет отличаться на угол вылета.

В результате действия силы тяжести и силы сопротивления воздуха пуля летит не по линии бросания, а по неравномерно изогнутой кривой, проходящей ниже линии бросания.

Началом траектории является точка вылета. Горизонтальная плоскость, проходящая через точку вылета, называется горизонтом оружия. Вертикальная плоскость, проходящая через точку вылета по линии бросания, называется плоскостью стрельбы.

Чтобы добросить пулю до любой точки на горизонте оружия, необходимо линию бросания направить выше горизонта. Угол, составленный линией выстрела и горизонтом оружия, называется углом возвышения. Угол, составленный линией бросания и горизонтом оружия, называется углом бросания.

Точка пересечения траектории с горизонтом оружия называется (табличной) точкой падения. Расстояние по горизонту от точки вылета до (табличной) точки падения называется горизонтальной дальностью. Угол между касательной к траектории в точке падения и горизонтом оружия называется (табличным) углом падения.

Самая высокая точка траектории над горизонтом оружия называется вершиной траектории, а расстояние от горизонта оружия до вершины траектории - высотой траектории. Вершина траектории делит траекторию на две неравные части: восходящую ветвь - более длинную и пологую и нисходящую ветвь - более короткую и крутую.

Рассматривая положение цели относительно стрелка, можно выделить три ситуации :

Стрелок и цель расположены на одном уровне.
- стрелок расположен ниже цели (стреляет вверх под углом).
- стрелок расположен выше цели (стреляет вниз под углом).

Для того, чтобы направить пулю в цель, необходимо придать оси канала ствола определенное положение в вертикальной и горизонтальной плоскости. Придание нужного направления оси канала ствола в горизонтальной плоскости называется горизонтальной наводкой, а придание направления в вертикальной плоскости - вертикальной наводкой.

Вертикальная и горизонтальная наводка производится с помощью прицельных приспособлений. Механические прицельные приспособления нарезного оружия состоят из мушки и целика (или диоптра).

Прямая линия, соединяющая середину прорези целика с вершиной мушки, называется прицельной линией.

Наводка стрелкового оружия с помощью прицельных приспособлений осуществляется не от горизонта оружия, а относительно расположения цели . В связи с этим элементы наводки и траектории получают следующие обозначения (см. рисунок 2).

Точка, по которой наводится оружие, называется точкой прицеливания. Прямая линия, соединяющая глаз стрелка, середину прорези целика, вершину мушки и точку прицеливания, называется линией прицеливания.

Угол, образованный линией прицеливания и линией выстрела, называется углом прицеливания. Этот угол при наводке получается путем установки прорези прицела (или мушки) по высоте, соответствующей дальности стрельбы.

Точка пересечения нисходящей ветви траектории с линией прицеливания называется точкой падения. Расстояние от точки вылета до точки падения называется прицельной дальностью. Угол между касательной к траектории в точке падения и линией прицеливания называется углом падения.

При расположении оружия и цели на одинаковой высоте линия прицеливания совпадает с горизонтом оружия, а угол прицеливания - с углом возвышения. При расположении цели выше или ниже горизонта оружия между линией прицеливания и линией горизонта образуется угол места цели. Угол места цели считается положительным , если цель находится выше горизонта оружия и отрицательным , если цель находится ниже горизонта оружия.

Угол места цели и угол прицеливания вместе составляют угол возвышения. При отрицательном угле места цели линия выстрела может быть направлена ниже горизонта оружия; в этом случае угол возвышения становится отрицательным и называется углом склонения.

В своем конце траектория пули пересекается либо с целью (преградой), либо с поверхностью земли. Точка пересечения траектории с целью (преградой) или поверхностью земли называется точкой встречи. От угла, под каким пуля попадает в цель (преграду) или в землю, их механических характеристик, материала пули зависит возможность рикошета. Расстояние от точки вылета до точки встречи называется действительной дальностью. Выстрел, при котором траектория не поднимается над линией прицеливания выше цели на всем протяжении прицельной дальности, называется прямым выстрелом.

Из всего вышесказанного ясно, что до начала практической стрельбы оружие нужно пристрелять (иначе - привести к нормальному бою). Пристрелку следует проводить с тем же боеприпасом и в тех же условиях, какие будут характерны при последующих стрельбах. Обязательно нужно учитывать размер цели, позицию стрельбы (лежа, с колена, стоя, из неустойчивых положений), даже толщину одежды (при пристрелке винтовки).

Линия прицеливания, проходящая от глаза стрелка через вершину мушки, верхний обрез целика и цель, является прямой линией в то время как траектория полета пули неравномерно искривленная книзу линия. Линия прицеливания расположена выше ствола на 2-3 см в случае открытого прицела и гораздо выше в случае оптического.

В простейшем случае, если линия прицеливания горизонтальна, траектория пули дважды пересекает линию прицеливания: на восходящей и нисходящей части траектории. Оружие обычно пристреливают (настраивают прицельные приспособления) на горизонтальное расстояние, на котором нисходящая часть траектории пересекает линию прицеливания.

Может показаться, что существуют всего две дистанции до цели - там, где траектория пересекает линию прицеливания - на которых гарантируется попадание. Так спортивная стрельба производится на фиксированной дистанции 10 метров, на которой траекторию полета пули можно считать прямолинейной.

Для практической стрельбы (например, охоты) обычно дальности стрельбы значительно больше и приходится учитывать кривизну траектории. Но здесь играет стрелку играет на руку тот факт, что размеры цели (убойного места) по высоте в этом случае может достигать 5-10 см и более. Если подобрать такую горизонтальную дальность пристрелки оружия, что высота траектории на дистанции не превысит высоты цели (так называемый прямой выстрел), то целясь под обрез цели, мы сможем поражать ее на всем протяжении дистанции стрельбы.

Дальность прямого выстрела, на которой высота траектории не поднимается над линией прицеливания выше высоты цели, весьма важная характеристика любого оружия, определяющая пологость траектории.
Точкой прицеливания обычно выбирают нижний обрез мишени или ее центр. Более удобно целиться под обрез, когда вся цель видна при прицеливании.

При стрельбе обычно приходится вводить вертикальные поправки, если:

  • размер цели меньше, чем обычно.
  • дистанция стрельбы превышает дистанцию пристрелки оружия.
  • дистанция стрельбы ближе, чем первая точка пересечения траектории с линией прицеливания (характерно для стрельбы с оптическим прицелом).

Горизонтальные поправки обычно приходится вводить в процессе стрельбы в ветреную погоду или при стрельбе по движущейся цели. Обычно поправки для открытых прицелов вводятся путем стрельбы с упреждением (выносом точки прицеливания вправо или влево от цели), а не подстройкой прицельных приспособлений.

Баллистика - это наука о движении, полете и влиянии снарядов. Она разделена на несколько дисциплин. Внутренняя и внешняя баллистика имеют дело с движением и полетом снарядов. Переход между этими двумя режимами называется промежуточной баллистикой. Терминальная баллистика касается воздействия снарядов, отдельная категория охватывает степень поражения цели. Что изучает внутренняя и внешняя баллистика?

Пушки и ракеты

Пушечные и ракетные двигатели являются типами теплового двигателя, частично с превращением химической энергии в апропеллент (кинетическую энергию снаряда). Пропелленты отличаются от обычных видов топлива тем, что их сгорание не требует атмосферного кислорода. В ограниченном объеме производство горячих газов с помощью горючего топлива вызывает увеличение давления. Давление продвигает снаряд и увеличивает скорость горения. Горячие газы имеют тенденцию к эрозии ствола пистолета или горла ракеты. Внутренняя и внешняя баллистика стрелкового оружия изучает движение, полет и влияние, которое снаряд оказывает.

Когда заряд пропеллента в камере пистолета воспламеняется, газы сгорания сдерживаются выстрелом, поэтому давление возрастает. Снаряд начинает двигаться, когда давление на него преодолевает его сопротивление движению. Давление продолжает расти некоторое время, а затем падает, а выстрел ускоряется до высокой скорости. Быстрое горючее ракетное топливо вскоре исчерпано, и со временем выстрел выбрасывается из дула: скорость выстрела до 15 километров в секунду достигнуты. Откидные пушки выпускают газ через заднюю часть камеры, чтобы противодействовать силам отдачи.

Баллистической является ракета, которая направляется в течение относительно короткого начального активного участка полета, чья траектория впоследствии регулируется законами классической механики, в отличие, например, от крылатых ракет, которые направляются аэродинамическим образом в полете с работающим двигателем.

Траектория выстрела

Снаряды и пусковые установки

Снаряд - любой объект, проецируемый в пространство (пустое или нет) при приложении силы. Хотя любой объект в движении в пространстве (например, брошенный мяч) является снарядом, термин чаще всего относится к оружию дальнего боя. Математические уравнения движения используются для анализа траектории снаряда. Примеры снарядов включают шары, стрелы, пули, артиллерийские снаряды, ракеты и так далее.

Бросок - это запуск снаряда вручную. Люди необычайно хороши в метании из-за их высокой ловкости, это развитая черта. Свидетельство человеческого метания датируется 2 миллионами лет. Скорость метания 145 км в час, найденная у многих спортсменов, намного превышает скорость, с которой шимпанзе могут бросать предметы, что составляет около 32 км в час. Эта способность отражает способность человеческих плечевых мышц и сухожилий сохранять эластичность, пока она не понадобится для продвижения объекта.

Внутренняя и внешняя баллистика: кратко о видах оружия

Одними из самых древнейших пусковых устройств были обычные рогатки, лук и стрелы, катапульта. Со временем появились ружья, пистолеты, ракеты. Сведения из внутренней и внешней баллистики включают в себя информацию о различных видах оружия.

  • Сплинг - оружие, обычно используемое для выброса тупых снарядов, таких как камень, глина или свинцовая «пуля». У стропы имеется небольшая колыбель (сумка) в середине соединенных двух длин шнура. Камень помещается в сумку. Средний палец или большой палец помещается через петлю на конце одного шнура, а вкладка на конце другого шнура помещается между большим и указательным пальцами. Слинг качается по дуге, а табуляция выпускается в определенный момент. Это освобождает снаряд, чтобы лететь к цели.
  • Лук и стрелы. Лук - это гибкий кусок материала, который стреляет аэродинамическими снарядами. Тетива соединяет два конца, и, когда она оттягивается назад, концы палки сгибаются. Когда струна отпущена, потенциальная энергия согнутой палки преобразуется в скорость стрелки. Стрельба из лука - это искусство или спорт стрельбы из луков.
  • Катапульта - это устройство, используемое для запуска снаряда на большом расстоянии без помощи взрывных устройств - особенно различных типов древних и средневековых осадных двигателей. Катапульта использовалась с древних времен, поскольку она оказалась одним из наиболее эффективных механизмов во время войны. Слово «катапульта» происходит от латинского, которое, в свою очередь, происходит от греческого καταπέλτης, что означает «бросать, швырять». Катапульты были изобретены древними греками.
  • Пистолет - обычное трубчатое оружие или другое устройство, предназначенное для выпуска снарядов или другого материала. Снаряд может быть твердым, жидким, газообразным или энергичным и может быть свободным, как с пулями и артиллерийскими снарядами, так и с зажимами, как с зондами и китобойными гарпунами. Средство проецирования варьируется в соответствии с конструкцией, но обычно осуществляется действием давления газа, создаваемого путем быстрого сжигания пропеллента, или сжимается и хранится механическими средствами, работающими внутри трубки с открытым концом в виде поршня. Конденсированный газ ускоряет подвижный снаряд по длине трубки, придавая достаточную скорость, чтобы поддерживать движение снаряда, когда действие газа прекращается в конце трубки. В качестве альтернативы можно использовать ускорение посредством генерации электромагнитного поля, в этом случае можно отказаться от трубки и заменить направляющую.
  • Ракета - это ракета, космический корабль, самолет или другое транспортное средство, которое получает удар от ракетного двигателя. Выхлоп двигателя ракеты полностью сформирован из пропеллентов, перевозимых в ракете перед использованием. Ракетные двигатели работают действием и реакцией. Ракетные двигатели выталкивают ракеты вперед, просто бросая их выхлопы назад очень быстро. Хотя они сравнительно неэффективны для использования на низкой скорости, ракеты относительно легки и мощны, способны генерировать большие ускорения и достигать чрезвычайно высоких скоростей с разумной эффективностью. Ракеты не зависят от атмосферы и отлично работают в космосе. Химические ракеты являются наиболее распространенным типом высокопроизводительной ракеты, и они обычно создают их выхлопные газы при сжигании ракетного топлива. Химические ракеты хранят большое количество энергии в легко высвобождаемой форме и могут быть очень опасными. Однако тщательный дизайн, тестирование, конструкция и использование минимизируют риски.

Основы внешней и внутренней баллистики: основные категории

Баллистика может быть изучена с помощью высокоскоростной фотографии или высокоскоростных камер. Фотография выстрела, сделанная с сверхвысокой скоростью вспышки воздушного зазора, помогает рассмотреть пулю без размытия изображения. Баллистика часто разбивается на следующие четыре категории:

  • Внутренняя баллистика - изучение процессов, изначально ускоряющих снаряды.
  • Переходная баллистика - изучение снарядов при переходе на безналичный полет.
  • Внешняя баллистика - изучение прохождения снаряда (траектории) в полете.
  • Терминальная баллистика - изучение снаряда и его последствий по мере его завершения

Внутренняя баллистика является изучением движения в виде снаряда. В пушках она покрывает время от зажигания ракетного топлива до тех пор, пока снаряд не выйдет из ствола орудия. Это то, что изучает внутренняя баллистика. Это важно для дизайнеров и пользователей огнестрельного оружия всех типов, от винтовок и пистолетов, до высокотехнологичной артиллерии. Сведения из внутренней баллистики для ракетных снарядов охватывает период, в течение которого ракетный двигатель обеспечивает тягу.

Переходная баллистика, также известная как промежуточная баллистика, - это исследование поведения снаряда с момента его выхода из дула до тех пор, пока давление за снарядом не будет уравновешено, поэтому оно находится между понятием о внутренней и внешней баллистике.

Внешняя баллистика изучает динамику атмосферного давления вокруг пули и является частью науки о баллистике, которая занимается поведением снаряда без питания в полете. Эта категория часто ассоциируется с огнестрельным оружием и связана с незанятой фазой свободного полета пули после того, как она выходит из ствола пистолета и до того, как попадет в цель, поэтому она находится между переходной баллистикой и баллистикой терминала. Однако внешняя баллистика также касается свободного полета ракет и других снарядов, таких как шары, стрелы и так далее.

Терминальная баллистика - это исследование поведения и эффектов снаряда, когда он достигает цели. Данная категория имеет значение как для снарядов малого калибра, так и для снарядов большого калибра (стрельба из артиллерии). Изучение чрезвычайно высоких скоростных воздействий все еще очень новое и в настоящее время применяется в основном к проектированию космических аппаратов.

Судебная баллистика

Судебная баллистика включает в себя анализ пуль и пулевых воздействий для определения информации об использовании в суде или в другой части правовой системы. Отдельно от информации о баллистике, экзамены по огнестрельному оружию и инструментальной метке («баллистическая отпечатка пальца») предусматривают анализ доказательств огнестрельного оружия, боеприпасов и инструментов, чтобы установить, использовалось ли какое-либо огнестрельное оружие или инструмент при совершении преступления.

Астродинамика: орбитальная механика

Астродинамика - применение баллистики оружия, внешней и внутренней, и орбитальной механики к практическим проблемам движения ракет и других космических аппаратов. Движение этих объектов, как правило, рассчитывается из законов движения Ньютона и закона всемирного тяготения. Это основная дисциплина в области проектирования и контроля космической миссии.

Путешествие снаряда в полете

Основы внешней и внутренней баллистики касаются путешествия снаряда в полете. Путь полета пули включает: движение вниз по стволу, путь по воздуху и путь через цель. Основы внутренней баллистики (или исходной, внутри пушки) различаются в соответствии с типом оружия. Пули, выпущенные из винтовки, будут иметь больше энергии, чем аналогичные пули, выпущенные из пистолета. Еще больше порошка можно также использовать в ружейных патронах, потому что пулевые камеры могут быть спроектированы так, чтобы выдерживать большее давление.

Для более высокого давления требуется более крупная пушка с большей отдачей, которая медленнее загружается и генерирует больше тепла, что приводит к большему износу металла. На практике трудно измерить силы внутри ствола орудия, но один легко измеряемый параметр - это скорость, с которой пуля выходит из ствола (начальная скорость). Регулируемое расширение газов от горящего пороха создает давление (сила/площадь). Здесь находится база пули (эквивалентная диаметру ствола) и является постоянной. Поэтому энергия, передаваемая пуле (с заданной массой), будет зависеть от массового времени, умноженного на временной интервал, на котором применяется сила.

Последний из этих факторов является функцией длины ствола. Пулевое движение через пулеметное устройство характеризуется увеличением ускорения, когда расширяющиеся газы нажимают на него, но уменьшают давление в стволе при расширении газа. До точки уменьшения давления, чем дольше баррель, тем больше ускорение пули. Когда пуля проходит по стволу пистолета, происходит небольшая деформация. Это происходит из-за незначительных (редко крупных) недостатков или вариаций в нарезке или меток в стволе. Главной задачей внутренней баллистики является создание благоприятных условий для избежания подобных ситуаций. Эффект на последующей траектории полета пули обычно незначителен.

От пушки до цели

Внешнюю баллистику кратко можно назвать путешествием от пушки до цели. Пули обычно не следуют по прямой линии к цели. Действуют вращательные силы, которые удерживают пулю от прямой оси полета. Основы внешней баллистики включают такое понятие, как прецессия, которая относится к вращению пули вокруг центра масс. Нутация - это небольшое круговое движение на кончике пули. Ускорение и прецессия уменьшаются по мере увеличения расстояния от пули от ствола.

Одной из задач внешней баллистики является создание идеальной пули. Чтобы уменьшить сопротивление воздуха, идеальная пуля была бы длинной тяжелой иглой, но такой снаряд прошел бы прямо через цель, не рассеивая большую часть своей энергии. Сферы будут отставать и высвобождать больше энергии, но могут даже не попасть в цель. Хорошая аэродинамическая компромиссная форма пули - это параболическая кривая с низкой лобовой областью и формой ветвления.

Лучшей пулевой композицией является свинец, который имеет высокую плотность и дешев для получения. Его недостатки - тенденция к размягчению со скоростью > 1000 кадра в секунду, что приводит к тому, что он смазывает ствол и уменьшает точность, также свинец имеет тенденцию полностью расплавиться. Легирование свинца (Pb) с небольшим количеством сурьмы (Sb) помогает, но реальный ответ заключается в том, чтобы связать свинцовую пулю с жестким стальным бочонком через другой металл, достаточно мягкий, чтобы запечатать пулю в стволе, но с высокой температурой плавления. Медь (Cu) лучше всего подходит для этого материала в качестве «пиджака» для свинца.

Баллистика терминалов (попадание в цель)

Короткая, высокоскоростная пуля начинает резко рычать, поворачиваться и даже вращаться при входе в ткань. Это приводит к тому, что больше ткани смещается, увеличивается сопротивление и придает большую часть кинетической энергии цели. Более длинная, более тяжелая пуля может иметь больше энергии в более широком диапазоне, когда она попадает в цель, но она может проникать так хорошо, что она выходит из цели с большей частью своей энергии. Даже пуля с низкой кинетикой может принести значительный урон ткани. Пули производят повреждение тканей тремя способами:

  1. Разрушение и дробление. Диаметр повреждения при раздавливании в ткани - это диаметр пули или фрагмента, вплоть до длины оси.
  2. Кавитация - «постоянная» полость вызвана траекторией (дорожкой) самой пули с дроблением ткани, тогда как «временная» полость образована радиальным растяжением вокруг пулевой дорожки от непрерывного ускорения среды (воздуха или ткани) в результате пули, заставляя раневую полость растягиваться наружу. Для снарядов, движущихся с низкой скоростью, постоянные и временные полости почти одинаковы, но с большой скоростью и с пулевым рысканием временная полость становится больше.
  3. Ударные волны. Ударные волны сжимают среду и движутся впереди пули, а также по сторонам, но эти волны длится всего несколько микросекунд и не вызывают глубоких разрушений с малой скоростью. При большой скорости генерируемые ударные волны могут достигать до 200 атмосфер давления. Однако перелом кости из-за кавитации является чрезвычайно редким событием. Баллистическая волна давления от дальнего пулевого удара может вызвать у человека сотрясение, что вызывает острые неврологические симптомы.

Экспериментальные методы для демонстрации повреждения тканей использовали материалы с характеристиками, подобными мягким тканям и коже человека.

Дизайн пули

Конструкция пули важна в потенциале ранения. Гаагская конвенция 1899 года (и впоследствии Женевская конвенция) запрещала использование расширяющихся, деформируемых пуль в военное время. Поэтому у военных пуль есть металлическое облачение вокруг свинцового ядра. Разумеется, договор был в меньшей степени связан с соблюдением, чем тот факт, что современные военные штурмовые винтовки стреляют снарядами с высокой скоростью, а пули должны быть покрыты медной оболочкой, поскольку свинец начинает плавиться из-за тепла, создаваемого со скоростью > 2000 кадров в секунду.

Внешняя и внутренняя баллистика ПМ (пистолета Макарова) отличается от баллистики так называемых «разрушаемых» пуль, предназначенных для разрушения при ударе по твердой поверхности. Такие пули обычно изготавливают из металла, отличного от свинца, такого как медный порошок, уплотненный в виде пули. Расстояние мишени от дула играет большую роль в способности к ранению, поскольку большинство пуль, выпущенных из пистолетов, потеряли значительную кинетическую энергию (КЭ) на расстоянии 100 ярдов, в то время как высокоскоростные военные орудия по-прежнему имеют значительный КЭ даже на 500 ярдах. Таким образом, внешняя и внутренняя баллистика ПМ и военных и охотничьих ружей, предназначенных для доставки пуль с большим количеством КЭ на большее расстояние, будут различаться.

Проектирование пули для эффективной передачи энергии конкретной цели не является простым, поскольку цели отличаются. Понятие внутренней и внешней баллистики включает в себя также дизайн снаряда. Чтобы проникнуть в толстую шкуру и жесткую кость слона, пуля должна быть небольшого диаметра и достаточно прочной, чтобы противостоять дезинтеграции. Однако такая пуля проникает в большинство тканей, как копье, нанося немного больше урона, чем ножевая рана. Пуля, предназначенная для повреждения тканей человека, потребует определенных «тормозов», чтобы вся КЭ передавались цели.

Легче конструировать функции, которые помогают замедлить большую, медленную движущуюся пулю в тканях, чем небольшая, высокоскоростная пуля. К таким мерам относятся модификации формы, такие как круглая, сплющенная или куполообразная. Круглые носовые пули обеспечивают наименьшее торможение, обычно покрыты оболочкой и полезны главным образом в пистолетах с малой скоростью. Сплющенная конструкция обеспечивает наибольшее торможение только от формы, не покрывается оболочкой и используется в пистолетах с малой скоростью (часто для целевой практики). Конструкция купола является промежуточной между круглым и режущим инструментом и полезна при средней скорости.

Конструкция пули полых точек облегчает поворот пули «наизнанку» и выравнивание фронта, называемое «расширением». Расширение надежно происходит только при скоростях, превышающих 1200 кадров в секунду, поэтому подходит только для пистолетов с максимальной скоростью. Разрушаемая пуля, состоящая из порошка, предназначена для дезинтеграции при ударе, доставки всего КЭ, но без значительного проникновения, размер фрагментов должен уменьшаться по мере увеличения скорости удара.

Потенциал ранения

Тип ткани влияет на потенциал ранения, а также на глубину проникновения. Удельный вес (плотность) и эластичность являются основными тканевыми факторами. Чем выше удельный вес, тем больший урон. Чем больше эластичность, тем меньше урон. Таким образом, легкая ткань с низкой плотностью и высокой эластичностью повреждается меньше мышц с более высокой плотностью, но с некоторой эластичностью.

Печень, селезенка и мозг не имеют эластичности и легко травмируются, как и жировая ткань. Заполненные жидкостью органы (мочевой пузырь, сердце, большие сосуды, кишечник) могут лопнуть из-за создаваемых волн давления. Пуля, поражающая кость, может привести к фрагментации кости и / или к образованию многочисленных вторичных ракет, каждая из которых вызывает дополнительное ранение.

Баллистика пистолета

Это оружие легко скрывается, но трудно прицелиться точно, особенно в местах преступления. Большинство стрельб из стрелкового оружия происходят на расстоянии менее 7 ярдов, но даже в этом случае большинство пуль пропускают намеченную цель (только 11% патронов нападавших и 25% пуль, выпущенных полицейскими, попадают в намеченную цель в одном исследовании). Обычно оружие низкого калибра используется в преступлениях, потому что они дешевле и легче носить и легче контролировать во время стрельбы.

Уничтожение тканей может быть увеличено любым калибром с использованием пули с расширяющимися полыми точками. Двумя основными переменными в баллистике пистолетов являются диаметр пули и объем пороха в корпусе картриджа. Картриджи более старого дизайна были ограничены давлениями, которые они могли выдержать, но достижения в металлургии позволили удвоить и утроить максимальное давление, чтобы можно было генерировать больше кинетической энергии.

← Вернуться

×
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:
Я уже подписан на сообщество «sinkovskoe.ru»