Взаимодействие металлов с неметаллами. Химические свойства простых веществ металлов и неметаллов

Подписаться
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:

ВЗАИМОДЕЙСТВИЕ МЕТАЛЛОВ С НЕМЕТАЛЛАМИ

Неметаллы проявляют окислительные свойства в реакциях с металлами, принимая от них электроны и восстанавливаясь.

Взаимодействие с галогенами

Галогены (F 2 , Cl 2 , Br 2 , I 2 ) являются сильными окислителями, поэтому с ними взаимодействуют все металлы при обычных условиях:

2 Me + n Hal 2 → 2 MeHal n

Продуктом такой реакции является соль – галогенид металла (MeF n -фторид, MeCl n -хлорид, MeBr n -бромид, MeI n -иодид). При взаимодействии с металлом галоген восстанавливается до низшей степени окисления (-1), а n равно степени окисления металла.

Скорость реакции зависит от химической активности металла и галогена. Окислительная активность галогенов снижается по группе сверху вниз (от F к I ).

Взаимодействие с кислородом

Кислородом окисляются почти все металлы (кроме Ag , Au , Pt ), при этом происходит образование оксидов Me 2 O n .

Активные металлы легко при обычных условиях взаимодействуют с кислородом воздуха.

2 Mg + O 2 → 2 MgO (со вспышкой)

Металлы средней активности также реагируют с кислородом при обычной температуре. Но скорость такой реакции существенно ниже, чем при участии активных металлов.

Малоактивные металлы окисляются кислородом при нагревании (горение в кислороде).

Оксиды металлов по химическим свойствам можно разделить на три группы:

1. Осно́вные оксиды (Na 2 O , CaO , Fe II O , Mn II O , Cu I O и др.) образованы металлами в низких степенях окисления (+1, +2, как правило, ниже +4). Основные оксиды взаимодействуют с кислотными оксидами и кислотами с образованием солей:

CaO + CO 2 → CaCO 3

CuO + H 2 SO 4 → CuSO 4 + H 2 O

2. Кислотные оксиды (Cr VI O 3 , Fe VI O 3 , Mn VI O 3 , Mn 2 VII O 7 и др.) образованы металлами в высоких степенях окисления (как правило, выше +4). Кислотные оксиды взаимодействуют с основными оксидами и основаниями с образованием солей:

FeO 3 + K 2 O → K 2 FeO 4

CrO 3 + 2KOH → K 2 CrO 4 + H 2 O

3. Амфотерные оксиды (BeO , Al 2 O 3 , ZnO , SnO , MnO 2 , Cr 2 O 3 , PbO , PbO 2 и др.) имеют двойственную природу и могут взаимодействовать как с кислотами, так и с основаниями:

Cr 2 O 3 + 3H 2 SO 4 → Cr 2 (SO 4) + 3H 2 O

Cr 2 O 3 + 6NaOH → 2Na 3

Взаимодействие с серой

С серой взаимодействуют все металлы (кроме Au ), образуя соли – сульфиды Me 2 S n . При этом сера восстанавливается до степени окисления «-2». Платина (Pt ) взаимодействует с серой только в мелкораздробленном состоянии. Щелочные металлы, а также Ca и Mg реагируют с серой при нагревании со взрывом. Zn , Al (в порошке) и Mg в реакции с серой дают вспышку. В направлении слева направо в ряду активности скорость взаимодействия металлов с серой убывает.

Взаимодействие с водородом

С водородом некоторые активные металлы образуют соединения – гидриды:

2 Na + H 2 → 2 NaH

В этих соединениях водород находится в редкой для него степени окисления «-1».

Е.А. Нуднoва, М.В. Андрюxова


Положение элементов-неметаллов в Периодической системе химических элементов Д.И. Менделеева

· Элементы-неметаллы:

· s-элемент – водород;

· р-элементы 3 группы – бор;

· 4 группы – углерод и кремний;

· 5 группы – азот, фосфор и мышьяк,

· 6 группы – кислород, сера, селен и теллур

· 7 группы – фтор, хлор, бром, йод и астат.

Элементы 8 группы – инертные газы, занимают особое положение, они имеют полностью завершенный внешний электронный слой.

Химические элементы-неметаллы могут проявлять как окислительные, так и восстановительные свойства, в зависимости от химического превращения, в котором они принимают участие.

Атомы самого электроотрицательного элемента – фтора – не способны отдавать электроны, он всегда проявляет только окислительные свойства, другие элементы могут проявлять и восстановительные свойства, хотя намного в меньшей степени, чем металлы. Наиболее сильными окислителями (принимают электроны) - являются фтор, кислород и хлор, преимущественно восстановительные свойства (отдают) проявляют водород, бор, углерод, кремний, фосфор, мышьяк и теллур. Промежуточные окислительно-восстановительные свойства имеют азот, сера, йод.

1. Взаимодействие с металлами:

2Na + Cl 2 = 2NaCl, Fe + S = FeS, 6Li + N 2 = 2Li 3 N, 2Ca + O 2 = 2CaO

в этих случаях неметаллы проявляют окислительные свойства, они принимают электроны, образуя отрицательно заряженные частицы.

2. Взаимодействие с другими неметаллами:

· взаимодействуя с водородом , большинство неметаллов проявляет окислительные свойства, образуя летучие водородные соединения – ковалентные гидриды:

3H 2 + N 2 = 2NH 3 , H 2 + Br 2 = 2HBr;

· взаимодействуя с кислородом , все неметаллы, кроме фтора, проявляют восстановительные свойства:

S + O 2 = SO 2 , 4P + 5O 2 = 2P 2 O 5 ;

· при взаимодействии с фтором фтор является окислителем, а кислород – восстановителем: 2F 2 + O 2 = 2OF 2 ;

· неметаллы взаимодействуют между собой , более электроотрицательный металл играет роль окислителя, менее электроотрицательный – роль восстановителя: S + 3F 2 = SF 6 , C + 2Cl 2 = CCl 4 .

Галогены (7 группа)

Химические свойства галогенов.



КИСЛОРОДСОДЕРЖАЩИЕ КИСЛОТЫ ХЛОРА

· Хлорноватистая кислота HCl +1 O соли – гипохлориты

Существует только в виде разбавленных водных растворов.

Получение Cl2 + H2O = HCl + HClO

Химические свойства

HClO - слабая кислота и сильный окислитель:

1) Разлагается на свету, выделяя атомарный кислород HClO = HCl + O

2) Со щелочами дает соли – гипохлориты HClO + KOH = KClO + H2O

3) Взаимодействует с галогеноводородами 2HI + HClO = I2 + HCl + H2O

Хлористая кислота HClO2 (HClO2 - слабая кислота и сильный окислитель; соли хлористой кислоты – хлориты)

Химические свойства

1.HClO2 + KOH = KClO2 + H2O

2. Неустойчива, при хранении разлагается 4HClO2 = HCl + HClO3 + 2ClO2 + H2O

Хлорноватая кислота HCl O3 (HClO3 - Сильная кислота и сильный окислитель; соли хлорноватой кислоты – хлораты)

KClO 3 - Бертоллетова соль ; ее получают при пропускании хлора через подогретый (40°C) раствор KOH:

3Cl 2 + 6KOH = 5KCl + KClO 3 + 3H 2 O

Бертоллетову соль используют в качестве окислителя; при нагревании она разлагается:

4KClO 3 = KCl + 3KClO 4 (без катализатора)

2KClO 3 = 2KCl + 3O 2 (катализатор MnO 2)

Хлорная кислота HClO4 (HClO4 - очень сильная кислота и очень сильный окислитель; соли хлорной кислоты – перхлораты )

Получение KClO4 + H2SO4 = KHSO4 + HClO4

Химические свойства

1) Взаимодействует со щелочами HClO4 + KOH = KClO4 + H2O

2) При нагревании хлорная кислота и ее соли разлагаются:

4HClO4 = 4ClO2 + 3O2 + 2H2O KClO4 = KCl + 2O2

Халькогены (элементы VIA группы)

Кислород, S, Se, Te, Po. Название халькогены означает «рождающие руды». Соединения серы: пирит, или железный колчедан – FeS2, киноварь – HgS, цинковая обманка – ZnS.

На внешнем энергетическом уровне у халькогенов 6 электронов. До завершения внешнего энергетического уровня атомам не хватает 2 электрона, поэтому они присоединяют электроны и проявляют в своих соединениях степень окисления -2.

Атомы серы, селена и теллура в своих соединениях с более электроотрицательными элементами проявляют положительные степени окисления +2, +4 и +6.

Кислород n=8 1s 2 2s 2 2p 4

Кислород входит в состав таких руд, как корунд – Al2O3, магнитный железняк, – Fe3O4, красный железняк – Fe2O3, бурый железняк - Fe2O3 ·

Кислород в соединении с фтором – OF2 проявляет степень окисления +2. Кислород входит в состав атмосферы, где на его долю приходится 21%.

Получение кислорода.

· В промышленности кислород получают из жидкого воздуха.

· Кислород можно получить и при разложении воды в специальном устройстве – электролизёре.

· В лаборатории используют пероксид водорода (Н2О2). Эта реакция идёт в присутствии катализатора – оксида марганца IV

· в лаборатории ещё используют реакцию разложения перманганата калия – KMnO 4 – «марганцовки».

· В лабораторных условиях кислород выделяется кислород при нагревании бертолетовой соли (хлората калия)

2KClO 3 = 2KCl + 3O 2 Катализатор - оксид марганца (MnO 2).

кислород существует в виде двух аллотропных модификаций –O 2 и О 3 .

Химические свойства

Кислород не взаимодействует с галогенами, благородными газами, золотом и платиной.

· Кислород энергично реагирует с металлами. Например, в реакции с литием, образуется оксид лития, в реакции с медью – оксид меди (II).

4Li + O 2 = 2Li 2 O 2Cu + O 2 = 2CuO

· Кислород реагирует с неметаллами.

S + O 2 = SO 2 4P + 5O 2 = 2P 2 O 5

Почти все реакции с кислородом экзотермические (то есть сопровождаются выделением теплоты). Исключение составляет реакция азота с кислородом, которая является эндотермической.

N 2 + O 2 ↔ 2NO – Q

· Кислород сложные вещества.

CH 4 + 2O 2 = CO 2 + 2H 2 O 2H 2 S + 3O 2 = 2SO 2 + 2H 2 O

СЕРА n=16 1s 2 2s 2 2p 6 3s 2 3p 4

Химические свойства неметаллов.

Неметаллы имеют атомное или молекулярное строение. Для них характерны невысокие температуры плавления и кипения, неспособность проводить электрический ток. Неметаллы вступают в реакции с металлами, водородом, кислородом и преимущественно являются окислителями. Большинство неметаллов используют в технике, химической промышленности.

Неметаллы в химических реакциях могут быть восстановителями и окислителями (фтор, кислород).

Взаимодействие неметаллов с металлами

2Na + Cl 2 = 2NaCl ,

Fe + S = FeS ,

6Li + N 2 = 2Li 3 N ,

2Ca + O 2 = 2CaO

2. Взаимодействие неметаллов с углеродом. Для углерода более характерны реакции, в которых он проявляет восстановительные свойства. Это имеет место при полном сгорании углерода любой аллотропической модификации

C + 2Cl 2 = CCl 4 .

Продуктами взаимодействия двух неметаллов являются вещества с различным агрегатным состоянием, что имеют ковалентный тип химической связи, общие электронные пары которого смещаются к атому более электроотрицательного неметаллического элемента.

3. Взаимодействие неметаллов с водородом:

3H 2 + N 2 = 2NH 3 ,

H 2 + Br 2 = 2HBr ;

4. Взаимодействие неметаллов с другими неметаллами:

S + 3F 2 = SF 6 ,

S + O 2 = SO 2 ,

4P + 5O 2 = 2P 2 O 5 ;

5. Взаимодействие металлов с углеродом .

При обычной температуре углерод весьма инертен. Его химическая активность проявляется лишь при высоких температурах. Соединения углерода с металлами называются карбидами .

4А1 + ЗС = АІ 4 C 3 (Карбид алюминия)

Физические и химические свойства водорода H 2 . Молекула Н 2 содержит неполярную σ-связь. Бесцветный газ, без запаха и вкуса, устойчив к нагреванию до 2000 °С. Практически не растворяется в воде.

Физические константы: M r = 2,016, ρ = 0,09 г/л (н.у.), t пл = −259,19 °C, t кип = −252,87 °C.

Водород Н 2 может проявлять в одних условиях восстановительные свойства (чаще), в других условиях - окислительные свойства (реже):

восстановитель H 2 0 - 2e − = 2H I

окислитель H 2 0 + 2e − = 2H −I

Реагирует с неметаллами, металлами, оксидами (обычно при нагревании):

2H 2 + O 2 = 2H 2 O

H 2 + CuO = Cu + H 2 O

H 2 + Ca = CaH 2

Качественная реакция на водород - сгорание с "хлопком" собранного в пробирку газа.

Водородные соединения неметаллов.

В отличие от металлов неметаллы образуют газообразные водородные соединения. Их состав зависит от степени окисления неметаллов.

-4 -3 -2 -1
RH 4 → RH 3 → H 2 R → HR

Выводы:

1.Элементы-неметаллы расположены в главных подгруппах III–VIII групп ПС Д.И. Менделеева, занимая её верхний правый угол. 2.На внешнем электронном слое атомов элементов-неметаллов находятся от 3 до 8 электронов.

Если большинство элементов-металлов не окрашены, исключение составляют только медь и золото, то практически все неметаллы имеют свой цвет: фтор – оранжево-желтый, хлор – зеленовато-желтый, бром – кирпично-красный, йод – фиолетовый, сера – желтая, фосфор может быть белым, красным и черным, а жидкий кислород – голубой.

Все неметаллы не проводят тепло и электрический ток, поскольку у них нет свободных носителей заряда – электронов, все они использованы для образования химических связей. Кристаллы неметаллов непластичные и хрупкие, так как любая деформация приводит к разрушению химических связей. Большинство из неметаллов не имеют металлического блеска.

Физические свойства неметаллов разнообразны и обусловлены разным типом кристаллических решеток.

1.4.1 Аллотропия

АЛЛОТРОПИЯ – существование химических элементов в двух или более молекулярных либо кристаллических формах. Например, аллотропами являются обычный кислород O 2 и озон O 3 ; в этом случае аллотропия обусловлена образованием молекул с разным числом атомов. Чаще всего аллотропия связана с образованием кристаллов различных модификаций. Углерод существует в двух четко различающихся кристаллических аллотропных формах: в виде алмаза и графита. Раньше полагали, что т.н. аморфные формы углерода, древесный уголь и сажа, – тоже его аллотропные модификации, но оказалось, что они имеют такое же кристаллическое строение, что и графит. Сера встречается в двух кристаллических модификациях: ромбической (a-S) и моноклинной (b-S); известны по крайней мере три ее некристаллические формы: l-S, m-S и фиолетовая. Для фосфора хорошо изучены белая и красная модификации, описан также черный фосфор; при температуре ниже –77°С существует еще одна разновидность белого фосфора. Обнаружены аллотропные модификации As, Sn, Sb, Se, а при высоких температурах – железа и многих других элементов.

1.5. Химические свойства неметаллов

Химические элементы-неметаллы могут проявлять как окислительные, так и восстановительные свойства, в зависимости от химического превращения, в котором они принимают участие.

Атомы самого электроотрицательного элемента – фтора – не способны отдавать электроны, он всегда проявляет только окислительные свойства, другие элементы могут проявлять и восстановительные свойства, хотя намного в меньшей степени, чем металлы. Наиболее сильными окислителями являются фтор, кислород и хлор, преимущественно восстановительные свойства проявляют водород, бор, углерод, кремний, фосфор, мышьяк и теллур. Промежуточные окислительно-восстановительные свойства имеют азот, сера, йод.

Взаимодействие с простыми веществами

Взаимодействие с металлами:

2Na + Cl 2 = 2NaCl,

6Li + N 2 = 2Li 3 N,

2Ca + O 2 = 2CaO

в этих случаях неметаллы проявляют окислительные свойства, они принимают электроны, образуя отрицательно заряженные частицы.

Взаимодействие с другими неметаллами:

Взаимодействуя с водородом, большинство неметаллов проявляет окислительные свойства, образуя летучие водородные соединения – ковалентные гидриды:

3H 2 + N 2 = 2NH 3 ,

H 2 + Br 2 = 2HBr;

Взаимодействуя с кислородом, все неметаллы, кроме фтора, проявляют восстановительные свойства:

S + O 2 = SO 2 ,

4P + 5O 2 = 2P 2 O 5 ;

При взаимодействии с фтором фтор является окислителем, а кислород – восстановителем:

2F 2 + O 2 = 2OF 2 ;

Неметаллы взаимодействуют между собой, более электроотрицательный металл играет роль окислителя, менее электроотрицательный – роль восстановителя:

S + 3F 2 = SF 6 ,

Неметаллы ― химические элементы, которые образуют простые тела, не обладающие свойствами, характерными для металлов. Качественной характеристикой неметаллов является электроотрицательность.

Электроотрицательность ― это способность поляризовать химическую связь, оттягивать к себе общие электронные пары.

К неметаллам относят 22 элемента.

1-й период

3-й период

4-й период

5-й период

6-й период

Как видно из таблицы, неметаллические элементы в основном расположены в правой верхней части периодической системы.

Строение атомов неметаллов

Характерной особенностью неметаллов является большее (по сравнению с металлами) электронов на внешнем энергетическом уровне их атомов. Это определяет их большую способность к присоединению дополнительных электронов и проявлению более высокой окислительной активности, чем у металлов. Особенно сильные окислительные свойства, т. е. способность присоединять электроны, проявляют неметаллы, находящиеся во 2- и 3-м периодах VI-VII групп. Если сравнить расположение электронов по орбиталям в атомах фтора, хлора и других галогенов, то можно судить об их отличительных свойствах. У атома фтора свободных орбиталей нет. Поэтому атомы фтора могут проявить только I и степень окисления ― 1. Самым сильным окислителем является фтор . В атомах других галогенов, например в атоме хлора, на том же энергетическом уровне имеются свободные d-орбитали. Благодаря этому распаривание электронов может произойти тремя разными путями. В первом случае хлор может проявить степень окисления +3 и образовать хлористую кислоту HClO2, которой соответствуют соли ― , например хлорит калия KClO2. Во втором случае хлор может образовать соединения, в которых хлора +5. К таким соединениям относятся HClO3 и ее ― , например хлорат калия КClO3 (бертолетова ). В третьем случае хлор проявляет степень окисления +7, например в хлорной кислоте HClO4 и в ее солях, ― перхлоратах (в перхлорате калия КClO4).

Строения молекул неметаллов. Физические свойства неметаллов

В газообразном состоянии при комнатной температуре находятся:

· водород ― H2;

· азот ― N2;

· кислород ― O2;

· фтор ― F2;

· радон ― Rn).

В жидком ― бром ― Br.

В твердом:

· бор ― B;

· углерод ― C;

· кремний ― Si;

· фосфор ― P;

· селен ― Se;

· теллур ― Te;

Гораздо богаче у неметаллов и цветов: красный ― у фосфора, бурый ― у брома, желтый ― у серы, желто-зеленый ― у хлора, фиолетовый ― у паров йода и т. д.

Самые типичные неметаллы имеют молекулярное строение, а менее типичные ― немолекулярное. Этим и объясняется отличие их свойств.

Состав и свойства простых веществ – неметаллов

Неметаллы образуют как одноатомные, так и двухатомные молекулы. К одноатомным неметаллам относятся инертные газы, практически не реагирующие даже с самыми активными веществами. расположены в VIII группе периодической системы, а химические формулы соответствующих простых веществ следующие: He, Ne, Ar, Kr, Xe и Rn.

Некоторые неметаллы образуют двухатомные молекулы. Это H2, F2, Cl2, Br2, Cl2 (элементы VII группы периодической системы), а также кислород O2 и азот N2. Из трехатомных молекул состоит газ озон (O3). Для веществ неметаллов, находящихся в твердом состоянии, составить химическую формулу довольно сложно. Атомы углерода в графите соединены друг с другом различным образом. Выделить отдельную молекулу в приведенных структурах затруднительно. При написании химических формул таких веществ, как и в случае с металлами, вводится допущение, что такие вещества состоят только из атомов. , при этом, записываются без индексов: C, Si, S и т. д. Такие простые вещества, как и кислород, имеющие одинаковый качественный состав (оба состоят из одного и же элемента ― кислорода), но различающиеся по числу атомов в молекуле, имеют различные свойства. Так, кислород запаха не имеет, в то время как озон обладает резким запахом, который мы ощущаем во время грозы. Свойства твердых неметаллов, графита и алмаза, имеющих также одинаковый качественный состав, но разное строение, резко отличаются (графит хрупкий, твердый). Таким образом, свойства вещества определяются не только его качественным составом, но и , сколько атомов содержится в молекуле вещества и как они связаны между собой. в виде простых тел находятся в твердом газообразном состоянии (исключая бром ― жидкость). Они не имеют физических свойств, присущих металлам. Твердые неметаллы не обладают характерным для металлов блеском, они обычно хрупки, плохо проводят и тепло (за исключением графита). Кристаллический бор В (как и кристаллический кремний) обладает очень высокой температурой плавления (2075°С) и большой твердостью. Электрическая проводимость бора с повышением температуры сильно увеличивается, что дает возможность широко применять его в полупроводниковой технике. Добавка бора к стали и к сплавам алюминия, меди, никеля и др. улучшает их механические свойства. Бориды (соединения с некоторыми металлами, например с титаном: TiB, TiB2) необходимы при изготовлении деталей реактивных двигателей, лопаток газовых турбин. Как видно из схемы 1, углерод ― С, кремний ― Si, ― В имеют сходное строение и обладают некоторыми общими свойствами. Как простые вещества они встречаются в двух видоизменениях ― в кристаллическом и аморфном. Кристаллические видоизменения этих элементов очень твердые, с высокими температурами плавления. Кристаллический обладает полупроводниковыми свойствами. Все эти элементы образуют соединения с металлами ― , и (CaC2, Al4C3, Fe3C, Mg2Si, TiB, TiB2). Некоторые из них обладают большей твердостью, например Fe3C, TiB. используется для получения ацетилена.

Химические свойства неметаллов

В соответствии с численными значениями относительных электроотрицательностей окислительные неметаллов увеличивается в следующем порядке: Si, B, H, P, C, S, I, N, Cl, O, F.

Неметаллы как окислители

Окислительные свойства неметаллов проявляются при их взаимодействии:

· с металлами: 2Na + Cl2 = 2NaCl;

· с водородом: H2 + F2 = 2HF;

· с неметаллами, которые имеют более низкую электроотрицательность: 2Р + 5S = Р2S5;

· с некоторыми сложными веществами: 4NH3 + 5O2 = 4NO + 6H2O,

2FeCl2 + Cl2 = 2 FeCl3.

Неметаллы как восстановители

1. Все неметаллы (кроме фтора) проявляют восстановительные свойства при взаимодействии с кислородом:

S + O2 = SO2, 2H2 + O2 = 2H2О.

Кислород в соединении с фтором может проявлять и положительную степень окисления, т. е. являться восстановителем. Все остальные неметаллы проявляют восстановительные свойства. Так, например, хлор непосредственно с кислородом не соединяется, но косвенным путем можно получить его оксиды (Cl2O, ClO2, Cl2O2), в которых хлор проявляет положительную степень окисления. Азот при высокой температуре непосредственно соединяется с кислородом и проявляет восстановительные свойства. Еще легче с кислородом реагирует сера.

2. Многие неметаллы проявляют восстановительные свойства при взаимодействии со сложными веществами:

ZnO + C = Zn + CO, S + 6HNO3 конц = H2SO4 + 6NO2 + 2H2О.

3. Существуют и такие реакции, в которых и же неметалл является одновременно и окислителем и восстановителем:

Cl2 + H2О = HCl + HClO.

4. Фтор ― самый типичный неметалл, которому нехарактерны восстановительные свойства, т. е. способность отдавать электроны в химических реакциях.

Соединения неметаллов

Неметаллы могут образовывать соединения с разными внутримолекулярными связями.

Виды соединений неметаллов

Общие формулы водородных соединений по группам периодической системы химических элементов приведены в таблицe:

Летучие водородные соединения

Общая халькогенов.

В главной подгруппе шестой группы периодической системы элементов . И. Менделеева находятся элементы: кислород (О), сера (S), селен (Se), (Te) и (Po). Эти элементы имеют общее название халькогены, что означает «образующие руды».

В подгруппе халькогенов сверху вниз с увеличением заряда атома закономерно изменяются свойства элементов: уменьшается их неметаллический и усиливаются металлические свойства. Так ― типичный неметалл, а полоний ― металл (радиоактивен).

Серый селен

Производство фотоэлементов и выпрямителей электрического тока

В полупроводниковой технике

Биологическая роль халькогенов

Сера играет важную роль в жизни растений, животных и человека. В животных организмах сера входит в состав почти всех белков, в серосодержащие ― и , а также в состав витамина В1 и гормона инсулина. При недостатке серы у овец замедляется рост шерсти, а у птиц отмечена плохая оперяемость.

Из растений больше всего потребляют серу капуста, салат, шпинат. Богаты серой также стручки гороха и фасоли, редис, репа, лук, хрен, тыква, огурцы; бедны серой и свекла.

По химическим свойствам селен и теллур очень похожи на серу, но по физиологическим являются ее антагонистами. Для нормального функционирования организма необходимы очень малые количества селена. Селен положительно влияет на сердечно-сосудистой системы, красных кровяных , повышает иммунные свойства организма. Повышенное количество селена вызывает у животных заболевание, проявляющееся в исхудании и сонливости. Недостаток селена в организме ведет к нарушению работы сердца, органов дыхания, повышается тела и может даже наступить . Существенное влияние селен оказывает на животных. Например, у оленей, которые отличаются высокой остротой зрения, в сетчатке селена содержится в 100 раз больше, чем в других частях тела. В растительном мире много селена содержат все растения. Особенно большое его накапливает растение .

Физиологическая роль теллура для растений, животных и человека изучена меньше, чем селена. Известно, что теллур менее токсичен по сравнению с селеном и соединения теллура в организме быстро восстанавливаются до элементарного теллура, который в свою очередь соединяется с органическими веществами.

Общая характеристика элементов подгруппы азота

В главную подгруппу пятой группы входят азот (N), фосфор (P), мышьяк (As), сурьма (Sb) и (Bi).

Сверху вниз в подгруппе от азота к висмуту неметаллические свойства уменьшаются, а металлические свойства и радиус атомов ― увеличиваются. Азот, фосфор, мышьяк являются неметаллами, а относится к металлам.

Подгруппа азота

Сравнительные характеристики

7 N азот

15 Р фосфор

33 As мышьяк

51 Sb сурьма

83 Bi висмут

Электронное строение

…4f145d106S26p3

Степень окисления

1, -2, -3, +1, +2, +3, +4, +5

3, +1, +3, +4,+5

Электро - отрицательность

Нахождение в природе

В свободном состоянии ― в атмосфере (N2 ― ), в связанном ― в составе NaNO3 ― ; КNO3 ― индийская селитра

Ca3(РО4)2 ― фосфорит, Ca5(РО4)3(ОН) ― гидрооксилапатит, Ca5(РО4)3F ― фторапатит

Аллотропические формы при обычных условиях

Азот (одна форма)

NH3 + Н2О ↔ NH4ОН ↔ NH4+ + ОН – (гидроксид аммония);

РH3 + Н2О ↔ РH4ОН ↔ РH4+ + ОН- (гидроксид фосфония).

Биологическая роль азота и фосфора

Азот играет исключительно важную роль в жизни растений, поскольку входит в состав аминокислот, белков и хлорофилла, витаминов группы В, ферментов, активизирующих . Поэтому недостаток азота в почве отрицательно сказывается на растениях, и в первую очередь на содержание хлорофилла в листьях, из-за чего они бледнеют. потребляют от 50 до 250 кг азота на 1 гектар площади почвы. Больше всего азота находится в цветах, молодых листьях и плодах. Важнейшим источником азота для растений являются азотные ― это в основном нитрат аммония и сульфат аммония. Следует отметить также особую роль азота как составной части воздуха ― важнейшего компонента живой природы.

Ни один из химических элементов не принимает столь активного и многообразного участия в жизненных процессах растительных и животных организмов, как фосфор. Он является составной частью нуклеиновых кислот, входит в состав некоторых ферментов и витаминов.

У животных и человека в костях сосредоточено до 90 % фосфора, в мышцах ― до 10 %, в нервной ― около 1 % (в виде неорганических и органических соединений). В мышцах, печени, мозге и других органах находится в виде фосфатидов и фосфорных эфиров. Фосфор принимает участие в мышечных сокращениях и в построении мышечной и костной ткани.

Людям, занимающимся умственным трудом, необходимо употреблять повышенное количество фосфора, чтобы не допустить истощения нервных клеток, которые функционируют с повышенной нагрузкой именно при умственном труде. При недостатке фосфора понижается работоспособность, развивается невроз, нарушается двухвалентных германия, олова и свинца GeО, SnО, PbО ― амфотерными оксидами.

Высшие оксиды углерода и кремния СО2 и SiO2 являются кислотными оксидами, которым соответствуют гидроксиды, проявляющие слабокислотные свойства ― Н2СО3 и кремниевая кислота Н2SiО3.

Амфотерным оксидам ― GeО2, SnО2, PbО2 ― соответствуют амфотерные гидроксиды, причем при переходе от гидроксида германия Ge(ОН)4 к гидроксиду свинца Pb(ОН)4 кислотные свойства ослабляются, а основные усиливаются.

Биологическая роль углерода и кремния

Соединения углерода являются основой растительных и животных организмов (45 % углерода содержится в растениях и 26 % ― в животных организмах).

Характерные биологические свойства проявляют оксид углерода (II) и оксид углерода (IV). Оксид углерода (II) ― очень токсичный газ, так как он прочно соединяется с гемоглобином крови и лишает гемоглобин возможности переносить кислород от легких к капиллярам. При вдыхании СО может получить отравления, возможен даже смертельный . Оксид углерода (IV) особенно важен для растений. В клетках растений (особенно в листьях) в присутствии хлорофилла и действием солнечной энергии происходит глюкозы из углекислого и воды с выделением кислорода.

В результате фотосинтеза растения ежегодно связывают 150 млрд. т углерода и 25 млрд. т водорода, и выделяют в атмосферу до 400 млрд. т кислорода. Ученые установили, что растения получают около 25 % СО2 через корневую систему из растворенных в почве карбонатов.

Кремний растения используют для построения покровных тканей. Содержащихся в растениях кремний, пропитывая клеточные стенки, делает их более твердыми и устойчивыми к повреждениям насекомыми, предохраняет их от проникновения грибной инфекции. Кремний находится почти во всех тканях животных и человека, особенно им богаты , печень, хрящи. У туберкулезных больных в костях, зубах и хрящах кремния значительно меньше, чем у здоровых людей. При таких заболеваниях, как , Боткина, отмечается уменьшение содержания кремния в крови, а при поражении толстой кишки ― наоборот, увеличение его содержания в крови.

← Вернуться

×
Вступай в сообщество «sinkovskoe.ru»!
ВКонтакте:
Я уже подписан на сообщество «sinkovskoe.ru»